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On the ellipticity of coupled finite element and

one–equation boundary element methods

for boundary value problems

G. Of, O. Steinbach

Institut für Numerische Mathematik, TU Graz,

Steyrergasse 30, 8010 Graz, Austria
{of,o.steinbach}@tugraz.at

Abstract

In this paper we extend some recent results on the stability of the Johnson–
Nédelec coupling of finite and boundary element methods in the case of boundary
value problems. In [11, 13, 15], the case of a free–space transmission problem was con-
sidered, and sufficient and necessary conditions are stated which ensure the ellipticity
of the bilinear form for the coupled problem. The proof was based on considering
the energies which are related to both the interior and exterior problem. In the case
of boundary value problems for either interior or exterior problems, additional es-
timates are required to bound the energy for the solutions of related subproblems.
Moreover, several techniques for the stabilization of the coupled formulations are
analysed. Applications involve boundary value problems with either hard or soft
inclusions, exterior boundary value problems, and macro–element techniques.

1 Introduction

The coupling of finite and boundary element methods plays an important role in partic-
ular when considering physical models which couple linear and nonlinear partial differen-
tial equations, including problems in unbounded exterior domains. From a mathematical
point of view, the use of the so–called symmetric coupling of finite and boundary element
methods [3, 5, 10, 18] ensures stability and optimal a priori error estimates, and allows
the construction of almost optimal preconditioned iterative solution strategies. Although
there are efficient implementations available, the use of the symmetric formulation is still
not very popular in engineering and for more advanced applications. Instead, the one–
equation or Johnson–Nédélec coupling [9] is used, which relies on the use of single and
double layer boundary integral operators only, and which allows for both Galerkin and
collocation schemes for discretization. While for the general case a rigorous mathematical
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analysis was not available for some time, numerical examples indicated the stability of
this coupling scheme for more general situations [4]. In the case of free space transmission
problems, the stability of the Johnson–Nédélec coupling of finite and boundary elements
was first established in [13], and in [15] this approach was extended to prove ellipticity
of the related bilinear form. This result was further refined in [11] where a sufficient and
necessary condition on the finite element coefficient matrix and on the contraction property
of the shifted double layer boundary integral operator was given. As in the proof of the
ellipticity of the single layer boundary integral operator [8], the proofs in [11, 13, 15] are
based on considering the energies which are related to interior and exterior boundary value
problems. So the application to the analysis of free space transmission problems was more
or less straightforward.

In this paper we extend the previous results as given in [11] to the Johnson–Nédélec
coupling of finite and boundary elements in the case of boundary value problems. As a
model problem we consider an interior Dirichlet boundary value problem of a diffusion
equation with variable coefficients, but with a Laplace equation within a given inclusion.
While the formulation of the finite and boundary element coupling approach follows as
for a free space transmission problem, the ellipticity and stability analysis requires the
consideration of some exterior eigenvalue problem to relate the energy of the bounded
finite element problem to the energy of some related problem in an unbounded exterior
domain. In addition we have to do a careful analysis of certain orthogonal splittings
which are necessary in the two–dimensional case. The main result of this paper is given
in Theorem 2.2 where sufficient conditions are given to ensure ellipticity of the coupled
bilinear form. For the particular example of a circular inclusion in a circular domain we
are able to compute all involved constants explicitely, and to confirm the theoretical results
by numerical examples. The approach presented for this model problem can be extended
to the analysis of coupled schemes for the solution of other boundary value problems
in a rather similar way. Examples include interior boundary value problems with soft
inclusions, exterior boundary value problems, and macro–element formulations [7]. While
the methodologies to prove ellipticity in all of these cases are more or less the same, minimal
eigenvalues of different eigenvalue problems enter the sufficient and necessary conditions
which are required to ensure ellipticity. While we restrict our considerations to the case of
scalar linear diffusion equations, extensions to systems of partial differential equations, as,
e.g., in linear elasticity [6, 16], and to nonlinear partial differential equations [1] follow the
same lines.

2 Boundary value problems with hard inclusions

2.1 Model problem and variational formulation

As a model problem we consider the Dirichlet boundary value problem

−div[A(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ := ∂Ω, (2.1)
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where Ω ⊂ R
n, n = 2, 3, is a bounded Lipschitz domain. Let Ω0 ⊂ Ω be some inclusion,

again Lipschitz, with boundary Γ0 = ∂Ω0, Γ∩Γ0 = ∅, where we assume a material behavior
which is different from that in the remainder Ω1 = Ω\Ω0. In particular we assume A(x) = I

and f(x) = 0 for x ∈ Ω0, see Fig. 1.

Ω1

Ω0
Γ0

Γ

−∆u0=0

−div[A∇u1] = f

?n0

6
n1

-
n1

Figure 1: Boundary value problem with hard inclusion.

We further assume that the symmetric coefficient matrix A(x) is uniform positive definite
in Ω1, i.e., there is a positive constant

λmin := inf
x∈Ω1

min
k=1,...,n

λk(A(x)) > 0. (2.2)

Moreover, let f ∈ L2(Ω1), and in the two–dimensional case we finally assume diamΩ0 < 1.
Instead of the global problem (2.1) we consider the local partial differential equations

−∆u0(x) = 0 for x ∈ Ω0, −div[A(x)∇u1(x)] = f(x) for x ∈ Ω1,

with the boundary and transmission conditions

u1(x) = 0 for x ∈ Γ, u1(x) = u0(x), n1 · A(x)∇u1(x) +
∂

∂n0

u0(x) = 0 for x ∈ Γ0.

