11. Übungsblatt zu **Lineare Algebra 1** (NAWI) – WS 2019/20

- 48.) Sei \mathbb{K} ein Körper. Zwei $n \times n$ -Matrizen $A, B \in \mathbb{K}^{n \times n}$ kommutieren miteinander, wenn AB = BA. Sei $\{A\}'$ die Menge aller Matrizen, die mit einer gegebenen Matrix $A \in \mathbb{K}^{n \times n}$ kommutieren.
- (a) Zeigen Sie, dass die Menge $\{A\}'$ einen Unterraum des Vektorraums $\mathbb{K}^{n\times n}$ (über \mathbb{K}) der $n\times n$ -Matrizen bildet, welcher außerdem abgeschlossen bezüglich der Matrixmultiplikation ist, d.h.,

$$B, C \in \{A\}' \Rightarrow B \cdot C \in \{A\}'.$$

(b) Bestimmen Sie die Menge $\{A\}'$ für

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

- 49.) Zeigen oder widerlegen Sie, dass die folgenden Aussagen für allgemeine $n \times n$ -Matrizen $A, B \in \mathbb{K}^{n \times n}$ gelten:
- (a) Wenn $A, B \neq 0$, dann $AB \neq 0$
- (b) Wenn AB = 0, dann BA = 0.
- (c) Wenn AB + BA = 0, dann $A^2B^3 = B^3A^2$.
- (d) $(A + B) \cdot (A B) = A^2 B^2$.
- 50.) Sei

$$A = \begin{pmatrix} 1 & -1 & 0 & -1 \\ 0 & 1 & 1 & 1 \\ -1 & 3 & 2 & 3 \end{pmatrix}$$

und $\varphi_A : \mathbb{R}_4 \to \mathbb{R}_3, x \mapsto A \cdot x$. Bestimmen Sie jeweils eine Basis von ker φ_A und im φ_A .

Für die folgenden zwei Aufgaben sei V ein Vektorraum und $F:V\to V$ eine lineare Abbildung. Wir bezeichnen mit F^k die k-fache Hintereinanderausführung $F\circ F\circ \cdots \circ F$.

- 51.) Sei $v \in V$ ein Vektor mit der Eigenschaft, dass $F^{n-1}(v) \neq 0$ und $F^n(v) = 0$. Zeigen Sie, dass die Menge $\{v, F(v), F^2(v), \dots, F^{n-1}(v)\}$ linear unabhängig in V ist.
- 52.) Zeigen Sie:
- (a) $\ker(F) \subseteq \ker(F^2) \subseteq \ker(F^3) \subseteq \cdots \subseteq \ker(F^n) \subseteq \cdots$
- (b) Wenn $\dim(V) < \infty$, dann existiert ein $n_0 \in \mathbb{N}$ sodass $\ker(F^n) = \ker(F^{n_0})$ für alle $n \geq n_0$ und $\ker(F^n) \neq \ker(F^{n+1})$ für alle $n < n_0$.