Lineare Algebra 2 (NAWI) – SS 2020

Übungsblatt 14 - 17.06.2020

Aufgabe 66

Seien V und W endlichdimensionale normierte Vektorräume mit Normen $\|\cdot\|_V, \|\cdot\|_W$. Zeigen Sie:

(a) Durch

$$\|\cdot\|_{V,W}: \mathcal{L}(V,W) \to \mathbb{R}, \quad f \mapsto \sup_{x \in V \setminus \{0\}} \frac{\|f(x)\|_W}{\|x\|_V}$$

ist eine mit $\|\cdot\|_V$ und $\|\cdot\|_W$ verträgliche Norm auf dem Vektorraum der linearen Abbildungen $\mathcal{L}(V,W)$ gegeben.

- (b) $||f||_{V,W} = \inf\{K : ||f(x)||_W \le K \cdot ||x||_V \ \forall x \in V\}.$
- (c) Die Aussage in (a) ist im Allgemeinen falsch, wenn V nicht endlichdimensional ist.

Aufgabe 67

(a) Seien $(U, \|\cdot\|_U)$, $(V, \|\cdot\|_V)$, $(W, \|\cdot\|_W)$ normierte Vektorräume. Zeigen Sie, dass für lineare Abbildungen $f \in \mathcal{L}(V, W)$, $g \in \mathcal{L}(U, V)$ gilt:

$$||f \circ g||_{U,W} \le ||f||_{V,W} ||g||_{U,V}$$
.

(b) Zeigen Sie, dass für die Matrixnorm $\|\cdot\|_{1,1}$ auf $C^{m\times n}$ gilt:

$$||A||_{1,1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}|.$$

Aufgabe 68

Für $A = (a_{ij})_{ij} \in \mathbb{C}^{n \times n}$ sei die Abbildung $||A||_G = n \cdot \max_{i,j} |a_{ij}|$ gegeben. Zeigen Sie:

- (a) $\|\cdot\|_G$ ist eine Norm.
- (b) $\|\cdot\|_G$ ist submultiplikativ, das heißt für alle $A, B \in \mathbb{C}^{n \times n}$ gilt $\|AB\| \le \|A\| \|B\|$.
- (c) Für jede submultiplikative Norm $\|\cdot\|$ auf $\mathbb{C}^{n\times n}$ existiert eine Vektornorm $\|\cdot\|_V$ auf $V:=\mathbb{C}_n$, sodass $\|\cdot\|$ mit $\|\cdot\|_V$ verträglich ist.
- (d) Finden Sie eine zu $\|\cdot\|_G$ verträgliche Norm auf \mathbb{C}_n .

Aufgabe 69

Sei $\|\cdot\|$ eine Norm auf \mathbb{C}_n . Für $A\in C^{n\times n}$ sei

$$N_{\|\cdot\|}(A) = \max_{1 \le i \le n} ||a_i||,$$

wobei a_i die *i*-te Spalte von A bezeichnet. Weiters sei $D_A = \text{diag}(d_1(A), \dots d_n(A))$, wobei $d_i(A) = ||a_i||$ wenn $a_i \neq 0$ und $d_i(A) = 1$ sonst. Zeigen Sie:

- (a) $N_{\|\cdot\|}(\cdot)$ ist eine Norm auf $\mathbb{C}^{n\times n}$.
- (b) $N_{\|\cdot\|}(\cdot)$ ist genau dann submultiplikativ, wenn $\|x\| \geq \|x\|_1$ für alle $x \in \mathbb{C}_n$ gilt.
- (c) $N_{\|\cdot\|}(AD_A^{-1}) \le 1$.
- (d) $|\det(A)| \le ||a_1||_1 \cdots ||a_n||_1$.

Aufgabe 70

Sei $B \in \mathbb{C}^{m \times n}$. Zeigen Sie, dass die Blockmatrix

$$\begin{pmatrix} I & B \\ B^* & I \end{pmatrix}$$

genau dann positiv definit ist, wenn $||B||_{2,2} < 1$ gilt.