Note that ni denote the exterior normal vectors with respect to the subdomains Ωi, i = 0, 1,
and n1 = −n0 on Γ0. By introducing

t(x) :=
∂

∂n0
u0(x) = −n1 ·A(x)∇u1(x) for x ∈ Γ0,

the variational formulation of the subproblem in Ω1 is to find u1 ∈ H1
0 (Ω1,Γ) such that

∫

Ω1

[A(x)∇u1(x)] · ∇v(x) dx+

∫

Γ0

t(x)v(x) dsx =

∫

Ω1

f(x)v(x) dx (2.3)
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is satisfied for all v ∈ H1
0 (Ω1,Γ) := {v ∈ H1(Ω1) : v|Γ = 0}, while the boundary integral

equation related to the Laplace equation in Ω0 reads, by using u0 = u1 on Γ0,

(V t)(x) = (
1

2
I +K)u1(x) for almost all x ∈ Γ0 . (2.4)

Recall that

(V t)(x) =

∫

Γ0

U∗(x, y)t(y) dsy, (Ku)(x) =

∫

Γ0

∂

∂n0
U∗(x, y)u(y) dsy for x ∈ Γ0 (2.5)

denote the single and double layer boundary integral operators, and U∗(x, y) is the funda-
mental solution of the Laplace operator, i.e.,

U∗(x, y) =





−
1

2π
log |x− y| for n = 2,

1

4π

1

|x− y|
for n = 3.

By combining (2.3) and the weak formulation of the boundary integral equation (2.4), we
obtain a variational problem to find (u1, t) ∈ H1

0 (Ω1,Γ)×H−1/2(Γ0) such that

a(u1, t; v, τ) = 〈f, v〉Ω1
(2.6)

is satisfied for all (v, τ) ∈ H1
0 (Ω1,Γ) × H−1/2(Γ0), where the associated bilinear form is

given by

a(u, t; v, τ) := 〈A∇u,∇v〉L2(Ω1) + 〈t, v〉Γ0
+ 〈V t, τ〉Γ0

− 〈(
1

2
I +K)u|Γ0

, τ〉Γ0
. (2.7)

Since the boundary integral equation (2.4) holds for any solution of the Laplace equation
in Ω0, it follows for a constant solution u0 ≡ 1 that (1

2
I +K)u0 = 0 almost everywhere on

Γ0. By using the symmetry relation KV = V K ′, see, e.g., [14], the solution t ∈ H−1/2(Γ)
of the boundary integral equation (2.4) satisfies

〈t, 1〉Γ0
= 〈V t, V −1u0〉Γ0

= 〈(
1

2
I +K)u1, V

−1u0〉Γ0
= 〈u1, V

−1(
1

2
I +K)u0〉Γ0

= 0, (2.8)

hence we may introduce

H−1/2
∗ (Γ0) =

{
τ ∈ H−1/2(Γ0) : 〈τ, 1〉Γ0

= 0
}
.

Therefore, instead of (2.6) we may also consider the alternative variational problem to find

(u1, t) ∈ H1
0(Ω1,Γ)×H

−1/2
∗ (Γ0) such that

a(u1, t; v, τ) = 〈f, v〉Ω1
(2.9)

is satisfied for all (v, τ) ∈ H1
0 (Ω1,Γ)×H

−1/2
∗ (Γ0).
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One possibility to ensure unique solvability of the variational formulations (2.6) and
(2.9) is to prove ellipticity of the bilinear form (2.7) either in H1

0 (Ω1,Γ) × H−1/2(Γ0),

or in H1
0 (Ω1,Γ) × H

−1/2
∗ (Γ0). Then, by using standard arguments, we can also prove

existence, uniqueness, and quasi–optimality of related Galerkin approximations when using
conforming finite and boundary element methods, see, e.g., [12, 14].

Although both variational formulations (2.6) and (2.9) are equivalent to each other,
in the two–dimensional case n = 2 the ellipticity results for the bilinear form (2.7) are
rather different when considering the bilinear form for (u1, t) ∈ H1

0 (Ω,Γ) ×H−1/2(Γ0), or

for (u1, t) ∈ H1
0 (Ω,Γ) × H

−1/2
∗ (Γ0), see Theorem 2.2. Note that the variational problem

(2.9) can be reformulated either by using a Lagrange multiplier, or by using a modified
bilinear form.

The proof of ellipticity for the bilinear form (2.7) follows similar to the case of a free
space transmission problem [11, 15]. However, to estimate the energy which is related
to the boundary value problem in the bounded domain Ω1, we need to introduce some
artificial eigenvalue problem which is related to an unbounded exterior domain.

2.2 An exterior eigenvalue problem

For any given v ∈ H1/2(Γ0) let w1 ∈ H1
0 (Ω1,Γ) be the unique solution of the Dirichlet

boundary value problem

−∆w1(x) = 0 for x ∈ Ω1, w1(x) = 0 for x ∈ Γ, w1(x) = v(x) for x ∈ Γ0. (2.10)

Then we can introduce the Dirichlet to Neumann map

(S1v)(x) :=
∂

∂n1
w1(x) for x ∈ Γ0,

where S1 : H1/2(Γ0) → H−1/2(Γ0) is the related Steklov–Poincaré operator. From its
definition we obtain for the weak solution w1 of the Dirichlet boundary value problem
(2.10), by using w1 = 0 on Γ,

〈S1v, v〉Γ0
=

∫

∂Ω1

∂

∂n1

w1(x)w1(x) dsx =

∫

Ω1

|∇w1(x)|
2 dx.

For the chosen v ∈ H1/2(Γ0) we may also consider the exterior Dirichlet boundary value
problem

−∆w∞(x) = 0 for x ∈ Ωc
0 := R

n\Ω0, w∞(x) = v(x) for x ∈ Γ0 (2.11)

satisfying the radiation condition

w∞(x) = O
( 1

|x|

)
as |x| → ∞. (2.12)
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The solution of the exterior boundary value problem (2.11) and (2.12) is given by the
representation formula

w∞(x) = −

∫

Γ0

U∗(x, y)
∂

∂n0

w∞(y) dsy +

∫

Γ0

∂

∂n0

U∗(x, y)v(y) dsy for x ∈ Ωc
0,

where in the two–dimensional case we require the scaling condition
∫

Γ0

∂

∂n0

w∞(y) dsy = 0. (2.13)

to ensure the radiation condition (2.12). In fact, t∞ =
∂

∂n0

w∞ is the unique solution of

the boundary integral equation

(V t∞)(x) = (−
1

2
I +K)v(x) for x ∈ Γ0. (2.14)

The scaling condition (2.13) and using (2.8) imply

0 = 〈t∞, 1〉Γ0
= 〈V t∞, V

−1u0〉Γ0
= 〈(−

1

2
I +K)v, V −1u0〉Γ0

= −〈v, V −1u0〉Γ0
= −〈v, teq〉Γ0

,

where teq ∈ H−1/2(Γ0) is the unique solution of the boundary integral equation V teq = u0

on Γ0. In particular in the two–dimensional case we therefore need to consider v ∈ H
1/2
∗ (Γ0)

where
H1/2

∗ (Γ0) :=
{
v ∈ H1/2(Γ0) : 〈v, teq〉Γ0

= 0
}
.

