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Abstract

In this paper we describe some modified regularized boundary integral equations to solve

the exterior boundary value problem for the Helmholtz equation with either Dirichlet or

Neumann boundary conditions. We formulate combined boundary integral equations which

are uniquely solvable for all wave numbers even for Lipschitz boundaries Γ = ∂Ω. This

approachs extends and unifies existing regularized combined boundary integral formulations.

1 Introduction

We consider the exterior boundary value problem for the Helmholtz equation with Dirichlet bound-
ary conditions,

∆u(x) + k2u(x) = 0 for x ∈ Ωc = R
3\Ω,

u(x) = g(x) for x ∈ Γ = ∂Ω
(1.1)

where k ∈ R+ is the wave number, and where u satisfies in addition the Sommerfeld radiation
condition ∣∣∣∣

x

|x|
· ∇u(x) − iku(x)

∣∣∣∣ = O

(
1

|x|2

)
as |x| → ∞. (1.2)

The unique solution of the exterior boundary value problem (1.1) and (1.2) can be described for
x ∈ Ωc by either using a direct approach via the representation formula

u(x) = −
1

4π

∫

Γ

eik|x−y|

|x − y|

∂

∂ny
u(y)dsy +

1

4π

∫

Γ

∂

∂ny

eik|x−y|

|x − y|
g(y)dsy, (1.3)

or by using an indirect approach via a single layer potential

u(x) = (Ṽkw)(x) =
1

4π

∫

Γ

eik|x−y|

|x − y|
w(y)dsy for x ∈ R

3\Γ, (1.4)

or via a double layer potential

u(x) = (Wkv)(x) =
1

4π

∫

Γ

∂

∂ny

eik|x−y|

|x − y|
v(y)dsy for x ∈ R

3\Γ. (1.5)

To find either the yet unknown Neumann datum t(y) = ny · ∇u(y) for y ∈ Γ or the unknown
density functions w and v, we have to solve appropriate boundary integral equations. From the
representaion formula (1.3) we obtain either the first kind boundary integral equation

1

4π

∫

Γ

eik|x−y|

|x − y|
t(y)dsy = −

1

2
g(x) +

1

4π

∫

Γ

∂

∂ny

eik|x−y|

|x − y|
g(y)dsy (1.6)
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for x ∈ Γ, or the second kind boundary integral equation

−
1

2
t(x) −

1

4π

∫

Γ

∂

∂nx

eik|x−y|

|x − y|
t(y)dsy = −

1

4π

∂

∂nx

∫

Γ

∂

∂ny

eik|x−y|

|x − y|
g(y)dsy (1.7)

for x ∈ Γ. When using the indirect single layer potential (1.4) we have to solve the first kind
boundary integral equation

(Vkw)(x) =
1

4π

∫

Γ

eik|x−y|

|x − y|
w(y)dsy = g(x) for x ∈ Γ, (1.8)

while for the indirect double layer potential (1.5) we have to find the solution of the second kind
boundary integral equation

1

2
v(x) + (Kkv)(x) =

1

2
v(x) +

1

4π

∫

Γ

∂

∂ny

eik|x−y|

|x − y|
v(y)dsy = g(x) (1.9)

for x ∈ Γ. Note that we can write the boundary integral equation (1.6) as

(Vkt)(x) = −
1

2
g(x) + (Kkg)(x) for x ∈ Γ. (1.10)

When introducing the adjoint double layer potential

(K ′
kw)(x) =

1

4π

∫

Γ

∂

∂nx

eik|x−y|

|x − y|
w(y)dsy for x ∈ Γ

and the hypersingular boundary integral operator

(Dkv)(x) = −
1

4π

∂

∂nx

∫

Γ

∂

∂ny

eik|x−y|

|x − y|
v(y)dsy for x ∈ Γ,

we can write the boundary integral equation (1.7) as

1

2
t(x) + (K ′

kt)(x) = −(Dkg)(x) for x ∈ Γ. (1.11)

Note that the above formulations of boundary integral equations for boundary value problems of
the Helmholtz equation are rather standard [11]. The mapping properties of the above introduced
boundary integral operators for Lipschitz boundaries Γ = ∂Ω are well known, see, e.g., [14]. In
particular, the single layer potential Vk : H−1/2(Γ) → H1/2(Γ) is bounded and satisfies a G̊ardings
inequality, i.e. the operator C = V0 − Vk : H−1/2(Γ) → H1/2(Γ) is compact, and we have

〈Vkw, w〉Γ + 〈Cw, w〉Γ = 〈V0w, w〉Γ ≥ cV
1 ‖w‖2

H−1/2(Γ) (1.12)

for all w ∈ H−1/2(Γ). Hence we can apply Fredholm’s alternative [12, 19] to investigate the unique
solvability of the first kind boundary integral equations (1.8) and (1.10). In particular, we need
to consider the injectivity of the single layer potential Vk.

