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April 19, 2018

Let X be a discrete random variable with values {x1, . . . , xn} and the distribution P[X = xi] =
pi where

∑n
i=1 pi = 1.

(a) In part (a) we have to show that H(X) ≥ 0 and H(X) = 0 iff X is almost surely constant.

By the definition of the entropy it holds, that H(X) =
∑n

i=1− log2(pi) · pi.

If ∃i ∈ {1, . . . , n} : pi ∈]0, 1[, then ln(pi) < 0 and pi > 0. As all summands have the same sign,
H(X) > 0 in this case.
Otherwise, if ∀i ∈ {1, . . . , n} : pi ∈ {0, 1}, (i.e ∃i ∈ {1, . . . , n} : pi = 1) the product pi · log2(pi)
is zero. Hence their sum is zero and so is H(X).

(b) For part (b) we have to show that the maximum of the mapping p 7→ H(p) is reached iff
X is uniformely distributed.

Solution using Lagrange Optimization The mapping p 7→ H(p) =
∑n

i=1− ln(pi) · pi is
definded on the following set:

∆n =

{
(p1, . . . , pn) ∈ Rn | ∀i ∈ {1, . . . , n} : p1 ≥ 0 ∧

n∑
i=1

pi = 1

}

On Int(∆n) = ∆n \ ∂∆n
1, the entropy H is C∞ smooth. By Lagrange optimization, we get a

neccessary condition for extreme values, i.e that the first partial derivertives of the function

L(p) =
n∑

i=1

− log2(pi) · pi + λ

(
n∑

i=1

pi − 1

)
1The considered topology on ∆ is the topology induced by the eqality constraint

∑n
i=1 pi = 1, i.e. the

topology in the affine subspace {(p1, . . . pn)|
∑n

i=1 pi = 1}. Alternatively, ∆n can be considered as a n − 1-
dimensional smooth submanifold of Rn with boundary. Local coordinate charts are given by ϕi : ∆ → Rn−1

with ϕi(p1, . . . pn) = (p1, . . . , pi−1, pi+1, . . . , pn) for i ∈ {1, . . . , n}
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vanish. So let’s compute these derivertives.

∂L

∂pi
= − log2(pi)−

1

ln(2)
+ λ = 0

Equivalently,

− log2(pi) =
1

ln(2)
− λ

So − log2(pi) does not depend on i. As − log2 is bijective it follows that pi is constant for
all i. Hence, if H attains a maximum on Int(∆n), this can only happen if H is uniformely
distributed. It remains to show, that this point is in fact a maximum (and not a minimum or
a saddle point). For this, we show:

H

(
1

n
, . . . ,

1

n

)
= log2(n) > H(p1, . . . pn) ∀ (p1, . . . pn) ∈ ∂∆n (1)

The equlity of (1) is easy to see by plugging in into the definition of H. We show the inequality
in (1) by iduction.

For n = 1, there is nothing to show. For n = 2, ∂∆2 = {(0, 1), (1, 0)} and Int(∆2) = {(p, 1 −
p)|p ∈]0, 1[}. In part (a), we have seen that H takes its unique minima on the boundary of ∆2.

For the induction step, we consider the following induction hypothesis:

∀m ≤ n : H(p) ≤ log2(m) ≤ log2(n) ∀p ∈ ∆m (2)

It is enough to show that H(p) < log2(n + 1) for p ∈ ∂∆n+1. So let p = (p1, . . . , pn+1) ∈
∂∆n+1. Because p lies on the boundary of ∆n+1, there exists a j ∈ {1, . . . , n + 1} such that
pj = 0. Consider p̃ = (p1, . . . , pj−1, pj+1, . . . , pn+1) ∈ ∆n. Then, by the definition of the entropy,
H(p̃) = H(p). By induction hypothesis we get H(p̃) ≤ log2(n) < log2(n+ 1), which completes
the induction proof.

Solution using Jensen Inequality Observe that the function f : ]0, 1] → R, f(x) =
−x · log2(x) is strictly concave. This is because the second derivertive is strictly negative:

f ′′(x) = (−x · log2(x))′′ = −
(
x · 1

x ln(2)
+ log2(x)

)′
= −

(
1

ln(2)
+ log2(x)

)′
= − 1

x ln(2)
< 0

The continuos continuation of f to [0, 1] is still strictly concave. By Jensen, inequality, we have
for a p = (p1, . . . , pn) ∈ ∆n:

H(p) =
n∑

i=1

−pi log2(pi) =
n∑

i=1

f(pi) = n

n∑
i=1

1

n
f(pi)

≥ nf

(
n∑

i=1

1

n
pi

)
= nf

(
1

n

)
= n ·

(
− 1

n
log2

(
1

n

))
= log2(n)

For strict concave function, equality holds in Jenen’s inequality iff f(p1) = . . . = f(pn), which
is only given if X is uniformely distributed.
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