Lineare Algebra I, WS12/13

- 11. Aufgabenblatt, Termin: 19.12.2012
- 52. Es sei V ein endlichdimensionaler Vektorraum und $f \in \text{Hom}(V, V)$. Zeigen Sie die Äquivalenz folgender Aussagen:

(i)
$$V = f(V) + \ker(f)$$

(ii)
$$f(V) \cap \ker(f) = \{0\}$$

(iii)
$$\ker(f \circ f) = \ker(f)$$
.

53. Es seien U, V, W endlichdimensionale Vektorräume, $f \in \text{Hom}(U, V), g \in \text{Hom}(V, W)$. Beweisen Sie

$$\dim((g \circ f)(U)) \leq \min\{\dim(f(U)),\dim(g(V))\}.$$

- 54. Es seien a_1, a_2, a_3, a_4 die Spaltenvektoren der Matrix $A \in (\mathbb{Z}/2\mathbb{Z})^{7\times 4}$ aus Übung 47. Zeigen Sie, daß das Quadrupel (a_1, a_2, a_3, a_4) linear unabhängig ist und bestimmen Sie a_5, a_6, a_7 so, daß $(a_1, ..., a_7)$ eine Basis des Vektorraums $(\mathbb{Z}/2\mathbb{Z})^7$ ist.
- 55. Bestimmen Sie den Rang der Matrix

$$\left(egin{array}{ccccc} a & 1 & b & a-b \ 3+b & 2 & a+b & 3-a \ -b & -1 & -3 & 3-b \end{array}
ight)$$

in Abhängigkeit von den Parametern $a, b \in \mathbb{R}$.

56. Es sei

$$U=\mathcal{L}(\{egin{pmatrix}1\2\1\3\end{pmatrix},egin{pmatrix}0\1\2\1\end{pmatrix}\})\subseteq\mathbb{R}^4.$$

- (a) Finden Sie einen Teilraum $W \subseteq \mathbb{R}^4$ so, daß die Summe $\mathbb{R}^4 = U + W$ direkt ist und zerlegen Sie den Vektor $x = (1, 0, 1, 0)^{\top}$ in x = u + w mit $u \in U$, $w \in W$.
- (b) Finden Sie eine Abbildung $\varphi \in \text{Hom}(\mathbb{R}^4, \mathbb{R}^4)$ mit der Eigenschaft $\varphi \circ \varphi = \varphi$ so, daß $\text{rg}(\varphi) = U$ und $\text{ker}(\varphi) = W$ ist.