

Anzahl der

Aufgabenblätter: 13

8. Jänner 2013

Lineare Algebra I, WS12/13

1. Aufgabenblatt, Termin: 3.10.2012

- 1. Es seien a, b, c reelle Zahlen, so daß die Menge $\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x + y = 1 \text{ und } ax + by = c\}$ leer ist. Was bedeutet das für die Zahlen a, b, c?
- 2. Vom Parallelogramm ABCD ist bekannt, daß A = (1, 1), B = (2, 6), D = (5, 3). Bestimmen Sie C.
- 3. Ist das Viereck ABCD, A = (3, 2), B = (5, 6), C = (15, 8), D = (18, 7), ein Trapez?
- 4. Es sei A=(-1,0), B=(1,0) und $C=(x_0,y_0)\in\mathbb{R}^2$ mit $y_0>0$. Zeigen Sie, daß die Schwerlinien des Dreiecks ABC einen Punkt gemeinsam haben.
- 5. Es sei $g:=\{(1,2)+t(3,4)\,|\,t\in\mathbb{R}\}\subseteq\mathbb{R}^2 \; \mathrm{und} \; E:=\{(x,y,z)\in\mathbb{R}^3\,|\,x-y-z=6\}\subseteq\mathbb{R}^3.$
 - a) Finden Sie reelle Zahlen a,b,c , so daß $g=\{(x,y)\in\mathbb{R}^2\,|\,ax+by=c\}.$
 - b) Bestimmen Sie Punkte P_1,P_2,P_3 des \mathbb{R}^3 , so daß $E=\{P_1+sP_2+tP_3\ |\ s,t\in\mathbb{R}\}$

2. Aufgabenblatt, Termin: 10.10.2012

- 6. Bestimmen Sie $E \cap g$ für $g = \{(-2,0,1) + t(1,3,1) \mid t \in \mathbb{R}\}$ und $E = \{(x,y,z) \in \mathbb{R}^3 \mid -3x + 2y + z = 5\}$.
- 7. Es sei $E = \{(x, y, z) \in \mathbb{R}^3 \, \big| \, x 2y + 5z = 10 \}$ und $G = \{(2, 1, 2) + t(0, 5, 2) + s(1, 1, 0) \, \big| \, s, t \in \mathbb{R} \}$. Berechnen Sie $E \cap G$.
- 8. Lösen Sie das lineare Gleichungssystem

$$2x_1 - x_2 - x_3 - 8x_4 + 2x_5 = -8$$
 $-3x_1 + 2x_2 + 3x_3 + 10x_4 = 4$
 $x_1 - x_2 - 2x_3 - 4x_4 = -2$

mit Gaußscher Elimination.

9. Berechnen Sie für alle Werte des Parameters $a \in \mathbb{R}$ die Lösungsmenge des linearen Gleichungssystems

$$-ax + y + z = 1$$

 $3x + 3y + 2(1 - 2a)z = 9$
 $x + y - az = 1$.

10. Berechnen Sie die Lösungsmenge des nichtlinearen Gleichungssystems

$$(u_1 - u_3)u_2 + 2u_1u_3 = 10$$

 $10u_1^{-1} + u_2 - 2u_3 = 0$
 $2u_1u_2 - u_2u_3 + u_1u_3 = 4$.

11. Es sei $n \in \mathbb{N}$, $n \geq 3$. Für welche $a, b \in \mathbb{R}$ besitzt das Gleichungssystem

$$egin{array}{lll} x_1-x_2&=&-1\ -x_{i-1}+2x_i-x_{i+1}&=&0,&i=2,...,n-1,\ -x_{n-1}+ax_n&=&b \end{array}$$

in \mathbb{R}^n keine bzw. genau eine bzw. unendlich viele Lösungen?

- 3. Aufgabenblatt, Termin: 17.10.2012
- 12. Für welche $\lambda \in \mathbb{R}$ gilt $\mathcal{L}(\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}1\\\lambda\end{pmatrix}\})=\mathbb{R}^2?$
- 13. Welche der folgenden Teilmengen des \mathbb{R}^n $(n \geq 2)$ sind Umterräume, welche (nur) affine Unterräume?