The solution of the exterior Dirichlet boundary value problem (2.11) and (2.12) induces
the Dirichlet to Neumann map

(Sextv)(x) :=
∂

∂n1
w∞(x) = −

∂

∂n0
w∞(x) for x ∈ Γ0,

where the exterior Steklov–Poincaré operator is given as

Sext = V −1(
1

2
I −K) = D + (

1

2
I −K ′)V −1(

1

2
I −K), (2.15)

and

(Du)(x) = −
∂

∂n0,x

∫

Γ0

∂

∂n0,y
U∗(x, y)u(y) dsy for x ∈ Γ0

is the so–called hypersingular boundary integral operator.
Since the Steklov–Poincaré operators S1, S

ext : H1/2(Γ0) → H−1/2(Γ0) are both elliptic,
we can consider the spectral equivalence inequalities

µmin 〈S
extv, v〉Γ0

≤ 〈S1v, v〉Γ0
for all v ∈

{
H

1/2
∗ (Γ0), n = 2,

H1/2(Γ0), n = 3.
(2.16)
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Note that µmin is characterized as minimal eigenvalue of a related eigenvalue problem of the
underlying partial differential equations. In Sect. 3 we present a case study for a particular
situation where we can compute µmin explicitly.

Since the Dirichlet boundary value problem (2.10) is well defined for all v ∈ H1/2(Γ0)

also in the two–dimensional case, we introduce the decomposition H1/2(Γ0) = H
1/2
∗ (Γ0)⊕

{u0} as follows: For an arbitrary v ∈ H1/2(Γ0) let

v = v0 + α, α =
〈v, teq〉Γ0

〈1, teq〉Γ0

, v0 ∈ H1/2
∗ (Γ0). (2.17)

The constraint v0 ∈ H
1/2
∗ (Γ0) implies 〈v0, teq〉Γ0

= 〈v0, V
−1u0〉Γ0

= 0, i.e. orthogonality in
H1/2(Γ0). Since

‖v‖2V −1 = 〈V −1v, v〉Γ0
, ‖v‖2S1

= 〈S1v, v〉Γ0

define equivalent norms in H1/2(Γ0), i.e. there exist positive constants γ1 and γ2 such that

γ1 ‖v‖
2
S1

≤ ‖v‖2V −1 ≤ γ2 ‖v‖
2
S1

for all v ∈ H1/2(Γ0),

we conclude that there exists a positive constant

cS ≤ 1−
γ1

γ2
< 1

such that the strengthened Cauchy–Schwarz inequality

〈S1u0, v0〉Γ0
≤ cS ‖u0‖S1

‖v0‖S1
for all v0 ∈ H1/2

∗ (Γ0) (2.18)

is satisfied. Then there holds

(1− cS)
[
〈S1v0, v0〉Γ0

+ α2〈S1u0, u0〉Γ0

]
≤ 〈S1v, v〉Γ0

for all v ∈ H1/2(Γ0), (2.19)

where (v0, α) ∈ H
1/2
∗ (Γ0)× R is given by (2.17).

2.3 Norm equivalence inequalities

The ellipticity estimate of the bilinear form (2.7) is based on different representations of
the involved Steklov–Poincaré operators, or equivalently, on different representations of
the related energies for solutions of both interior and exterior problems. These results are
partially based on the contraction property of the double layer boundary integral operator,
see [17], i.e.,

‖(
1

2
I +K)v‖V −1 ≤ cK ‖v‖V −1 for all v ∈ H1/2(Γ0), (2.20)

where

cK =
1

2
+

√
1

4
− cV1 c

D
1 < 1.
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Lemma 2.1 Let Sext : H
1/2
∗ (Γ0) → H−1/2(Γ0) be the Steklov–Poincaré operator as defined

in (2.15). Then there holds

1

cK
‖(
1

2
I −K)v‖2V −1 ≤ 〈Sextv, v〉Γ0

for all v ∈ H1/2
∗ (Γ0). (2.21)

Proof. As in [17, Corollary 5.1] we start with the estimates

(1− cK)‖v‖V −1 ≤ ‖(
1

2
I −K)v‖V −1 ≤ cK ‖v‖V −1 for all v ∈ H1/2

∗ (Γ0).

Moreover, we have

〈Dv, v〉Γ0
≥ cK(1− cK)‖v‖

2
V −1 for all v ∈ H1/2

∗ (Γ0).

Hence we conclude, by using the symmetric representation of the exterior Steklov–Poincaré
operator (2.15), the estimate

〈Sextv, v〉Γ0
= 〈Dv, v〉Γ0

+ ‖(
1

2
I −K)v‖2V −1 ≥

1

cK
‖(
1

2
I −K)v‖2V −1 .

2.4 Ellipticity of the coupled bilinear form

Now we are in a position to state the main result of this paper.

