Lineare Algebra I, WS12/13

12. Aufgabenblatt, Termin: 9.1.2013

- 57. Gegeben sind die Matrizen $A_1 = \begin{pmatrix} -3 & 4 \\ 4 & 1 \\ 1 & -3 \end{pmatrix}$, $A_2 = \begin{pmatrix} -2 & 4 & -1 \\ -4 & 3 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ und $A_3 = \begin{pmatrix} 3 & -2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, wobei alle Matrizen als reelle Matrizen aufzufassen sind.
 - a) Berechnen Sie alle Produkte $A_i \cdot A_j$, $1 \le i, j \le 3$, die möglich sind.
 - b) Zeigen Sie, daß A_2 invertierbar ist, und berechnen Sie A_2^{-1} .
- 58. Es sei $W:=\{(\alpha_i)_{i\in\mathbb{N}}\,\big|\,\alpha_i\in\mathbb{R} \text{ für alle }i\in\mathbb{N}\}$ und $V:=\{a=(a_i)_{i\in\mathbb{N}}\in W\,\big|\,$ es gibt ein $i_a\in\mathbb{N}$ mit $a_i=0$ für alle $i\geq i_a\}.$ Dann ist V ein Unterraum von W. Für $a=(a_i)_{i\in\mathbb{N}}\in V$ (mit $a_i=0$ für alle $i>i_a$ mit einem geeigneten $i_a\in\mathbb{N}$) und $\alpha=(\alpha_i)_{i\in\mathbb{N}}\in W$ sei $\varphi(\alpha,a):=\sum_{i=1}^{i_a}\alpha_ia_i$. Zeigen Sie, daß die Zuordnung $\alpha\mapsto(a\mapsto\varphi(\alpha,a))$ einen Isomorphismus zwischen W und $\mathrm{Hom}(V,\mathbb{R})$ bildet.
- 59. Weisen Sie nach, daß $\begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{pmatrix}$ eine Basis des Vektorraums $\mathbb{C}^{2\times 2}$ ist (Pauli-Matrizen).
- 60. Es sei K ein Körper, es sei $n \in \mathbb{N}$ und $A \in K^{n \times n}$. Für $m \in \mathbb{N}_0$ sei A^m wie in der Vorlesung definiert $(A^0 = E_n, A^{m+1} = A \cdot A^m)$. Zeigen Sie:
 - a) $A^{m+1} = A^m \cdot A$ für alle $m \in \mathbb{N}_0$.
 - b) $A^{m+k} = A^m \cdot A^k$ für alle $m, k \in \mathbb{N}_0$.
- 61. Berechnen Sie für alle $m \in \mathbb{N}_0$ die Potenzen A^m der Matrix $A := \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$. Zeigen Sie, daß A invertierbar ist, und bestimmen Sie A^{-1} .
- 62. Bestimmen Sie eine Menge M, eine innere Verknüpfung * in dieser Menge und Elemente $e, a \in M$, so daß e * b = b * e = b für alle $b \in M$ und so daß a * (a * a) (" a^{3} ") von (a * a) * a (" $a^{2} * a$ ") verschieden ist.