 $(Um\ Platz\ zu\ sparen,\ wird\ der\ Spaltenvektoregin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} in\ der\ Form\ (x_1,x_2,\ldots,x_n)^ op\ geschrieben.)$

- a) $\{(x_1,x_2,\ldots,x_n)^{ op}\in\mathbb{R}^n\,|\,x_1+x_2=0\}$
- b) $\{(x_1, x_2, \dots, x_n)^{ op} \in \mathbb{R}^n \, | \, x_1 + x_n = 1\}$
- c) $\{(x_1, x_2, \dots, x_n)^{ op} \in \mathbb{R}^n \, | \, x_1 \cdot x_2 = 0 \}$
- d) $\{(x_1, x_2, \dots, x_n)^{\top} \in \mathbb{R}^n \mid x_1^2 + x_2^2 = 0\}$
- $\mathrm{e}) \ \left\{ (x_1, x_2, \dots, x_n)^\top \in \mathbb{R}^n \, | \, x_1^2 + x_n^2 = 1 \right\}$

Veranschaulichen Sie diese Mengen für n=2 graphisch.

- 14. Es seien X, Y Mengen und $f: X \to Y$ eine Abbildung von X nach Y. Zeigen Sie, daß für alle $U, V \subseteq Y$ gilt:
 - a) $f^{-1}(U) \subseteq f^{-1}(V)$, wenn zusätzlich $U \subseteq V$ gilt.
 - b) $f^{-1}(U \cup V) = f^{-1}(U) \cup f^{-1}(V)$
 - c) $f^{-1}(U \cap V) = f^{-1}(U) \cap f^{-1}(V)$
- 15. Es seien X, Y Mengen und $f: X \to Y$ eine Abbildung von X nach Y. Zeigen Sie, daß für alle $A, B \subseteq X$ gilt:
 - a) $f(A) \subseteq f(B)$, wenn zusätzlich $A \subseteq B$ gilt.
 - b) $f(A \cup B) = f(A) \cup f(B)$
 - c) $f(A \cap B) \subseteq f(A) \cap f(B)$.

Geben Sie ein Beipiel dafür, daß $f(A \cap B)$ eine echte Teilmenge von $f(A) \cap f(B)$ sein kann.

16. Es seien X, Y, Z Mengen, $f: X \to Y$ eine Abbildung von X nach Y und $g: Y \to Z$ eine Abbildung von Y nach Z. Zeigen Sie, daß für alle Teilmengen A von X und K von Z gilt: $(g \circ f)(A) = g(f(A))$, $(g \circ f)^{-1}(K) = f^{-1}(g^{-1}(K))$.

- 4. Aufgabenblatt, Termin: 24.10.2012
- 17. Es sei X eine Menge und $\mathcal{P}(X):=\{A \mid A\subseteq X\}$ ihre Potenzmenge. Die charakteristische Funktion $\chi_A\colon X\to \{0,1\}$ einer Teilmenge A von X ist definiert durch $\chi_A(x):=\begin{cases} 1, & \text{wenn } x\in A\\ 0, & \text{wenn } x\not\in A. \end{cases}$ Zeigen Sie, daß $\chi\colon \mathcal{P}(X)\to \{0,1\}^X:=\{f\mid f\colon X\to \{0,1\}\},\ \chi(A):=\chi_A,\ \text{bijektiv ist.}$
- 18. Für die Abbildungen $f: X \to Y$ und $g: Y \to X$ gelte $f \circ g = \mathrm{id}_Y$. Zeigen Sie, daß g dann injektiv und f dann surjektiv ist.
- 19. Es sei $f: X \to Y$. Zeigen Sie:
 - a) $f(f^{-1}(B)) \subseteq B$ für alle $B \subseteq Y$, $A \subseteq f^{-1}(f(A))$ für alle $A \subseteq X$.
 - b) f ist injektiv genau dann, wenn $A=f^{-1}(f(A))$ für alle $A\subseteq X$.
 - c) f ist surjektiv genau dann, wenn $f(f^{-1}(B)) = B$ für alle $B \subseteq Y$.
- 20. Zeigen Sie: $G := \mathbb{R} \setminus \{0\} \times \mathbb{R}$ ist mit \oplus : $G \times G \to G$, $(a, b) \oplus (c, d) := (ac, ad + bc)$, eine abelsche Gruppe.
- 21. Für $a, b \in \mathbb{R}$ sei $\alpha_{a,b} \colon \mathbb{R} \to \mathbb{R}$ definiert durch $\alpha_{a,b}(t) := at + b$. Zeigen Sie: $H := \{\alpha_{a,b} \mid (a,b) \in \mathbb{R} \setminus \{0\} \times \mathbb{R}\}$ ist mit der Komposition von Funktionen \circ eine nichtabelsche Gruppe.
- 22. Zeigen Sie: Ist (G, \cdot) eine Gruppe, ist H eine Menge und ist $\tau \colon G \to H$ bijektiv, so ist H bezüglich $\odot \colon H \times H \to H$, $u \odot v := \tau(\tau^{-1}(u) \cdot \tau^{-1}(v))$ ebenfalls eine Gruppe.