Theorem 2.2 Let λmin > 0 be the minimal eigenvalue of the coefficient matrix A as

defined in (2.2), let µmin > 0 be as defined in (2.16), and let cS ∈ [0, 1) be the constant of

the strengthened Cauchy–Schwarz inequality (2.18).

i. In the two–dimensional case n = 2 there holds the ellipticity estimate

a(v, τ ; v, τ) ≥ cA1

[
‖∇v‖2L2(Ω1)

+ ‖τ‖2V

]
for all (v, τ) ∈ H1

0 (Ω1,Γ)×H−1/2(Γ0)

with some positive constant cA1 > 0 if the condition

λmin >
1

4

1

1− cS
max

{
cK

µmin
,

〈teq, 1〉Γ0

〈S1u0, u0〉Γ0

}
(2.22)

is satisfied.

ii. In the two–dimensional case n = 2 there also holds the ellipticity estimate

a(v, τ ; v, τ) ≥ c̃A1

[
‖∇v‖2L2(Ω1)

+ ‖τ‖2V

]
for all (v, τ) ∈ H1

0 (Ω1,Γ)×H−1/2
∗ (Γ0)

with some positive constant c̃A1 > 0 if the condition

λmin >
1

4

1

1− cS

cK

µmin

(2.23)

is satisfied.
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iii. In the three–dimensional case n = 3 there holds the ellipticity estimate

a(v, τ ; v, τ) ≥ ĉA1

[
‖∇v‖2L2(Ω1) + ‖τ‖2V

]
for all (v, τ) ∈ H1

0 (Ω1,Γ)×H−1/2(Γ0)

with some positive constant ĉA1 > 0 if the condition

λmin >
1

4

cK

µmin

(2.24)

is satisfied.

Proof. For arbitrary (v, τ) ∈ H1
0 (Ω1,Γ)×H−1/2(Γ0) we first consider

a(v, τ ; v, τ) =

∫

Ω1

A(x)∇v(x) · ∇v(x) dx+ 〈V τ, τ〉Γ0
+ 〈(

1

2
I −K)v, τ〉Γ0

≥ λmin

∫

Ω1

|∇v(x)|2 dx+ ‖τ‖2V + 〈(
1

2
I −K)v, τ〉Γ0

.

For an arbitrary but fixed v ∈ H1
0 (Ω1,Γ), we introduce the splitting v = vΓ0

+ ṽ where vΓ0

is the harmonic extension of v|Γ0
, i.e. vΓ0

∈ H1
0(Ω1,Γ) is the weak solution of the Dirichlet

boundary value problem

−∆vΓ0
(x) = 0 for x ∈ Ω1, vΓ0

(x) = v(x) for x ∈ Γ0, vΓ0
(x) = 0 for x ∈ Γ,

i.e. ∫

Ω1

∇vΓ0
(x) · ∇z(x)dx = 0 for all z ∈ H1

0(Ω1).

By construction we have ṽ ∈ H1
0 (Ω1). Hence we obtain, by applying Green’s first formula,

∫

Ω1

|∇v(x)|2 dx =

∫

Ω1

|∇vΓ0
(x)|2 dx+

∫

Ω1

|∇ṽ(x)|2 dx

=

∫

Γ0

∂

∂n1
vΓ0

(x)vΓ0
(x) dsx +

∫

Ω1

|∇ṽ(x)|2 dx

= 〈S1v|Γ0
, v|Γ0

〉Γ0
+

∫

Ω1

|∇ṽ(x)|2 dx. (2.25)

i. In the two–dimensional case we introduce the splitting (2.17), i.e. for v|Γ0
∈ H1/2(Γ0)

we have

v|Γ0
= v0 + α, α =

〈v|Γ0
, teq〉Γ0

〈1, teq〉Γ0

, 〈v0, teq〉Γ0
= 0.

Hence, by using (2.19) we obtain from (2.25)

∫

Ω1

|∇v(x)|2 dx ≥ (1− cS)
[
α2〈S1u0, u0〉Γ0

+ 〈S1v0, v0〉Γ0

]
+ ‖∇ṽ‖2L2(Ω1)

.
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For τ ∈ H−1/2(Γ0) we consider the splitting

τ = τ0 +
〈τ, 1〉Γ0

〈teq, 1〉Γ0

teq, 〈τ0, 1〉Γ0
= 0, V teq = 1 onΓ0,

which implies

‖τ‖2V = ‖τ0‖
2
V +

[〈τ, 1〉Γ0
]2

〈teq, 1〉Γ0

.

Hence we conclude

〈(
1

2
I −K)v|Γ0

, τ〉Γ0
= 〈(

1

2
I −K)v0, τ0〉Γ0

+ α〈τ, 1〉Γ0
.

With this we obtain in the two–dimensional case, by using (2.21) and (2.16),

a(v, τ ; v, τ) ≥ λmin

[
(1− cS)

[
α2〈S1u0, u0〉Γ0

+ 〈S1v0, v0〉Γ0

]
+ ‖∇ṽ‖2L2(Ω1)

]

+‖τ0‖
2
V +

[〈τ, 1〉Γ0
]2

〈teq, 1〉Γ0

+ 〈(
1

2
I −K)v0, τ0〉Γ0

+ α〈1, τ〉Γ0

≥ λmin

[
(1− cS)

[
α2〈S1u0, u0〉Γ0

+ 〈S1v0, v0〉Γ0

]
+ ‖∇ṽ‖2L2(Ω1)

]

+‖τ0‖
2
V +

[〈τ, 1〉Γ0
]2

〈teq, 1〉Γ0

− ‖(
1

2
I −K)v0‖V −1‖τ0‖V + α〈1, τ〉Γ0

≥ λmin

[
(1− cS)

[
α2〈S1u0, u0〉Γ0

+ 〈S1v0, v0〉Γ0

]
+ ‖∇ṽ‖2L2(Ω1)

]

+‖τ0‖
2
V +

[〈τ, 1〉Γ0
]2

〈teq, 1〉Γ0

−

√
cK

µmin
〈S1v0, v0〉Γ0

‖τ0‖V + α 〈1, τ〉Γ0

= λmin‖∇ṽ‖
2
L2(Ω1) +

1

2

(
1

γ1

√
cK

µmin
〈S1v0, v0〉Γ0

− γ1‖τ0‖V

)2

+
1

2

(
1

γ2
α + γ2〈1, τ〉Γ0

)2

+

(
1−

1

2
γ22〈teq, 1〉Γ0

)
[〈1, τ〉Γ0

]2

〈teq, 1〉Γ0

+

(
1−

1

2
γ21

)
‖τ0‖

2
V +

(
λmin(1− cS)−

1

2

1

γ21

cK

µmin

)
〈S1v0, v0〉Γ0

+

(
λmin(1− cS)−

1

2

1

γ22

1

〈S1u0, u0〉Γ0

)
α2〈S1u0, u0〉Γ0

≥
1

2
min

{
λmin, 1−

1

2
γ21 , 1−

1

2
γ22〈teq, 1〉Γ0

}(
‖∇v‖2L2(Ω1)

