Wahrscheinlichkeitsrechnung und Stochastische Prozesse WS 2017/2018

Institut für Diskrete Mathematik (5050), TU Graz

8. Übungsblatt (5. Dezember 2017)

35. Sei X eine Zufallsvariable mit $\mathbb{E}(X) = \mu$ und $\mathsf{Var}(X) = \sigma^2$. Und sei die Zufallsvariable Y (2 Pkt.) gegeben als

 $Y = \frac{X - \mu}{\sigma}.$

Bestimmen Sie Erwartungswert und Varianz von Y.

- 36. Sei X eine Zufallsvariable mit Verteilungsfunktion $F_X(x)$ und sei $Y = \alpha X + \beta$ mit (3 Pkt.) Konstanten $\alpha \neq 0, \beta \in \mathbb{R}$. Bestimmen Sie die Verteilungsfunktion der Zufallsvariablen Y.
- 37. In einer großen Warenlieferung befinden sich 300 Computerchips, wobei 2% der Chips defekt sind. Zur Qualitätssicherung werden 20 Chips zufällig entnommen und auf Defekte überprüft. Sei X die Anzahl der defekten Chips in der Stichprobe.
 - (a) Wie viele defekte Chips sind in der Stichprobe zu erwarten? Wie groß ist die Varianz von X?
 - (b) Berechnen Sie die Wahrscheinlichkeit, dass mindestens 2 Chips in der Stichprobe defekt sind, durch
 - i. exakte Rechnung.
 - ii. durch Approximation mit Hilfe der Binomialverteilung.
- 38. Sei $f_X(x) = \frac{c}{1+x^2}$ für alle $x \in \mathbb{R}$.

(3 Pkt.)

- (a) Bestimmen Sie die Konstante $c \in \mathbb{R}$ so dass f_X Dichtefunktion einer Zufallsvariable X ist.
- (b) Zeigen Sie dass X keinen Erwartungswert besitzt.