Mathematical foundations of information theory & Discrete Stochastics and Information Theory SS 2018 Exercise Sheet 7

 9^{th} of May 2018

Exercise 29 (2 Points). Recall the Weather in Oz Markov chain from the lecture with state space $\mathcal{X} = \{b(\text{eautiful}), r(\text{ainy}), s(\text{nowy})\}$ and the transition matrix

$$\mathbf{P} = \begin{pmatrix} 0 & 1/2 & 1/2 \\ 1/4 & 1/2 & 1/4 \\ 1/4 & 1/4 & 1/2 \end{pmatrix} \,.$$

Today the weather is beautiful. Let X_n be the weather in n days.

- (a) Compute the entropy rate of $(X_n)_{n\geq 0}$.
- (b) Let $\varepsilon = 2^{-4}$. Consider the two sequences $w_1, w_2 \in \mathcal{X}^{20}$ given by

 $w_1 := brrssrrsssbrsbsrbss$ $w_2 := brrrrrrrrrbssss$.

Are w_1 and w_2 in the typical set $A_{\varepsilon}^{(20)}$?

Exercise 30 (4 Points). Let X be a random variable with values in $\mathcal{X} = \{1, 2, ..., m\}$ and distribution p(x), and let $(X_i)_{i\geq 0}$ be i.i.d. random variables with the same distribution. Denote $\mu = \mathbb{E}(X)$ and $H = H(X) = -\sum p(x) \log_2 p(x)$. For $\varepsilon > 0$, consider the sets

$$A^{(n)} = \left\{ (x_1, \dots, x_n) \in \mathcal{X}^n : \left| -\frac{1}{n} \log_2 p_n(x_1, \dots, x_n) - H \right| \le \varepsilon \right\}$$
$$B^{(n)} = \left\{ (x_1, \dots, x_n) \in \mathcal{X}^n : \left| \frac{1}{n} \sum_{i=1}^n x_i - \mu \right| \le \varepsilon \right\}.$$

(a) Does $\mathbb{P}[(X_1, \dots, X_n) \in A^{(n)}] \to 1 \text{ for } n \to \infty?$

- (b) Does $\mathbb{P}[(X_1, \dots, X_n) \in A^{(n)} \cap B^{(n)}] \to 1 \text{ for } n \to \infty$?
- (c) Show that $|A^{(n)} \cap B^{(n)}| \leq 2^{n(H+\varepsilon)}$ for all n.
- (d) Show that $|A^{(n)} \cap B^{(n)}| \ge (\frac{1}{2})2^{n(H-\varepsilon)}$ for all *n* sufficiently large.

Exercise 31 (3 Points). Let $(X_i)_{i\geq 1}$ be a stochastic process with finite state space \mathcal{X} . Show that if one of the limits

$$\lim_{n \to \infty} \frac{1}{n} H(X_1, \dots, X_n)$$
$$\lim_{n \to \infty} \frac{1}{n} H(X_{k+1}, \dots, X_{k+n})$$
$$\lim_{n \to \infty} \frac{1}{n} H(X_{k+1}, \dots, X_{k+n} \mid X_1, \dots, X_k)$$

exists, then also the other limits exist and all three coincide.