+ ‖τ‖2V
)

if the conditions

1−
1

2
γ21 = λmin(1− cS)−

1

2

1

γ21

cK

µmin
> 0

and

1−
1

2
γ22〈teq, 1〉Γ0

= λmin(1− cS)−
1

2

1

γ22

1

〈S1u0, u0〉Γ0

> 0

10



are satisfied. Hence we find

γ21 = −[λmin(1− cS)]− 1] +

√
[λmin(1− cS)]− 1]2 +

cK

µmin

and

1−
1

2
γ21 =

1

2

[
1 + λmin(1− cS)−

√
[λmin(1− cS)− 1]2 +

cK

µmin

]
> 0

is satisfied for

λmin(1− cS)µmin >
1

4
cK .

On the other hand we obtain

γ22 =
1

〈teq, 1〉Γ0

[
−[λmin(1− cS)− 1] +

√
[λmin(1− cS)− 1]2 +

〈teq, 1〉Γ0

〈S1u0, u0〉Γ0

]

and therefore

1−
1

2
γ22〈teq, 1〉Γ0

=
1

2

[
1 + λmin(1− cS)−

√
[λmin(1− cS)− 1]2 +

〈teq, 1〉Γ0

〈S1u0, u0〉Γ0

]
> 0

is satisfied for

λmin(1− cS) >
1

4

〈teq, 1〉Γ0

〈S1u0, u0〉Γ0

.

With this we conclude the first ellipticity estimate for (v, τ) ∈ H1
0 (Ω1,Γ)×H

−1/2(Γ0)
in the two–dimensional case when assuming condition (2.22).

ii. Next we consider, for n = 2, the case τ ∈ H
−1/2
∗ (Γ), i.e. 〈1, τ〉Γ0

= 0. In this case,
the splitting of the norm in H−1/2(Γ0) is not required anymore. Then we have, by
using (2.21) and (2.16),

a(v, τ ; v, τ) ≥ λmin

[
(1− cS)

[
α2〈S1u0, u0〉Γ0

+ 〈S1v0, v0〉Γ0

]
+ ‖∇ṽ‖2L2(Ω1)

]

+‖τ‖2V − ‖(
1

2
I −K)v0‖V −1‖τ‖V

≥ λmin

[
(1− cS)

[
α2〈S1u0, u0〉Γ0

+ 〈S1v0, v0〉Γ0

]
+ ‖∇ṽ‖2L2(Ω1)

]

+‖τ‖2V −

√
cK

µmin

〈S1v0, v0〉Γ0
‖τ‖V

≥ λmin

[
(1− cS)α

2〈S1u0, u0〉Γ0
+ ‖∇ṽ‖2L2(Ω1)

]
+

1

2

(
1

γ

√
cK

µmin
〈S1v0, v0〉Γ0

− γ‖τ‖V

)2

+

(
λmin(1− cS)−

1

2

1

γ2
cK

µmin

)
〈S1v0, v0〉Γ0

+

(
1−

1

2
γ2
)
‖τ‖2V

≥ λmin

[
(1− cS)α

2〈S1u0, u0〉Γ0
+ ‖∇ṽ‖2L2(Ω1)

]
+

(
1−

1

2
γ2∗

)(
〈S1v0, v0〉Γ0

+ ‖τ‖2V
)

11



if

λmin(1− cS)−
1

2

1

γ2∗

cK

µmin
= 1−

1

2
γ2∗ > 0

is satisfied. From this we find

γ2∗ = −[λmin(1− cS)− 1] +

√
[λmin(1− cS)− 1]2 +

cK

µmin

and therefore

1−
1

2
γ2∗ =

1

2

[
1 + λmin(1− cS)−

√
[λmin(1− cS)− 1]2 +

cK

µmin

]
> 0

for

λminµmin(1− cS) >
1

4
cK ,

i.e. condition (2.23).

iii. In the three–dimensional case the exterior Steklov–Poincaré operator (2.15) is well
defined for all v|Γ0

∈ H1/2(Γ). Hence there is no need to use the splitting (2.17).
Using (2.25) we therefore have

a(v, τ ; v, τ) ≥ λmin

[
〈S1v|Γ0

, v|Γ0
〉Γ0

+ ‖∇ṽ‖2L2(Ω1)

]
+ ‖τ‖2V − ‖(

1

2
I −K)v|Γ0

‖V −1‖τ‖V

≥ λmin

[
〈S1v|Γ0

, v|Γ0
〉Γ0

+ ‖∇ṽ‖2L2(Ω1)

]
+ ‖τ‖2V −

√
cK

µmin
〈S1v|Γ0

, v|Γ0
〉Γ0

‖τ‖V

= λmin‖∇ṽ‖
2
L2(Ω1)

+
1

2

(
1

γ

√
cK

µmin
〈S1v|Γ0

, v|Γ0
〉Γ0

− γ‖τ‖V

)2

+

(
λmin −

1

2

1

γ2
cK

µmin

)
〈S1v|Γ0

, v|Γ0
〉Γ0

+

(
1−

1

2
γ2
)
‖τ‖2V

≥ λmin‖∇ṽ‖
2
L2(Ω1) +

(
1−

1

2
γ2∗

)(
〈S1v0, v0〉Γ0

+ ‖τ‖2V

)

if

λmin −
1

2

1

γ2∗

cK

µmin
= 1−

1

2
γ2∗ > 0

is satisfied. From this we find

γ2∗ = −[λmin − 1] +

√
[λmin − 1]2 +

cK

µmin

and therefore

1−
1

2
γ2∗ =

1

2

[
1 + λmin −

√
[λmin − 1]2 +

cK

µmin

]
> 0

for

λminµmin >
1

4
cK ,

i.e. condition (2.24).
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Remark 2.1 The conditions (2.22)–(2.24) are not only sufficient to ensure ellipticity of

the bilinear form a(·, ·) but also necessary, see the discussion in [11] in the case of a free

space transmission problem.