Proposition 1.1 If k2 = λ is an eigenvalue of the interior Dirichlet eigenvalue problem

−∆uλ(x) = λuλ(x) for x ∈ Ω, uλ(x) = 0 for x ∈ Γ, (1.13)

then we have, by using the boundary integral equations of the direct approach, for x ∈ Γ

(Vktλ)(x) = (
1

2
I + Kk)uλ(x) = 0, (

1

2
I − K ′

k)tλ(x) = (Dkuλ)(x) = 0

where tλ = nx · ∇uλ(x) for x ∈ Γ is the associated normal derivative of uλ.
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From Proposition 1.1 we see that the single layer potential Vk is not injective when k2 = λ is an
eigenvalue of the interior Dirichlet eigenvalue problem (1.13). If k2 is not an eigenvalue of the
interior Dirichlet eigenvalue problem, then the single layer potential Vk is injective and therefore
there exists a unique solution w ∈ H−1/2(Γ) of the boundary integral equation (1.8) as well as a
unique solution t ∈ H−1/2(Γ) of the boundary integral equation (1.10).

Remark 1.1 When considering the boundary integral equation (1.10) of the direct approach we

find a solution t ∈ H−1/2(Γ) even in the case when k2 = λ is an eigenvalue of the interior Dirichlet

eigenvalue problem (1.13). Although the single layer potential Vk is not injective when k2 = λ is

an eigenvalue of the interior Dirichlet eigenvalue problem (1.13), we have

〈(−
1

2
I + Kk)g, tλ〉Γ = −〈g, (

1

2
I − K ′

−k)tλ〉Γ = 0

and therefore (− 1
2I + Kk)g ∈ ImVk. In particular, the boundary integral equation (1.10) of the

direct approach is solvable, but the solution is not unique. As for the Neumann problem for the

Laplace equation [15] one may define a stabilized variational form to obtain a unique solution

satisfying some prescribed side condition. Since (− 1
2I +Kk)g ∈ ImVk is satisfied, a natural choice

would be to require

t ∈ H
−1/2
λ (Γ) =

{
w ∈ H−1/2(Γ) : 〈V0w, tλ〉Γ = 0

}
.

Then there exists a unique solution t ∈ H
−1/2
λ (Γ) of the boundary integral equation (1.10) which

can be found as the unique solution t ∈ H−1/2(Γ) satisfying the extended variational problem

〈Vkt, w〉Γ + 〈V0t, tλ〉Γ〈V0w, tλ〉Γ = 〈(−
1

2
I + Kk)g, w〉Γ

for all w ∈ H−1/2(Γ). Since this formulation requires a priori the knowledge of the eigensolution

tλ such an approach seems not applicable in general. A similar approach leading to the so–called

CHIEF method was proposed in [4, 17].

To investigate the unique solvability of the second kind boundary integral equations (1.9) and
(1.11) we first note that the operator C = K0−Kk : H1/2(Γ) → H1/2(Γ) is compact and therefore
the operator V −1

0 C : H1/2(Γ) → H−1/2(Γ) is compact. Instead of the boundary integral equation
(1.9) we then consider the transformed boundary integral equation

V −1
0 (

1

2
I + Kk)v(x) = V −1

0 g(x) for x ∈ Γ. (1.14)

Hence we have

〈V −1
0 (

1

2
I + Kk)v, v〉Γ + 〈V −1

0 Cv, v〉Γ = 〈V −1
0 (

1

2
I + K0)v, v〉Γ = 〈S0v, v〉Γ

for all v ∈ H1/2(Γ) where S0 = V −1
0 (1

2I + K0) : H1/2(Γ) → H−1/2(Γ) is the Steklov–Poincaré

operator associated with the Laplace equation. Since the embedding H1/2(Γ) → H−1/2(Γ) is
compact, we conclude that V −1

0 (1
2I + Kk) : H1/2(Γ) → H−1/2(Γ) satisfies a G̊ardings inequality.

Hence, to ensure the unique solvability of the boundary integral equation (1.14) we need to have
the injectivity of 1

2I + Kk.

