Official solutions to Exercise 17 from Discrete Stochastics
and Informamtion Theory

April 19, 2018

Let X be a discrete random variable with values {x1, ..., z,} and the distribution P[X = ;] =
p; where > " | p; = 1.

(a) Inpart (a) we have to show that H(X) > 0 and H(X) = 0 iff X is almost surely constant.
By the definition of the entropy it holds, that H(X) = """, —log,(p;) - pi-

If 3i e {1,...,n}:p; €0,1], then In(p;) < 0 and p; > 0. As all summands have the same sign,
H(X) > 0 in this case.

Otherwise, if Vi € {1,...,n} :p; € {0,1}, (i.,e Fi € {1,...,n} : p; = 1) the product p; - log,(p;)
is zero. Hence their sum is zero and so is H(X).

(b) For part (b) we have to show that the maximum of the mapping p — H(p) is reached iff
X is uniformely distributed.

Solution using Lagrange Optimization The mapping p — H(p) = > ., —In(p;) - p; is
definded on the following set:

Anz{(pl,...,pn)E]R”’Vie{l,...,n}:plZOAZpi:1}

=1

On Int(A,) = A, \ 8Anﬂ the entropy H is C*° smooth. By Lagrange optimization, we get a
neccessary condition for extreme values, i.e that the first partial derivertives of the function

L(p) =) —logy(pi) - pi + A (Zpi - 1)

i=1 i=1

'The considered topology on A is the topology induced by the eqality constraint S pi =1, ie the
topology in the affine subspace {(p1,...pn)| Y i—;pi = 1}. Alternatively, A, can be considered as a n — 1-
dimensional smooth submanifold of R™ with boundary. Local coordinate charts are given by ¢; : A — R"~1

With (pi(p17"'pn) = (pl’"'7pi_17pi+17"'7pn) for /I/ 6 {17"')n}
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vanish. So let’s compute these derivertives.

oL 1
o — log,(pi) — () + A=

Equivalently,
1
—logy(pi) = M) A

So —log,(p;) does not depend on i. As —log, is bijective it follows that p; is constant for
all i. Hence, if H attains a maximum on Int(A,), this can only happen if H is uniformely
distributed. It remains to show, that this point is in fact a maximum (and not a minimum or
a saddle point). For this, we show:

H (1, o 1) “logy(n) > H(prs---pn) ¥ (p1, .. pu) € OA, (1)

n n

The equlity of (|1f) is easy to see by plugging in into the definition of H. We show the inequality
in by iduction.

For n = 1, there is nothing to show. For n = 2, 0A, = {(0,1),(1,0)} and Int(Ay) = {(p,1 —
p)|p €]0,1[}. In part (a), we have seen that H takes its unique minima on the boundary of A,.

For the induction step, we consider the following induction hypothesis:
Vm < n: H(p) <logy(m) <log,(n) Vp € A, (2)

It is enough to show that H(p) < logy(n + 1) for p € 0A,41. So let p = (p1,...,Pns1) €
0A, 1. Because p lies on the boundary of A, .1, there exists a j € {1,...,n + 1} such that
p; = 0. Consider p = (p1,...,Pj—1,Dj+1s- - - Pnt1) € A,. Then, by the definition of the entropy,
H(p) = H(p). By induction hypothesis we get H(p) < logy(n) < log,(n + 1), which completes
the induction proof.

Solution using Jensen Inequality Observe that the function f : ]0,1] — R, f(z) =
—1x - logy () is strictly concave. This is because the second derivertive is strictly negative:

1 ' 1 ' 1
" —(—x-] "_ _ s ] Y 1 _ <0
) = (o togy(a))" = = (0 i +loma(o) ) = = (o +omle)) =~
The continuos continuation of f to [0, 1] is still strictly concave. By Jensen, inequality, we have
forap=(p1,...,pn) € Ay:

n

H(p) =D —piloga(p) = 3 [(p) =n ) %f(pi)

i=1
"1 1 1 1
> il =nf(2)=n-(=Z10g, (=)) =1
>nf (; nP) nf (n> n ( n 082 (n)) 0gy(n)
For strict concave function, equality holds in Jenen’s inequality iff f(p;) = ... = f(pn), which

is only given if X is uniformely distributed.