5. Aufgabenblatt, Termin: 31.10.2012

- 23. Zeigen Sie: Eine Gruppe G ist abelsch genau dann, wenn die Abbildung $f: G \to G$, $f(x) = x^{-1}$ (inverses Element zu x), ein Homomorphismus ist.
- 24. Seien (G,\cdot) , (H,*) Gruppen und $\phi:G\to H$ ein Gruppenhomomorphismus. Zeigen Sie: ϕ ist ein Gruppenisomorphismus genau dann, wenn $H=\phi(G)$ und $\operatorname{Ker}\phi:=\{x\in G\,|\,\phi(x)=e_H\}=\{e_G\}.$
- 25. Beweisen Sie: $(\mathbb{Z}/4\mathbb{Z}, +) \simeq ((\mathbb{Z}/5\mathbb{Z}) \setminus \{\overline{0}\}, \cdot)$.
- 26. a) Gilt $((\mathbb{Z}/5\mathbb{Z}) \setminus \{\overline{0}\}, \cdot) \simeq D$ (Gruppe der Drehungen um Vielfache von $\pi/2$)? Falls ja, geben Sie einen Gruppenisomorphismus an.
 - b) Gilt $((\mathbb{Z}/5\mathbb{Z}) \setminus \{\bar{0}\}, \cdot) \simeq R$ (Gruppe der Deckbewegungen des Rechtecks)? Falls ja, geben Sie einen Gruppenisomorphismus an.
- 27. Seien (G, \cdot) , (H, *) Gruppen und $\phi : G \to H$ ein Gruppenhomomorphismus. Zeigen Sie, daß Ker ϕ eine Untergruppe von G und $\phi(G)$ eine Untergruppe von H ist.

6. Aufgabenblatt, Termin: 7.11.2012

- 28. Es sei K ein Körper und X eine Menge. Für $f,g\in K^X$ (K^X ist die Menge aller auf X definierten Abbildungen mit Werten in K) seien Summe f+g und Produkt $f\cdot g$ punktweise erklärt: (f+g)(x):=f(x)+g(x) und $(f\cdot g)(x):=f(x)\cdot g(x)$ für alle $x\in X$. Zeigen Sie: $(K^X,+,\cdot)$ ist ein kommutativer Ring.
- 29. Es sei $K = \mathbb{Z}/2\mathbb{Z}$ der Körper mit 2 Elementen. Abkürzend sei 0 := [0] und 1 := [1]. Ferner sei X eine Menge. Dann ist (vgl. Aufgabe 17) $\sigma \colon K^X \to \mathcal{P}(X)$, $\sigma(f) := f^{-1}(\{1\})$, bijektiv. Analog zu Aufgabe 22 ergibt sich in Verbindung mit Aufgabe 28, daß $(\mathcal{P}(X), \oplus, \odot)$, wobei $A \oplus B := \sigma(\sigma^{-1}(A) + \sigma^{-1}(B))$ und $A \odot B := \sigma(\sigma^{-1}(A) \cdot \sigma^{-1}(B))$, ebenfalls ein kommutativer Ring ist. Beschreiben Sie für $A, B \subseteq X$ die Mengen $A \oplus B$ und $A \odot B$ explizit durch Vereinigungs-, Differenz- und Durchschnittsbildung.
- 30. Es sei $K := \{0, 1, a, b\}$ eine Menge mit vier Elementen. Ferner seien auf K zwei innere Verknüpfungen + und \cdot gemäß folgender Tabellen gegeben:

+	0	1	a	b		0	1	a	b
0	0	1	a	b				0	
1	1	0	b	a	1	0	1	a	b
		b			a	0	a	b	1
b	b	a	1	0	b	0	b	1	a

Dann ist $(K, +, \cdot)$ ein Körper. Bestimmen Sie alle Lösungen $(x, y, z) \in K^3$ des folgenden Gleichungssystems:

$$ax + by + z = b$$

 $bx + ay + z = a$
 $ay + z = b$.

7. Aufgabenblatt, Termin: 14.11.2012

31. Gesucht sind alle reellen Lösungen des nichtlinearen Gleichungssystems

$$x_1x_2x_3x_4 = 1$$

 $x_2x_4^2x_5 = 100$
 $x_1x_3x_5 = 10.$

Hinweis: Berechnen Sie dazu zuerst alle Lösungen, wenn alle $x_i>0$ sind. (Dieser Fall führt nach Einführung geeigneter neuer Variablen auf ein lineares Gleichungssystem.) Finden Sie danach sämtliche möglichen Vorzeichenverteilungen $\mathrm{sgn}(x_i)=(-1)^{\sigma_i},\ \sigma_i\in\{0,1\},\ i=1,...,5,$ durch Berechnung der allgemeinen Lösung eines geeigneten homogenen linearen Gleichungssystems über $\mathbb{Z}/2\mathbb{Z}$ in den Unbekannten $s_i:=[\sigma_i],\ i=1,...,5.$

- 32. Beweisen Sie: Das Produkt zweier Zahlen $z_1, z_2 \in \mathbb{C} \setminus \{0\}$ ist reell genau dann wenn es ein $r \in \mathbb{R}$ gibt, sodaß $z_1 = r\bar{z}_2$.
- 33. Berechnen Sie die Lösungsmenge des komplexen linearen Gleichungssystems

$$(1-i)z_1-z_2+z_3 = 2(1+i) \ z_1+iz_3 = 3i \ -z_1+(1+i)z_2-z_3 = -i.$$

34. Bestimmen Sie

$$\max_{z\in\mathbb{C},|z|\leq 1}|1+z^2|,\quad \min_{z\in\mathbb{C},|z|\leq 1}|1+z^2|.$$

35. Skizzieren Sie folgende Teilmengen von $\mathbb C$ in der komplexen Zahlenebene:

a)
$$\{z\in\mathbb{C}\,ig|\,|ar{z}-2|=\mathrm{Re}(z)\}$$
,

b)
$$\{z \in \mathbb{C} \mid |z-i| + |z+i| > 4\}.$$

8. Aufgabenblatt, Termin: 21.11.2012

- 36. Geben Sie ein Beispiel eines Vektorraumes (über $\mathbb{Z}/2\mathbb{Z}$), der die Vereinigung dreier *echter* Unterräume ist.
- 37. Es sei $\mathcal{R} := \mathbb{R}^{\mathbb{R}}$ der Vektorraum aller Abbildungen von \mathbb{R} in sich über \mathbb{R} . Untersuchen Sie die folgenden Teilmengen auf die Eigenschaft "Unterraum von \mathcal{R} ".
 - a) $\{f \in \mathcal{R} \mid f(0) + f(1) = f(2)\},\$
 - b) $\{f \in \mathcal{R} \mid |f(x)| \leq 1 \text{ für alle } x \in \mathbb{R}\},$
 - c) $\{f \in \mathcal{R} \mid f(x) = 0 \text{ für alle } x \in [0, 1]\},$
 - d) $\{f \in \mathcal{R} \mid \text{es ex. ein } M > 0, \text{so daß } f(x) \geq 0 \text{ für alle } x > M\}.$
- 38. Es sei $U := \{(x_1, x_2, x_3, x_4)^\top \in \mathbb{R}^4 \mid x_1 2x_3 = 0\}$. Dann ist U ein Unterraum des \mathbb{R}^4 . Bestimmen Sie eine endliche Menge M, so daß $U = \mathcal{L}(M)$.
- 39. Untersuchen sie die folgenden Tupel von Vektoren des K^4 auf ihre lineare Unabhängigkeit:

$$\mathrm{a)}\;\left(\begin{pmatrix}1\\1\\0\\0\end{pmatrix},\begin{pmatrix}1\\0\\1\\-1\end{pmatrix},\begin{pmatrix}1\\-1\\0\\0\end{pmatrix}\right)\;\mathrm{mit}\;K=\mathbb{R},$$

$$\mathsf{b})\ \left(\begin{pmatrix}3\\0\\1\\-1\end{pmatrix},\begin{pmatrix}1\\1\\0\\0\end{pmatrix},\begin{pmatrix}1\\0\\1\\-1\end{pmatrix},\begin{pmatrix}1\\-1\\0\\0\end{pmatrix}\right)\ \mathrm{mit}\ K=\mathbb{R},$$

$$\mathsf{c})\ \left(\begin{pmatrix}1\\1\\0\\0\end{pmatrix},\begin{pmatrix}2\\0\\1\\0\end{pmatrix},\begin{pmatrix}0\\2\\2\\0\end{pmatrix}\right)\ \mathrm{mit}\ K=\mathbb{Z}/p\mathbb{Z},\ p\geq 3\ \mathrm{prim}.$$

40. Es sei (wieder) $\mathcal{R} = \mathbb{R}^{\mathbb{R}}$. Für $\alpha \in \mathbb{R}$ sei $f_{\alpha} \in \mathcal{R}$ definiert durch $f_{\alpha}(x) := |x - \alpha| + (x - \alpha)$. Zeigen Sie, daß für alle $n \in \mathbb{N}$ und alle α_i mit $\alpha_1 < \alpha_2 < \ldots < \alpha_n$ daß n-Tupel $(f_{\alpha_1}, f_{\alpha_2}, \ldots, f_{\alpha_n})$ linear unabhängig ist.

9. Aufgabenblatt, Termin: 5.12.2012

- 41. Sei V ein Vektorraum über \mathbb{K} und $n \in \mathbb{N}$. Zeigen Sie: Ist $(b_1, b_2, ..., b_n)$ eine Basis von V, dann ist auch $(c_1, c_2, ..., c_n)$ mit $c_i = \sum_{k=1}^{i-1} \lambda_{ik} b_k + b_i$, i = 1, ..., n, $\lambda_{ik} \in \mathbb{K}$, eine Basis von V.
- 42. Gegeben sind die Vektoren

$$a = egin{pmatrix} 2 \ 0 \ -1 \ 3 \ 1 \end{pmatrix}, \ b = egin{pmatrix} 4 \ -1 \ -2 \ 1 \ 0 \end{pmatrix}, \ c = egin{pmatrix} -2 \ 2 \ 1 \ 7 \ 3 \end{pmatrix}, \ d = egin{pmatrix} 3 \ 0 \ -4 \ 1 \ -1 \end{pmatrix}, \ e = egin{pmatrix} 0 \ -1 \ 0 \ -5 \ -2 \end{pmatrix}$$

des \mathbb{R}^5 über \mathbb{R} . Bestimmen Sie eine Basis von $\mathcal{L}(\{a,b\}) \cap \mathcal{L}(\{c,d,e\})$ und eine von $\mathcal{L}(\{a,b,c\}) \cap \mathcal{L}(\{d,e\})$.