Proposition 1.2 If k2 = µ is an eigenvalue of the interior Neumann eigenvalue problem

−∆uµ(x) = µuµ(x) for x ∈ Ω,
∂

∂nx
uµ(x) = 0 for x ∈ Γ, (1.15)

then we have, by using the boundary integral equations of the direct approach, for x ∈ Γ

(
1

2
I + Kk)uµ(x) = (Vktµ)(x) = 0, (Dkuµ)(x) = (

1

2
I − K ′

k)tµ(x) = 0.
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From Proposition 1.2 we see that both boundary integral operators 1/2I + Kk and Dk are not
injective when k2 = µ is an eigenvalue of the interior Neumann eigenvalue problem (1.15). If k2

is not an eigenvalue of the interior Neumann eigenvalue problem, the boundary integral operator
1/2I + Kk is injective and therefore there exists a unique solution v ∈ H1/2(Γ) of the boundary
integral equation (1.9).

2 Stabilized Boundary Integral Equations

From the Propositions 1.1 and 1.2 we have seen, that either the single layer potential Vk or the
double layer potential 1/2I+Kk are not injective, when k2 is an eigenvalue of the interior Dirichlet
eigenvalue problem (1.13) or of the interior Neumann eigenvalue problem (1.15), respectively.
Following [5] we may consider a combined single and double layer potential representation for
some positive real parameter η ∈ R+,

u(x) = (Ṽkw)(x) − iη(Wkw)(x) for x ∈ Ωc, (2.1)

to describe the solution of the exterior Dirichlet boundary value problem (1.1). To find the
unknown density function w ∈ L2(Γ) we have to solve the combined boundary integral equation

(
1

2
I + Kk)w(x) − iη(Vkw)(x) = g(x) for x ∈ Γ. (2.2)

The unique solvability of the combined boundary integral equation (2.2) is again based on G̊ardings
inequality, but the associated boundary integral operator 1

2I + Kk − iηVk is now injective for all
k ∈ R+. However, the consideration of the boundary integral equation (2.2) in L2(Γ) requiers
quite strong assumptions on the smoothness of the boundary Γ = ∂Ω. In fact, this theory does
not apply when Ω is a Lipschitz domain. Hence, instead of (2.2) one may consider a regularized
boundary integral equation to find w ∈ H−1/2(Γ) such that

(
1

2
I + Kk)Bw(x) − iη(Vkw)(x) = g(x) for x ∈ Γ (2.3)

where B : H−1/2(Γ) → H1/2(Γ) is some suitable chosen operator. In particular, for the Laplace–
Beltrami operator

B = V 2
0 : H−1(Γ) → H1(Γ)

we can use the compact imbedding H1(Γ) ↪→ H1/2(Γ) to prove the unique solvability of the
regularized boundary integral equation (2.3), see [7, 10].
An alternative regularization of the boundary integral equation (2.2) is to find v ∈ H1/2(Γ) such
that

(
1

2
I + Kk)v(x) − iη(VkR−1v)(x) = g(x) for x ∈ Γ (2.4)

where R : H−1/2(Γ) → H1/2(Γ) is a suitable given operator. A possible choice is [6]

R = D̃−1
0 (

1

2
I + K ′

0) : H−1/2(Γ) → H1/2(Γ)

with a stabilized hypersingular boundary integral operator D̃0 for the Laplace equation, see for
example [15]. Another possibility is to use a local version of the Dirichlet to Neumann map
Sk : H1/2(Γ) → H−1/2(Γ), see [3].
Instead of the standard Brakhage–Werner representation (2.1) we may also consider the equivalent
representation

u(x) = (Ṽkw)(x) + iη(Wkw)(x) for x ∈ Ωc, η ∈ R.

Then, to find the unknown density function w ∈ L2(Γ) we have to solve the boundary integral
equation

(Vkw)(x) + iη(
1

2
I + Kk)w(x) = g(x) for x ∈ Γ.
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Now, an appropriate regularization leads to the regularized combined boundary integral equation

(Vkw)(x) + iη(
1

2
I + Kk)Bw(x) = g(x) for x ∈ Γ, (2.5)

where B : H−1/2(Γ) → H1/2(Γ). Again, one may consider the Laplace–Beltrami operator [8]

B = V 2
0 : H−1(Γ) → H1(Γ).

An alternative choice is

(Bϕ)(x) =

∫

Γ

Gε(x, y)ϕ(y)dsy for x ∈ Γ,

where Gε(x, y) is the fundamental solution of the partial differential operator (I−∆)1+ε for ε > 0,
see [8].

