Lineare Algebra I, WS12/13

13. Aufgabenblatt, Termin: 16.1.2013

- 63. Weisen Sie nach, daß $S = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ eine Basis des Vektorraums $\mathbb{C}^{2\times 2}$ ist und berechnen Sie T_S^P, T_P^S , wobei P die Basis des $\mathbb{C}^{2\times 2}$ aus Übung 59 ist.
- 64. Es sei K ein Körper, es sei $n \in \mathbb{N}_0$ und es sei $T = \{t_0, t_1, \ldots, t_n\}$ eine (n+1)-elementige Teilmenge von K. Zeigen Sie (z. B. durch Induktion und unter Verwendung der Formel $a^m b^m = (a-b)(a^{m-1} + a^{m-2}b + \ldots + ab^{m-2} + b^{m-1})$, daß für alle $K \supseteq S \supseteq T$ und die Abbildungen $S \ni t \mapsto \pi_i(t) := t^i \in K$ gilt: $(\pi_0, \pi_1, \ldots, \pi_n)$ ist linear unabhängig im Vektorraum K^S .
- 65. (Bezeichnungen wie in der vorigen Aufgabe) Es sei $K = S = \mathbb{R}$ und $\mathcal{P}_n := \mathcal{L}(\{\pi_0, \pi_1, \dots, \pi_n\})$. Ferner sei $\nu_i \in \mathbb{R}^{\mathbb{R}}$ definiert durch $\nu_i(t) := \prod_{j=0}^{i-1} (t-j)$, wobei also $\nu_0 = \pi_0 \equiv 1$.
 - a) Zeigen Sie: $B_n:=(\pi_0,\pi_1,\ldots,\pi_n)$ und $C_n:=(\nu_0,\nu_1,\ldots,\nu_n)$ sind Basen von \mathcal{P}_n .
 - b) Bestimmen Sie die Matrizen $T_{C_3}^{B_3}$ und $T_{B_3}^{C_3}$.
- 66. (Bezeichnungen wie in der vorigen Aufgabe) Es sei K ein Körper mit unendlich vielen Elementen, $n \in \mathbb{N}_0$, und $t_0, t_1, ..., t_n$ paarweise verschiedene Elemente aus K. Zeigen Sie: Zu jedem $(y_0, y_1, ..., y_n)^{\top} \in K^{n+1}$ existiert genau ein $p \in \mathcal{P}_n$, sodaß $p(t_i) = y_i$, i = 0, 1, ..., n.
- 67. Wegen Punkt a) aus Übung 65 gibt es genau eine lineare Abbildung $\partial_n \colon \mathcal{P}_n \to \mathcal{P}_n$ mit $\partial_n(\pi_0) = 0$ und $\partial_n(\pi_i) = i\pi_{i-1}$ für $1 \le i \le n$. Bestimmen Sie $M_{B_n}^{B_n}(\partial_n)$ und $M_{C_3}^{C_3}(\partial_3)$.