- 43. Sei $A \in \mathbb{K}^{n \times n}$, $f : \mathbb{K}^n \to \mathbb{K}^n$, f(x) := Ax, and $b_1, ..., b_m \in \mathbb{K}^n$.
 - a) Sei $(b_1, ..., b_m)$ linear unabhängig. Zeigen Sie: $f|_{\mathcal{L}(\{b_1, ..., b_m\})}$ ist injektiv genau dann, wenn $(f(b_1), ..., f(b_m))$ linear unabhängig ist.
 - b) Sei $\{b_1, ..., b_m\}$ ein Erzeugendensystem des \mathbb{K}^n . Zeigen Sie: f ist surjektiv genau dann, wenn $\{f(b_1), ..., f(b_m)\}$ ein Erzeugendensystem des \mathbb{K}^n ist.
- 44. Bestimmen Sie je eine Basis für den Spaltenraum, den Zeilenraum und den Kern der Matrix

$$A = egin{pmatrix} 0 & -7 & 14 & 4 & -12 & 9 \ 0 & 2 & -4 & -2 & 6 & 8 \ 0 & -1 & 2 & -1 & 3 & -5 \ 0 & -3 & 6 & 0 & 0 & 11 \end{pmatrix} \in \mathbb{R}^{4 imes 6}.$$

45. Es sei $A \in \mathbb{K}^{m \times n}$, $f : \mathbb{K}^n \to \mathbb{K}^m$, f(x) := Ax, und U, V Teilmengen von \mathbb{K}^n . Beweisen Sie: f(U) = f(V) genau dann, wenn $U + \ker(A) = V + \ker(A)$.

10. Aufgabenblatt, Termin: 12.12.2012

- 46. Es sei \mathbb{K} ein Körper, $A \in \mathbb{K}^{n \times m}$ und $b \in \mathbb{K}^n$. Es sei $(A \ b)$ die erweiterte Koeffizientenmatrix des linearen Gleichungssystems Ax = b und $(Z \ c)$ eine zugehörige Zeilenstufenform. Dann ist (leicht) zu sehen, daß alle Komponenten von c Linearkombinationen der Komponenten von b sind. Zeigen Sie: Es existiert ein $b \in \mathbb{N}$ und ein $b \in \mathbb{K}^{l \times n}$, so daß ker(B) = rg(A).
- 47. (Fortsetzung des vorigen Beispiels) Es sei $\mathbb{K}=\mathbb{Z}/2\mathbb{Z}$ und es sei $A:=egin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{K}^{7\times 4}.$ Dann of the property of the pr

ist der Spaltenraum C von A ein linearer Code. Finden Sie ein l und eine Matrix B wie im obigen Beispiel. (B heißt dann Kontrollmatrix für C.)

- 48. Es seien V und W beliebige Vektorräume über \mathbb{Q} und es sei $f:V\to W$ ein Gruppenhomomorphismus bezüglich der Addition in V und W. Zeigen Sie, daß f dann sogar \mathbb{Q} -linear ist.
- 49. Es sei K wie in Beispiel 30. Dann ist $K=K^1$ ein Vektorraum über K und insbesondere eine abelsche Gruppe bezüglich der Addition in K. Untersuchen Sie, ob es Gruppenhomomorphismen $f\colon K\to K$ gibt, die nicht K-linear sind.
- 50. Es sei K der im Skriptum im Beispiel 2.4.9 konstruierte Körper. Dann ist wie im vorigen Beispiel $K = K^1$ ein Vektorraum über K und insbesondere eine abelsche Gruppe bezüglich der Addition in K. Untersuchen Sie, ob es Gruppenhomomorphismen $f \colon K \to K$ gibt, die nicht K-linear sind.
- 51. Es sei $V := \mathcal{C}([0,1];\mathbb{R})$. Dann ist für alle $0 \le \tau \le 1$ die Abbildung $\pi_{\tau} \colon V \to \mathbb{R}, \ \pi_{\tau}(f) := f(\tau)$, linear. Ebenso ist $I \colon V \to \mathbb{R}, \ I(f) := \int_0^1 f(t) dt$, linear. Zeigen Sie $I \not\in \mathcal{P} := \mathcal{L}(\{\pi_{\tau} \mid \tau \in [0,1]\})$. (Sie benötigen nur elementare Eigenschaften des bestimmten Integrals stetiger Funktionen.)

- 11. Aufgabenblatt, Termin: 19.12.2012
- 52. Es sei V ein endlichdimensionaler Vektorraum und $f \in \text{Hom}(V, V)$. Zeigen Sie die Äquivalenz folgender Aussagen:

(i)
$$V = f(V) + \ker(f)$$

(ii)
$$f(V) \cap \ker(f) = \{0\}$$

(iii)
$$\ker(f \circ f) = \ker(f)$$
.