3 Modified Boundary Integral Equations

In this section we propose an alternative representation of a regularized combined boundary in-
tegral equation to find a unique solution of the exterior Dirichlet boundary value problem (1.1).
Although this approach combines ideas from the regularized methods as discussed in the previous
section, the analysis behind is different.
Considering the regularized combined boundary integral equation (2.5) we may introduce the
regularization operator

B = D̃−1
0 (

1

2
I + K ′

−k) : H−1/2(Γ) → H1/2(Γ) (3.1)

where D̃0 : H1/2(Γ) → H−1/2(Γ) is the stabilized hypersingular boundary integral operator for
the Laplace equation given by

〈D̃0u, v〉Γ = 〈D0u, v〉Γ + 〈u, 1〉L2(Γ)〈v, 1〉L2(Γ) for all u, v ∈ H1/2(Γ). (3.2)

Note that D̃0 is self–adjoint and H1/2(Γ)–elliptic, see for example [15, 18], and therefore invertible.
Using the duality pairing

〈u, w〉Γ =

∫

Γ

u(x)w(x)dsx

for all u ∈ H1/2(Γ) and w ∈ H−1/2(Γ), we then obtain

〈Kku, w〉Γ = 〈u, K ′
−kw〉Γ.

With the regularization (3.1) we have to solve a modified regularized combined boundary integral
equation to find w ∈ H−1/2(Γ) such that

(Vkw)(x) + iη(
1

2
I + Kk)D̃−1

0 (
1

2
I + K ′

−k)w(x) = g(x) for x ∈ Γ. (3.3)

The operator

Ak = Vk + iη(
1

2
I + Kk)D̃−1

0 (
1

2
I + K ′

−k) : H−1/2(Γ) → H1/2(Γ)

satisfies a G̊ardings inequality with the compact operator

C = V0 − Vk : H−1/2(Γ) → H1/2(Γ).
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In particular,

Re [〈Akw, w〉Γ + 〈Cw, w〉Γ]

= Re

[
〈V0w, w〉Γ + iη〈D̃−1

0 (
1

2
I + K ′

−k)w, (
1

2
I + K ′

−k)w〉Γ

]

= 〈V0w, w〉Γ ≥ cV
1 ‖w‖2

H−1/2(Γ)

for all w ∈ H−1/2(Γ). Hence it is sufficient to prove that Ak is injective, i.e. Akw = 0 implies
w = 0.

Lemma 3.1 For all w ∈ H−1/2(Γ) we have

Im〈Vkw, w〉Γ ≥ 0.

Proof For an arbitrary w ∈ H−1/2(Γ) we consider the single layer potential

u(x) = (Ṽkw)(x) =
1

4π

∫

Γ

eik|x−y|

|x − y|
w(y)dsy for x ∈ R

3\Γ.

The corresponding first Green’s formula with respect to the bounded domain Ω for u and an
arbitrary test function v then reads

∫

Ω

∇u(x)∇v(x)dx − k2

∫

Ω

u(x)v(x)dx =

∫

Γ

γint
1 u(x)γint

0 v(x)dsx.

In particular for v = u we obtain

∫

Ω

|∇u(x)|2dx − k2

∫

Ω

|u(x)|2dx =

∫

Γ

γint
1 u(x)γint

0 u(x)dsx

where the Cauchy data on Γ = ∂Ω are

γint
1 (Ṽkw)(x) =

1

2
w(x) + (K ′

kw)(x), γint
0 (Ṽkw)(x) = (Vkw)(x).

Let x0 ∈ Ω be some arbitrary but fixed point, and let BR(x0) be the ball of radius R with centre
x0 containing Ω. Then we can write Green’s first formula with respect to the bounded domain
ΩR = BR(x0)\Ω as

∫

ΩR

|∇u(x)|2dx − k2

∫

ΩR

|u(x)|dx =

∫

∂ΩR

γint
1 u(x)γint

0 u(x)dsx

=

∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx −

∫

Γ

γext
1 u(x)γext

0 u(x)dsx.

Note that the normal vector on Γ is defined with respect to Ω. The Cauchy data on Γ are given

γext
1 (Ṽkw)(x) = −

1

2
w(x) + (K ′

kw)(x), γext
0 (Ṽkw)(x) = (Vkw)(x).

