Aufgabe 16. Untersuche, ob die folgenden Relationen Äquivalenzrelationen sind und bestimme ggf. die Äquivalenzklassen.

- (a) $X = \mathbb{N} \times \mathbb{N}$, Relation $(a, b)R(c, d) : \iff ad = bc$
- (b) $X = \mathbb{Z} \times \mathbb{Z}$, Relation $(a, b)R(c, d) : \iff ad = bc$

Aufgabe 17. Eine Partition einer Menge X wurde definiert als eine Teilmenge $Z \subseteq \mathcal{P}(X) \setminus \{\emptyset\}$ mit den Eigenschaften

(0.1)
$$\bigcup_{A \in Z} A = X \quad \text{und} \quad \forall A, B \in Z : (A \neq B \implies A \cap B = \emptyset)$$

(a) Zeige, daß eine Teilmenge $Z \subseteq \mathcal{P}(X)$ eine Partition ist genau dann, wenn gilt

$$\forall x \in X \exists ! A \in Z : x \in A$$

(b) Sei $Z \subseteq \mathcal{P}(\mathcal{X})$ eine Partition einer Menge X. Zeige, daß durch

$$x \sim y : \iff \exists A \in Z : x \in A \land y \in A$$

eine Äquivalenzrelation auf X definiert wird mit der Eigenschaft, daß $X/_{\sim}=Z$.

Aufgabe 18. Seien $f: X \to Y$ und $g: Y \to Z$ Funktionen. Zeige oder widerlege:

- 1. $g \circ f$ surjektiv $\implies f$ surjektiv
- 2. $g \circ f$ surjektiv $\implies g$ surjektiv
- 3. $g \circ f$ injektiv $\implies f$ injektiv
- 4. $q \circ f$ injektiv $\implies q$ injektiv

Aufgabe 19. Sei $f: X \to Y$ eine Abbildung. Zeige oder widerlege:

- (a) $f(A \setminus B) = f(A) \setminus f(B)$ für alle $A, B \subseteq X$.
- (b) $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$ für alle $A, B \subseteq Y$.
- (c) Wenn eine der obigen Gleichheiten nicht gilt, zeige, daß zumindest eine Teilmengenrelation (\subseteq oder \supseteq) gilt.
- (d) Andert sich etwas an den Aussagen, wenn f als injektiv oder surjektiv vorausgesetzt wird?

Aufgabe 20. Untersuche die folgenden linearen Gleichungssysteme mittels Gauß-Jordan-Elimination auf Lösbarkeit und bestimme, wenn möglich, alle Lösungen:

Hinweis: Beide Systeme können simultan behandelt werden.