3 Eigenvalue problem in a ring domain

In general, the constants as used in Theorem 2.2 are not known explicitly. However, in
what follows we consider an example where we are able to determine all involved constants
explicitly. For this we consider the boundary value problem (2.1) in the particular two–
dimensional case when Ω = BR(0) is a circular domain with the inclusion Ω0 = Br(0),
r < R, and r < 1. Although the assumption diam Ω0 < 1 is not satisfied for r ∈ [1

2
, 1),

the condition r < 1 ensures the ellipticity of the single layer integral operator V in this
particular case.

Recall that in polar coordinates (̺, ϕ) the general solution of the Laplace equation is
given as

u(̺, ϕ) = A0 +B0 log ̺+

∞∑

k=1

̺−k[Ak cos kϕ+Bk sin kϕ] +

∞∑

k=1

̺k[Ãk cos kϕ+ B̃k sin kϕ].

For the solution w∞ of the exterior Dirichlet boundary value problem (2.11)–(2.12) we first

find A0 = B0 = 0 and Ãk = B̃k = 0 due to the radiation condition (2.12). In addition we
need to assume

1

2π

2π∫

0

g(ϕ)dϕ = 0

which corresponds to the condition g ∈ H
1/2
∗ (Γ). From the Fourier expansion of g and

using the Dirichlet boundary condition in (2.11) we further obtain

r−kAk =
1

π

2π∫

0

g(ϕ) cos kϕdϕ =: gk,cos, r−kBk =
1

π

2π∫

0

g(ϕ) sin kϕdϕ =: gk,sin.

Hence we have

w∞(̺, ϕ) =

∞∑

k=1

(
r

̺

)k [
gk,cos cos kϕ+ gk,sin sin kϕ

]
for ̺ > r,

from which

Sextg =
∂

∂n1
w∞ = −

∂

∂̺
w∞(̺, ϕ)|̺=r =

∞∑

k=1

k

r

[
gk,cos cos kϕ+ gk,sin sin kϕ

]

13



follows. With this we conclude

〈Sextg, g〉Γ0
=

∫ 2π

0

[
−
∂

∂̺
w∞(̺, ϕ)|̺=rw∞(r, ϕ)

]
r dϕ = π

∞∑

k=1

k
[
g2k,cos + g2k,sin

]
. (3.1)

For the solution w1 of the Dirichlet boundary value problem (2.10) we find analoguesly,

still using g0 = 0 due to g ∈ H
1/2
∗ (Γ0),

w1(̺, ϕ) =

∞∑

k=1

R2k − ̺2k

R2k − r2k
rk

̺k

[
gk,cos cos kϕ+ gk,sin sin kϕ

]
,

and

S1g =
∂

∂n1

w1 = −
∂

∂̺
w1(̺, ϕ)|̺=r =

∞∑

k=1

k

r

R2k + r2k

R2k − r2k

[
gk,cos cos kϕ+ gk,sin sin kϕ

]
.

Hence we obtain

〈S1g, g〉Γ0
= π

∞∑

k=1

k
R2k + r2k

R2k − r2k

[
g2k,cos + g2k,sin

]
. (3.2)

From (3.1) and (3.2) we then conclude

〈Sextg, g〉Γ0
≤ 〈S1g, g〉Γ0

≤
R2 + r2

R2 − r2
〈Sextg, g〉Γ0

for all g ∈ H1/2
∗ (Γ),

i.e.
µmin = 1.

It remains to determine the constant of the strengthened Cauchy–Schwarz inequality (2.18).
The solution of the Dirichlet boundary value problem

−∆u(̺, ϕ) = 0 for r < ̺ < R, ϕ ∈ [0, 2π), u(r, ϕ) = 1, u(R,ϕ) = 0,

is given by

u(̺, ϕ) =
log ̺− logR

log r − logR
,

and therefore

S1u = −
∂

∂̺
u(̺, ϕ)|̺=r =

1

logR− log r

1

r
.

Hence we find in this case cS = 0, i.e. orthogonality. Recall that in the case of a circu-
lar domain the single layer integral operator has a constant eigenfunction with a related
eigenvalue −r log r. With this we obtain

〈S1u0, u0〉Γ0
=

2π

logR− log r
, 〈teq, 1〉Γ0

= 〈V −1u0, u0〉Γ0
= −

2π

log r
.

14



In the case of a circular domain we finally have cK = 1
2
.

Hence we can state the ellipticity condition (2.22) as

λmin > max

{
1

8
,
1

4

log r − logR

log r

}
for (v, τ) ∈ H1

0 (Ω1,Γ)×H−1/2(Γ0), (3.3)

while for the ellipticity condition (2.23) we obtain

λmin >
1

8
for (v, τ) ∈ H1

0 (Ω1,Γ)×H−1/2
∗ (Γ0).

We observe that in this case condition (2.23) corresponds to the result of the free space
transmission problem [11], while condition (2.22) gives an additional restriction for a suf-
ficient large R.

4 Numerical results

In this section we provide two numerical examples to support the theoretical results of
Theorem 2.2. In particular, we are interested in the two–dimensional case due to the
more involved lower bound on λmin to ensure the ellipticity of the bilinear form (2.7). We
first consider the ring domain, where we were able to derive explicit conditions in Sect. 3
analytically, and a square domain with a square inclusion.