Hence we have
∫

BR(x0)

|∇u(x)|2dx − k2

∫

BR(x0)

|u(x)|2dx = 〈w, Vkw〉Γ +

∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx.
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and therefore

Im〈w, Vkw〉Γ = −Im

∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx.

On the other hand, the Sommerfeld radiation condition (1.2) implies

0 = lim
R→∞

∫

∂BR(x0)

|γint
1 u(x) − ikγint

0 u(x)|2dsx

= lim
R→∞




∫

∂BR(x0)

|γint
1 u(x)|2dsx + k2

∫

∂BR(x0)

|γint
0 u(x)|2dsx

−2k Im

∫

∂BR(x0)

γint
1 u(x)γint

0 u(x)dsx




= lim
R→∞




∫

∂BR(x0)

|γint
1 u(x)|2dsx + k2

∫

∂BR(x0)

|γint
0 u(x)|2dsx + 2k Im〈w, Vkw〉Γ




and therefore

2k Im〈w, Vkw〉Γ = − lim
R→∞




∫

∂BR(x0)

|γint
1 u(x)|2dsx + k2

∫

∂BR(x0)

|γint
0 u(x)|2dsx


 ≤ 0.

From this we finally conclude
Im 〈Vkw, w〉Γ ≥ 0.

Theorem 3.1 The combined boundary integral operator

Ak = Vk + iη(
1

2
I + Kk)D̃−1

0 (
1

2
I + K ′

−k) : H−1/2(Γ) → H1/2(Γ)

is injective.

Proof Let us assume that w ∈ H−1/2(Γ) is a solution of the homogeneous boundary integral
equation

(Akw)(x) = 0 for x ∈ Γ.

Then we have

0 = 〈Akw, w〉Γ = 〈Vkw, w〉Γ + iη〈D̃−1
0 (

1

2
I + K ′

−k)w, (
1

2
I + K ′

−k)w〉Γ

which implies

Im

[
〈Vkw, w〉Γ + iη〈D̃−1

0 (
1

2
I + K ′

−k)w, (
1

2
I + K ′

−k)w〉Γ

]
= 0.

This gives, by using Lemma 3.1,

η〈D̃−1
0 (

1

2
I + K ′

−k)w, (
1

2
I + K ′

−k)w〉Γ = −Im〈Vkw, w〉Γ ≤ 0

and therefore

(
1

2
I + K ′

−k)w = 0.
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Hence we also have
(Vkw)(x) = 0 for x ∈ Γ.

This is satisfied if either w = 0 or if λ = k2 is an eigenvalue of the interior Dirichlet eigenvalue
problem (1.13). For tλ(x) = nx · uλ(x), x ∈ Γ, we then have

(V±
√

λtλ)(x) = 0, (
1

2
I − K ′

±
√

λ
)tλ(x) = 0 for x ∈ Γ.

In particular,

(
1

2
I + K ′

−k)w(x) = 0 (
1

2
I − K ′

−k)w(x) = 0

implies w = 0 and therefore the injectivity of Ak.

Hence we have unique solvability of the modified regularized combined boundary integral equation
(3.3). The associated variational problem is to find w ∈ H−1/2(Γ) such that

〈Vkw, τ〉Γ + iη〈(
1

2
I + Kk)D̃−1

0 (
1

2
I + K ′

−k)w, τ〉Γ = 〈g, τ〉Γ (3.4)

is satisfied for all test functions τ ∈ H−1/2(Γ). Due to the composite structure of the above
bilinear form, a direct Galerkin approximation of the variational problem (3.4) will not be possible
in general. Hence we introduce

z = D̃−1
0 (

1

2
I + K ′

−k)w ∈ H1/2(Γ)

as the unique solution of the variational problem

〈D̃0z, v〉Γ = 〈(
1

2
I + K ′

−k)w, v〉Γ for all v ∈ H1/2(Γ).

Hence, instead of the variational problem (3.4) we now consider a saddle point problem to find
(w, z) ∈ H−1/2(Γ) × H1/2(Γ) such that

〈Vkw, τ〉Γ + iη〈(1
2I + Kk)z, τ〉Γ = 〈g, τ〉Γ

−〈(1
2I + K ′

−k)w, v〉Γ + 〈D̃0z, v〉Γ = 0
(3.5)

is satisfied for all (τ, v) ∈ H−1/2(Γ) × H1/2(Γ). Since the saddle point formulation (3.5) is equiv-
alent to the variational problem (3.4), we obviousely have unique solvability of the saddle point
formulation (3.5). Moreover, the formulation (3.5) will be more suitable for a numerical approxi-
mation since no composite operators are involved.
While the modified regularized combined boundary integral equation (3.3) results from an indirect
approach, the density function w ∈ H−1/2(Γ) has in general no physical meaning. However,
for the coupling of different physical phenomena, such as a solid acoustic interaction, a stable
representation of the Dirichlet to Neumann map is needed. As in the Burton–Miller approach
[9] we may combine both boundary integral equations of the direct approach to get a regularized
formulation from which we can compute the unknown Neumann data t = γext

