Lineare Algebra 2 (NAWI) - SS 2020

Übungsblatt 12 - 03.06.2020

Aufgabe 56

Sei $A \in \mathbb{C}^{n \times n}$ eine hermitesche Matrix. Zeigen Sie:

- (a) A ist positiv semidefinit \Rightarrow Die Determinanten $\det(A_{(k)})$ aller führenden Hauptminoren $A_{(k)}$, $1 \le k \le n$ sind nichtnegativ.
- (b) Die Umkehrung in (a) ist im Allgemeinen nicht gültig.

Aufgabe 57

Sei $A \in \mathbb{C}^{n \times n}$ eine positiv semidefinite Matrix.

- (a) Sei $x \in \mathbb{C}_n$. Zeigen Sie, dass $x^*Ax = 0$ genau dann gilt, wenn Ax = 0. Hinweis: Aufgabe 47.
- (b) Zeigen Sie, dass für jede Matrix $C \in \mathbb{C}^{n \times m}$ die Summe $\ker(C^*) + \operatorname{im}(C)$ direkt ist.
- (c) Seien $B \in \mathbb{C}^{k \times k}$, $C \in \mathbb{C}^{k \times (n-k)}$ und $D \in \mathbb{C}^{(n-k) \times (n-k)}$ Teilmatrizen von A, sodass

$$A = \begin{pmatrix} B & C \\ C^* & D \end{pmatrix}.$$

Zeigen Sie, dass $im(C) \subseteq im(B)$ gilt.

Aufgabe 58

Sei $A \in \mathbb{C}^{n \times n}$ eine hermitesche Matrix mit Eigenwerten $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$. Sei weiters $B \in \mathbb{C}^{(n-1)\times(n-1)}$ die Teilmatrix von A, sodass $A = \begin{pmatrix} B & c \\ c^* & \gamma \end{pmatrix}$ und seien $\mu_1 \leq \mu_2 \leq \cdots \leq \mu_{n-1}$ die Eigenwerte von B. Zeigen Sie, dass

$$\lambda_1 \le \mu_1 \le \lambda_2 \le \mu_2 \le \dots \le \mu_{n-1} \le \lambda_n.$$

Hinweis: Eine mögliche Vorgangsweise ist wie folgt:

Sei $\{w_1, \ldots, w_{n-1}\}$ eine ONB des \mathbb{C}_{n-1} aus Eigenvektoren von B, wobei $Bw_i = \mu_i w_i$. Betrachten Sie für $k = 1, \ldots, n-1$ den Unterraum

$$W_k = L\left(\left\{ \begin{pmatrix} w_1 \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} w_{k-1} \\ 0 \end{pmatrix}, e_n \right\} \right)$$

des \mathbb{C}_n und verwenden Sie das Min-Max-Prinzip, um $\lambda_{k+1} \geq \mu_k$ zu zeigen. Die umgekehrte Richtung $\lambda_k \leq \mu_k$ folgt dann analog bei Betrachtung der Matrix -A.

Aufgabe 59

Sei $A \in \mathbb{C}^{n \times n}$ eine hermitesche Matrix und $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ ihre Eigenwerte in absteigender Ordnung. Für gegebenes $k \in \{1, \ldots, n\}$ seien $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_k$ die Eigenwerte des k-ten Hauptminors $A_{(k)}$ in absteigender Ordnung. Zeigen Sie:

$$\lambda_j \ge \mu_j \ge \lambda_{j+n-k} \ \forall j \in \{1, \dots, k\}.$$

Aufgabe 60

Bestimmen Sie die Gerschgorin-Kreise der Matrix

$$A = \begin{pmatrix} 4+2i & 1+i/2 & 0 & 0 & 0 & 0\\ 2 & 4-2i & 3 & 0 & 1+i & 3/2\\ i & 0 & 2 & 1/2 & 0 & 0\\ 0 & 0 & -3i & -1 & 3 & 0\\ 1 & 0 & 0 & 0 & -3+i & 1/2\\ 1 & 0 & 1/2 & 0 & 2+i & -3i \end{pmatrix}$$

durch (a) zeilenweise und (b) spaltenweise Berechnung und skizzieren Sie die Kreise in \mathbb{C} . Geben Sie eine möglichst kleine Teilmenge von \mathbb{C} an, in der alle Eigenwerte liegen.