4.1 Ring domain with circular inclusion

As in Sect. 3 we consider the two–dimensional circular domain Ω = BR(0) with the circular
inclusion Ω0 = Br(0) of radius r = 0.2 < R, and A(x) = λI for x ∈ Ω1 := Ω \ Ω0 with
λ ∈ (0, 1]. To check the estimates of Theorem 2.2, we compute discrete approximations of
the ellipticity constants cA1 and c̃A1 by the Rayleigh quotients

cA1 = inf
(0,0)6=(v,τ)∈H1

0
(Ω1,Γ)×H−1/2(Γ0)

a(v, τ ; v, τ)

‖∇v‖2L2(Ω1)
+ 〈V τ, τ〉Γ0

= inf
(0,0)6=(v,τ)∈H1

0
(Ω1,Γ)×H−1/2(Γ0)

aS(v, τ ; v, τ)

‖∇v‖2L2(Ω1)
+ 〈V τ, τ〉Γ0

,

c̃A1 = inf
(0,0)6=(v,τ)∈H1

0
(Ω1,Γ)×H

−1/2
∗

(Γ0)

aS(v, τ ; v, τ)

‖∇v‖2L2(Ω1)
+ 〈V τ, τ〉Γ0

with the symmetrized bilinear form

aS(u, t; v, τ) := λ

∫

Ω1

∇u(x) · ∇v(x) dx+
1

2
〈t, v〉Γ0

+
1

2
〈u, τ〉Γ0

+〈V t, τ〉Γ0
−

1

2
〈(
1

2
I +K)u, τ〉Γ0

−
1

2
〈t, (

1

2
I +K)v〉Γ0

.
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The approximations of the ellipticity constants cA1 and c̃A1 are then given by the minimal
eigenvalues of the algebraic eigenvalue problem

(
µAh

1
4
M⊤

h − 1
2
K⊤

h
1
4
Mh −

1
2
Kh Vh + δ a a⊤

)(
u

t

)
= σ

(
Ah

Vh

)(
u

t

)
, (4.1)

where δ = 0 in the case of cA1 and δ = 1 in the case of c̃A1 . For the discretization we
used a globally quasi–uniform triangular finite element mesh in Ω1 with piecewise linear
continuous basis functions ϕi, and the related boundary element mesh on Γ0 with piecewise
constant basis functions ψk. The blocks are then given by

Mh[ℓ, i] = 〈ϕi|Γ, ψℓ〉Γ0
, Ah[j, i] =

∫

Ω

∇ϕi(x) · ∇ϕj(x)dx,

Kh[ℓ, i] = 〈Kϕi|Γ, ψℓ〉Γ0
, Vh[ℓ, k] = 〈V ψk, ψℓ〉Γ0

for i, j = 1, . . . , M̃ , k, ℓ = 1, . . . , N , where M̃ denotes the number of non Dirichlet nodes
of the finite element mesh and N is the number of boundary elements on the interface Γ0.
The vector a with

a[ℓ] = 〈ψℓ, 1〉Γ0
for ℓ = 1, . . . , N

is related to the stabilization to enforce τ ∈ H
−1/2
∗ (Γ0) in the case of c̃A1 .

In Fig. 2, we plot the minimal eigenvalues of the eigenvalue problem (4.1) for a se-
quence of coefficients λi =

i
100

, i = 1, . . . , 100. The minimal eigenvalues were computed by
some appropriate eigenvalue solver, i.e. the LAPACK routine for generalized symmetric
eigenvalue problems with a positive definite matrix on the right–hand side.

0 0,2 0,4 0,6 0,8 1

-0,2

0

0,2

0,4

0,6

m
in

im
al

 e
ig

en
va

lu
e

0.25
0.45
0.6
0.8
1.0

λ
0 0,2 0,4 0,6 0,8 1

-0,2

0

0,2

0,4

0,6

m
in

im
al

 e
ig

en
va

lu
e

0.25
0.45
0.6
0.8
1.0

λ

Figure 2: The minimal eigenvalues of (4.1) as a function of the coefficient λ for the ring do-
main and several choices of the radius R ∈ {0.25, 0.45, 0.6, 0.8, 1.0} of the exterior boundary
in the case without (left) and with stabilization (right).

While in the stabilized case (Fig. 2, right) the curves of the minimal eigenvalues as
approximations of the ellipticity constants c̃A1 are on top of each other for all considered
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exterior radii R, in the case without stabilization (Fig. 2, left) the minimal eigenvalues as
approximations of the ellipticity constants cA1 depend on the radius R. For R ∈ [0.25, 0.44]
the curves are on top of each other in both cases, but for larger values of λ we are in the
case of

〈teq, 1〉Γ0

〈S1u0, u0〉Γ0

=
1

4

log r − logR

log r
, λmin > max

{
1

8
,
1

4

log r − logR

log r

}

as described in (2.22) and (3.3). This effect can be seen even better in Fig. 3, where
we determined the minimal coefficient λ, i.e. λmin such that the bilinear form a(·, ·; ·, ·)
is elliptic for R = 0.2 + 0.05j and j = 1, . . . , 16. Having in mind that we are limited
to about 10000 degree of freedoms due to the use of the LAPACK routines, we observe
a good agreement of the approximations of λmin and the theoretical values 0.125 and
(ln r − lnR)(4 ln r)−1 of (3.3). In particular, we observe that the estimates of Sect. 3 and
Theorem 2.2 are sharp.

0,2 0,4 0,6 0,8 1
0

0,05

0,1

0,15

0,2

0,25

0.125
(ln r -ln R)/(4 ln r)
no stabilization
stabilization

λ
m
in

R

Figure 3: Approximations of λmin for the ring domain where r = 0.2 and R = 0.2 + 0.05j
with j = 1, . . . , 16.

4.2 Square domain with square inclusion

As a second example we consider a square domain Ω = (−0.5, 0.5) × (−0.5, 0.5) with a
square inclusion Ω0 = (−a, a) × (−a, a) for several values of a ∈ [0.025, 0.4]. In this case
we are not able to find explicit values for the involved constants cK , µmin, and cS. As
before, we compute approximations of the ellipticity constants cA1 and c̃A1 as the minimal
eigenvalues of the problem (4.1).

In Fig. 4, we plot the minimal eigenvalues of the eigenvalue problem (4.1) for a sequence
of coefficients λi =

i
100

, i = 1, . . . , 100 for several values of the parameter a, where 2a is
the side length of the inclusion Ω0.
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Figure 4: The minimal eigenvalues of (4.1) as a function of the coefficient λ for the square
domain and several choices of the parameter a ∈ {0.05, 0.1, 0.2, 0.3, 0.4} of the inclusion in
the case without (left) and with stabilization (right).

