Lineare Algebra I, WS12/13

9. Aufgabenblatt, Termin: 5.12.2012

- 41. Sei V ein Vektorraum über \mathbb{K} und $n \in \mathbb{N}$. Zeigen Sie: Ist $(b_1, b_2, ..., b_n)$ eine Basis von V, dann ist auch $(c_1, c_2, ..., c_n)$ mit $c_i = \sum_{k=1}^{i-1} \lambda_{ik} b_k + b_i$, i = 1, ..., n, $\lambda_{ik} \in \mathbb{K}$, eine Basis von V.
- 42. Gegeben sind die Vektoren

$$a = egin{pmatrix} 2 \ 0 \ -1 \ 3 \ 1 \end{pmatrix}, \ b = egin{pmatrix} 4 \ -1 \ -2 \ 1 \ 0 \end{pmatrix}, \ c = egin{pmatrix} -2 \ 2 \ 1 \ 7 \ 3 \end{pmatrix}, \ d = egin{pmatrix} 3 \ 0 \ -4 \ 1 \ -1 \end{pmatrix}, \ e = egin{pmatrix} 0 \ -1 \ 0 \ -5 \ -2 \end{pmatrix}$$

 $\text{des } \mathbb{R}^5 \text{ ""uber } \mathbb{R}. \text{ Bestimmen Sie eine Basis von } \mathcal{L}(\{a,b\}) \cap \mathcal{L}(\{c,d,e\}) \text{ und eine von } \mathcal{L}(\{a,b,c\}) \cap \mathcal{L}(\{d,e\}).$

- 43. Sei $A \in \mathbb{K}^{n \times n}$, $f : \mathbb{K}^n \to \mathbb{K}^n$, f(x) := Ax, und $b_1, ..., b_m \in \mathbb{K}^n$.
 - a) Sei $(b_1,...,b_m)$ linear unabhängig. Zeigen Sie: $f|_{\mathcal{L}(\{b_1,...,b_m\})}$ ist injektiv genau dann, wenn $(f(b_1),...,f(b_m))$ linear unabhängig ist.
 - b) Sei $\{b_1, ..., b_m\}$ ein Erzeugendensystem des \mathbb{K}^n . Zeigen Sie: f ist surjektiv genau dann, wenn $\{f(b_1), ..., f(b_m)\}$ ein Erzeugendensystem des \mathbb{K}^n ist.
- 44. Bestimmen Sie je eine Basis für den Spaltenraum, den Zeilenraum und den Kern der Matrix

$$A = egin{pmatrix} 0 & -7 & 14 & 4 & -12 & 9 \ 0 & 2 & -4 & -2 & 6 & 8 \ 0 & -1 & 2 & -1 & 3 & -5 \ 0 & -3 & 6 & 0 & 0 & 11 \end{pmatrix} \in \mathbb{R}^{4 imes 6}.$$

45. Es sei $A \in \mathbb{K}^{m \times n}$, $f : \mathbb{K}^n \to \mathbb{K}^m$, f(x) := Ax, und U, V Teilmengen von \mathbb{K}^n . Beweisen Sie: f(U) = f(V) genau dann, wenn $U + \ker(A) = V + \ker(A)$.