Pool B

Name: Matrikelnummer:	
Gruppennummer:	
1. Die folgende Funktion sei (für ein passendes $c \in \mathbb{R}$) die Dichtefunktion einer Zufallsvariablen X : $f_X(t) := \begin{cases} \frac{1}{4}t^2 & \text{für } 0 \leq t \leq 2\\ \frac{1}{3} & \text{für } 2 < t \leq c\\ 0 & \text{sonst} \end{cases}$	(/3 Pkt.)
 (a) Bestimmen Sie c derart, daß f_X(t) tatsächlich eine Dichtefunktion ist. (b) Bestimmen Sie die Verteilungsfunktion von X. (c) Berechnen Sie den Erwartungswert von X. 	
2. Bei einem Würfelspiel mit zwei Würfel entscheidet die Augensumme über den Auszahlungsbetrag: Ist die Augensumme ungerade, so erhält der Spieler einen Euro ausbezahlt; ist die Augensumme gerade <u>und</u> durch 3 teilbar, so erhält der Spieler keine Auszahlung. In allen anderen Fällen erhalt er eine Auszahlung von 3 Euro. Sei A der zufällige Auszahlungsbetrag nach einem Spiel.	,
 (a) Bestimmen Sie die Wahrscheinlichkeitsfunktion von A. (b) Berechnen Sie Erwartungswert und Varianz von A. (c) Der Spieler muß bei jedem Spiel einen Einsatz von 1 Euro machen. Was ist der erwartete Netto-Gewinn/Verlust? 	
3. Ein fehleranfälliger Computer stürzt von Zeit zu Zeit ab. Durchschnittlich stürzt er 2 Mal in der Woche ab. Man nehme an, daß die Anzahl der Systemabstürze Poisson-verteilt sei.	(/2 Pkt.)
(a) Berechnen Sie die Wahrscheinlichkeit, daß der Computer in 2 Wochen maximal 4 Mal abstürzt.(b) Nach wie vielen Wochen spätestens ist mit einer Wahrscheinlichkeit von mindestens 99% ein Systemabsturz zu beobachten?	Σ

HINWEIS: Alle Zwischenschritte/Rechnungen sind ausreichend zu begründen!

a)
$$\int_{-\infty}^{\infty} \int_{x}^{x} (t) dt = \int_{0}^{2} \frac{1}{4} t^{2} dt + \int_{0}^{2} \frac{1}{3} dt = \frac{1}{12} t^{3} \Big|_{0}^{2} + \frac{1}{3} t \Big|_{2}^{2} = \frac{\theta}{12} + \frac{2}{3} - \frac{2}{3} = 1$$

$$= \int_{0}^{2} \frac{1}{3} = 1 = 1 = 1 = 2$$

b)
$$\frac{1}{2}$$
 $F_{x}(x) = 0$

$$0 \le x \le 2$$
 $F_{x}(x) = \int_{0}^{x} \frac{1}{4} t^{2} dt = \frac{1}{12} t^{3} \Big|_{0}^{x} = \frac{x^{3}}{12}$

$$\frac{25\times53}{5} F_{x}(x) = \int_{0}^{x} 4t^{2} + \int_{0}^{x} \frac{1}{3} dt = \frac{1}{12}t^{3}|_{0}^{2} + \frac{1}{3}t|_{2}^{x} = \frac{p}{12} + \frac{x}{3} - \frac{2}{3} = \frac{x}{3}$$

$$\times \frac{7}{3}: F_{x}(x) = 1$$

2) A ungrade
$$\longrightarrow 16$$
A grade $L 31A \longrightarrow 06 (d.L.A646,12)$
 $L = \frac{1}{3}$
 $L = \frac{1}$

$$EA^2 = 9 \cdot \frac{1}{3} + 1^2 \cdot \frac{1}{2} = \frac{3}{2}$$
 $V_{\alpha}A = \frac{1}{2} = \frac{1}{2}$

$$V_{\alpha} A = \frac{1}{7} - \frac{9}{4} = \frac{14-9}{4} = \frac{5}{4}$$

$$(-1) \ln 0.017, -2n = 7 \quad n7, -\frac{\ln 0.01}{\lambda} = \frac{-\ln 0.01}{2} = 2.36$$

nach späkter 3 Wochen