Wahrscheinlichkeitsrechnung und Stochastische Prozesse WS 2017/2018

Institut für Diskrete Mathematik (5050), TU Graz

13. Übungsblatt (30. Jänner 2018)

- 56. Seit $(N_t)_{t>0}$ ein homogener Poisson-Prozess mit Rate $\lambda=3$. Man berechne: (3 Pkt.)
 - (a) $\mathbb{P}[N_1 \geq 2]$
 - (b) $\mathbb{P}[N_1 \le 1, N_4 = 6]$
 - (c) $\mathbb{P}[N_1 \le 1 | N_4 = 6]$
 - (d) $\mathbb{P}[N_4 = 6 | N_1 \le 1]$
- 57. Sei $(N_t)_{t\geq 0}$ ein Poisson-Prozess mit Rate λ und s,t>0. Berechnen Sie die Covarianz (3 Pkt.) $\mathrm{Cov}(N_t,N_s)$.
- 58. Seien $(N_t)_{t\geq 0}$ und $(M_t)_{t\geq 0}$ unabhängige homogene Poisson-Prozess mit Raten λ und μ . (3 Pkt. Wie groß ist die Wahrscheinlichkeit, dass $N_t=1$ bevor $M_t=1$?
- 59. Aus astronomischen Beobachtungen weiss man dass im Durchschnitt 4 Meteoriteneinschläge pro Stunde auf dem Mond beobachtbar sind. Die Anzahl der beobachteten Meteroiteneinschläge wird durch einen homogenen Poisson-Prozess $(N_t)_{t\geq 0}$ modelliert. Wobei t=1 eine Stunde nach Beginn der Beobachtungen entspricht.
 - (a) Mit welcher Wahrscheinlichkeit werden in der ersten halben Stunde genau 2 Einschläge beobachtet?
 - (b) Mit welcher Wahrscheinlichkeit werden in der ersten Stunde höchsten 3 Einschläge beobachtet, aber innerhalb der ersten 3 Stunden 5 Einschläge?
 - (c) Wie groß ist die Wahrscheinlichkeit dass zwischen dem ersten und dem zweiten beobachteten Einschlag mehr als zwei Stunden vergehen?
 - (d) Was ist die Erwartete Zeitdauer zwischen zwei beobachteten Einschlägen?