53. Es seien U, V, W endlichdimensionale Vektorräume, $f \in \text{Hom}(U, V), g \in \text{Hom}(V, W)$. Beweisen Sie

$$\dim((g \circ f)(U)) \leq \min\{\dim(f(U)),\dim(g(V))\}.$$

- 54. Es seien a_1, a_2, a_3, a_4 die Spaltenvektoren der Matrix $A \in (\mathbb{Z}/2\mathbb{Z})^{7\times 4}$ aus Übung 47. Zeigen Sie, daß das Quadrupel (a_1, a_2, a_3, a_4) linear unabhängig ist und bestimmen Sie a_5, a_6, a_7 so, daß $(a_1, ..., a_7)$ eine Basis des Vektorraums $(\mathbb{Z}/2\mathbb{Z})^7$ ist.
- 55. Bestimmen Sie den Rang der Matrix

$$\left(egin{array}{ccccc} a & 1 & b & a-b \ 3+b & 2 & a+b & 3-a \ -b & -1 & -3 & 3-b \end{array}
ight)$$

in Abhängigkeit von den Parametern $a, b \in \mathbb{R}$.

56. Es sei

$$U=\mathcal{L}(\{egin{pmatrix}1\2\1\3\end{pmatrix},egin{pmatrix}0\1\2\1\end{pmatrix}\})\subseteq\mathbb{R}^4.$$

- (a) Finden Sie einen Teilraum $W \subseteq \mathbb{R}^4$ so, daß die Summe $\mathbb{R}^4 = U + W$ direkt ist und zerlegen Sie den Vektor $x = (1, 0, 1, 0)^{\top}$ in x = u + w mit $u \in U$, $w \in W$.
- (b) Finden Sie eine Abbildung $\varphi \in \text{Hom}(\mathbb{R}^4, \mathbb{R}^4)$ mit der Eigenschaft $\varphi \circ \varphi = \varphi$ so, daß $\text{rg}(\varphi) = U$ und $\text{ker}(\varphi) = W$ ist.

12. Aufgabenblatt, Termin: 9.1.2013

- 57. Gegeben sind die Matrizen $A_1 = \begin{pmatrix} -3 & 4 \\ 4 & 1 \\ 1 & -3 \end{pmatrix}$, $A_2 = \begin{pmatrix} -2 & 4 & -1 \\ -4 & 3 & 1 \\ 1 & -1 & 0 \end{pmatrix}$ und $A_3 = \begin{pmatrix} 3 & -2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$, wobei alle Matrizen als reelle Matrizen aufzufassen sind.
 - a) Berechnen Sie alle Produkte $A_i \cdot A_j$, $1 \le i, j \le 3$, die möglich sind.
 - b) Zeigen Sie, daß A_2 invertierbar ist, und berechnen Sie A_2^{-1} .
- 58. Es sei $W:=\{(\alpha_i)_{i\in\mathbb{N}}\,|\,\alpha_i\in\mathbb{R} \text{ für alle }i\in\mathbb{N}\}$ und $V:=\{a=(a_i)_{i\in\mathbb{N}}\in W\mid \text{ es gibt ein }i_a\in\mathbb{N} \text{ mit }a_i=0 \text{ für alle }i\geq i_a\}.$ Dann ist V ein Unterraum von W. Für $a=(a_i)_{i\in\mathbb{N}}\in V \text{ (mit }a_i=0 \text{ für alle }i>i_a \text{ mit einem geeigneten }i_a\in\mathbb{N})$ und $\alpha=(\alpha_i)_{i\in\mathbb{N}}\in W$ sei $\varphi(\alpha,a):=\sum_{i=1}^{i_a}\alpha_ia_i$. Zeigen Sie, daß die Zuordnung $\alpha\mapsto (a\mapsto \varphi(\alpha,a))$ einen Isomorphismus zwischen W und $\operatorname{Hom}(V,\mathbb{R})$ bildet.
- 59. Weisen Sie nach, daß $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ eine Basis des Vektorraums $\mathbb{C}^{2\times 2}$ ist (Pauli-Matrizen).
- 60. Es sei K ein Körper, es sei $n \in \mathbb{N}$ und $A \in K^{n \times n}$. Für $m \in \mathbb{N}_0$ sei A^m wie in der Vorlesung definiert $(A^0 = E_n, A^{m+1} = A \cdot A^m)$. Zeigen Sie:
 - a) $A^{m+1} = A^m \cdot A$ für alle $m \in \mathbb{N}_0$.
 - b) $A^{m+k} = A^m \cdot A^k$ für alle $m, k \in \mathbb{N}_0$.
- 61. Berechnen Sie für alle $m \in \mathbb{N}_0$ die Potenzen A^m der Matrix $A := \frac{1}{2} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$. Zeigen Sie, daß A invertierbar ist, und bestimmen Sie A^{-1} .
- 62. Bestimmen Sie eine Menge M, eine innere Verknüpfung * in dieser Menge und Elemente $e, a \in M$, so daß e * b = b * e = b für alle $b \in M$ und so daß a * (a * a) (" a^{3} ") von (a * a) * a (" $a^{2} * a$ ") verschieden ist.