1 u ∈ H−1/2(Γ).
Starting from both boundary integral equations of the direct approach, in particular, combining
the first kind boundary integral

(Vkt)(x) = −
1

2
g(x) + (Kk)g(x) for x ∈ Γ

and the second kind boundary integral equation

1

2
t(x) + (K ′

kt)(x) = −(Dkg)(x) for x ∈ Γ,

8



we may consider any linear combination of them. Using the stabilized hypersingular integral
operator D̃0 of the Laplace equation, we can apply the bounded operator

(
1

2
I + K−k)D̃−1

0 : H−1/2(Γ) → H1/2(Γ)

to the second equation, multiply the result with iη, η ∈ R+, and add this to the first equation to
obtain the boundary integral equation

(Vkt)(x) + iη(
1

2
I + K−k)D̃−1

0 (
1

2
I + K ′

k)t(x) (3.6)

= −
1

2
g(x) + (Kkg)(x) − iη(

1

2
I + K−k)D̃−1

0 (Dkg)(x).

Since the boundary integral operator of the regularized combined boundary integral equation (3.6)
is almost the same as in the boundary integral equation (3.3), the unique solvability of (3.6) follows
as before. Next we introduce

z = D̃−1
0

[
Dkg + (

1

2
I + K ′

k)t

]
∈ H1/2(Γ)

as unique solution of the variational problem

〈D̃0z, v〉Γ = 〈Dkg, v〉Γ + 〈(
1

2
I + K ′

k)t, v〉Γ

for all v ∈ H1/2(Γ). Then, instead of (3.6) we have to find (t, z) ∈ H−1/2(Γ) × H1/2(Γ) such that

〈Vkt, τ〉Γ + iη(1
2I + K−k)z, τ〉Γ = 〈g, τ〉Γ

−〈(1
2I + K ′

k)t, v〉Γ + 〈D̃0z, v〉Γ = 〈Dkg, v〉Γ
(3.7)

is satisfied for all (τ, v) ∈ H−1/2(Γ) × H1/2(Γ). Again, the unique solvability of the saddle point
problem (3.7) follows from the unique solvability of the boundary integral equation (3.6).
We close this section with some comments on a corresponding regularized combined boundary
integral equations to solve the exterior Neumann boundary value problem

∆u(x) + k2u(x) = 0 for x ∈ Ωc = R
3\Ω,

∂

∂nx
u(x) = g(x) for x ∈ Γ = ∂Ω

(3.8)

where we also include the Sommerfeld radiation condition (1.2).
As for the exterior Dirichlet boundary value problem (1.1) and (1.2) we can derive a modified regu-
larized combined boundary integral equation to find
v ∈ H1/2(Γ) such that

(Dkv)(x) + iη(
1

2
I − K ′

k)V −1
0 (

1

2
I − K−k)v(x) = g(x) for x ∈ Γ. (3.9)

The unique solvability of the boundary integral equation (3.9) follows as for the boundary integral
equation (3.3), we skip the details.

4 Conclusions

In this paper we have given alternative regularized combined boundary integral equations to solve
the exterior Dirichlet and Neumann boundary value problems for the Helmholtz equation. In
particular, we also describe a stable representation of the Dirichlet to Neumann map. The given
formulations are suitable for a Galerkin discretization using standard boundary element methods.
Open questions concern the optimal choice of the scaling parameter η ∈ R+ [1, 13], the application
of fast boundary element methods, preconditioning strategies for the discrete boundary integral
operators and efficient algorithms to solve the linear systems resulting from the saddle point
formulations (3.5) and (3.7).
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[5] A. Brakhage, P. Werner: Über das Dirichletsche Aussenraumproblem für die Helmholtzsche
Schwingungsgleichung. Arch. Math. 16 (1965) 325–329.

[6] A. Buffa, R. Hiptmair: Coercive combined field integral equations. Research Report 2003/8,
Seminar für Angewandte Mathematik, ETH Zürich, 2003.
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