13. Aufgabenblatt, Termin: 16.1.2013

- 63. Weisen Sie nach, daß $S = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$ eine Basis des Vektorraums $\mathbb{C}^{2\times 2}$ ist und berechnen Sie T_S^P, T_P^S , wobei P die Basis des $\mathbb{C}^{2\times 2}$ aus Übung 59 ist.
- 64. Es sei K ein Körper, es sei $n \in \mathbb{N}_0$ und es sei $T = \{t_0, t_1, \ldots, t_n\}$ eine (n+1)-elementige Teilmenge von K. Zeigen Sie (z. B. durch Induktion und unter Verwendung der Formel $a^m b^m = (a-b)(a^{m-1} + a^{m-2}b + \ldots + ab^{m-2} + b^{m-1})$, daß für alle $K \supseteq S \supseteq T$ und die Abbildungen $S \ni t \mapsto \pi_i(t) := t^i \in K$ gilt: $(\pi_0, \pi_1, \ldots, \pi_n)$ ist linear unabhängig im Vektorraum K^S .
- 65. (Bezeichnungen wie in der vorigen Aufgabe) Es sei $K = S = \mathbb{R}$ und $\mathcal{P}_n := \mathcal{L}(\{\pi_0, \pi_1, \dots, \pi_n\})$. Ferner sei $\nu_i \in \mathbb{R}^{\mathbb{R}}$ definiert durch $\nu_i(t) := \prod_{j=0}^{i-1} (t-j)$, wobei also $\nu_0 = \pi_0 \equiv 1$.
 - a) Zeigen Sie: $B_n:=(\pi_0,\pi_1,\ldots,\pi_n)$ und $C_n:=(\nu_0,\nu_1,\ldots,\nu_n)$ sind Basen von \mathcal{P}_n .
 - b) Bestimmen Sie die Matrizen $T_{C_3}^{B_3}$ und $T_{B_3}^{C_3}$.
- 66. (Bezeichnungen wie in der vorigen Aufgabe) Es sei K ein Körper mit unendlich vielen Elementen, $n \in \mathbb{N}_0$, und $t_0, t_1, ..., t_n$ paarweise verschiedene Elemente aus K. Zeigen Sie: Zu jedem $(y_0, y_1, ..., y_n)^{\top} \in K^{n+1}$ existiert genau ein $p \in \mathcal{P}_n$, sodaß $p(t_i) = y_i$, i = 0, 1, ..., n.
- 67. Wegen Punkt a) aus Übung 65 gibt es genau eine lineare Abbildung $\partial_n \colon \mathcal{P}_n \to \mathcal{P}_n$ mit $\partial_n(\pi_0) = 0$ und $\partial_n(\pi_i) = i\pi_{i-1}$ für $1 \le i \le n$. Bestimmen Sie $M_{B_n}^{B_n}(\partial_n)$ und $M_{C_3}^{C_3}(\partial_3)$.