As we do not extend the exterior domain as for the ring domain but shrink the inclusion,
we observe the marching curves for decreasing values of a in the case of the non–stabilized
setting. For the stabilized version the curves are not on top of each other as for the ring
domain but there seems to be a limit for decreasing values of a. This can been seen even
better from Fig. 5 where we determined the minimal coefficient λ, i.e. λmin such that the
bilinear form a(·, ·) is elliptic for a ∈ {0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4}.
Since we are looking at a small range of values λmin there are still some small effects
visible due to the varying meshes for different values of a. Nevertheless we can observe the
diverse behaviour of the stabilized and the non–stabilized setting for small values of the
parameter a.
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Figure 5: Approximations of λmin for the square with square inclusion of side length 2a.
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5 Extensions

The approach as outlined in the previous sections can be applied also to other coupled
finite and boundary element formulations to solve related boundary value problems. In
what follows we consider three particular applications, namely the solution of a boundary
value problem with soft inclusions, the solution of exterior boundary value problems, and
the use of boundary element macro–elements within a finite element formulation.

5.1 Boundary value problems with soft inclusions

As in (2.1) we consider the Dirichlet boundary value problem

−div[A(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ, (5.1)

but now we assume A(x) = I and f(x) = 0 in the surrounding domain Ω1 = Ω\Ω0, while
we consider the potential equation in the inclusion Ω0 ⊂ Ω, see Fig. 6.

Ω1

Ω0
Γ0

Γ

−∆u1 = 0

−div[A∇u0] = f

?n0

-
n1

6
n1

Figure 6: Boundary value problem with soft inclusion.

Instead of the global problem (5.1) we consider the local partial differential equations

−div[A(x)∇u0(x)] = f(x) for x ∈ Ω0, −∆u1(x) = 0 for x ∈ Ω1,

with the boundary and transmission conditions

u1(x) = 0 for x ∈ Γ, u1(x) = u0(x),
∂

∂n1

u1(x) + n0 · A(x)∇u0(x) = 0 for x ∈ Γ0.

As in (2.3)–(2.4) we first consider the variational formulation to find u0 ∈ H1(Ω0) satisfying
∫

Ω0

[A(x)∇u0(x)] · ∇v(x) dx+

∫

Γ0

t1|Γ0
(x)v(x) dsx =

∫

Ω0

f(x)v(x) dx (5.2)
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for all v ∈ H1(Ω0), and the boundary integral equation which is related to a Dirichlet
boundary value problem in Ω1,

(V1t1)(x) = (
1

2
I +K1)u1(x) for x ∈ Γ1 = ∂Ω1, t1(x) =

∂

∂n1
u1(x) for x ∈ Γ1, (5.3)

where the boundary integral operators are defined as

(V1t1)(x) =

∫

Γ1

U∗(x, y)t1(y)dsy, (K1u1)(x) =

∫

Γ1

∂

∂n1

U∗(x, y)u1(y)dsy for x ∈ Γ1.

Let teq ∈ H−1/2(Γ1) be the unique solution of the boundary integral equation

(V1teq)(x) =

{
1 for x ∈ Γ0,

0 for x ∈ Γ.

By chosing (v, τ) = (1, teq) we then obtain from (5.2) and (5.3)

〈f, 1〉Ω0
= 〈t1|Γ0

, 1〉Γ0
= 〈t1, V1teq〉Γ1

= 〈V1t1, teq〉Γ1

= 〈(
1

2
I +K1)u1, teq〉Γ1

= 〈u1, V
−1
1 (

1

2
I +K1)V1teq〉Γ1

.

Recall that, for x ∈ Γ1,

[(
1

2
I +K1)V1teq](x) =

1

2
(V1teq)(x) +

∫

Γ1

∂

∂n1

U∗(x, y)(V1teq)(y)dsy

=
1

2
(V1teq)(x) +

∫

Γ0

∂

∂n1

U∗(x, y)dsy.

In particular for x ∈ Γ0 we therefore have, by using n1 = −n0 and the jump relation of the
double layer potential,

(
1

2
I +K1)(V1teq)(x) =

1

2
−

∫

Γ0

∂

∂n0
U∗(x, y)dsy = 1,

while for x ∈ Γ

(
1

2
I +K1)(V1teq)(x) = −

∫

Γ0

∂

∂n0
U∗(x, y)dsy = 0

follows. From this we further conclude

V −1
1 (

1

2
I +K1)V1teq = teq,

and due to u1 = u0 on Γ0 and u1 = 0 on Γ we finally find the scaling condition

〈f, 1〉Ω0
= 〈u1, teq〉Γ1

= 〈u0, teq|Γ0
〉Γ0
.
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Since the domain bilinear form in (5.2) defines only a semi–norm in H1(Ω0), similar as in
[15] we now introduce the splitting

u0(x) = u0 + ũ0(x) for x ∈ Ω0, 〈ũ0, teq|Γ0
〉Γ0

= 0, u0 =
〈f, 1〉Ω0

〈1, teq|Γ0
〉Γ0

,

and we define the factor space H1
∗ (Ω0) := {v ∈ H1(Ω0) : 〈v|Γ0

, teq|Γ0
〉Γ0

= 0} where
‖∇v‖L2(Ω0) implies an equivalent norm. By convention we set v|Γ ≡ 0 for all v ∈ H1

∗ (Ω1).
Then we end up with a modified variational problem to find (ũ0, t1) ∈ H1

∗ (Ω0)×H−1/2(Γ0)
such that

∫

Ω0

[A(x)∇ũ0(x)] · ∇v(x) dx+

∫

Γ0

t1|Γ0
(x)v(x) dsx =

∫

Ω0

f(x)v(x) dx, (5.4)

〈V1t1, τ〉Γ1
− 〈(

1

2
I +K1)ũ0|Γ0

, τ〉Γ1
= u0 〈1, τ〉Γ0

(5.5)

is satisfied for all (v, τ) ∈ H1
∗ (Ω0)×H

−1/2(Γ1). To establish ellipticity of the related bilinear
form we consider

a(v, τ ; v, τ) =

∫

Ω0

[A(x)∇v(x)] · ∇v(x) dx+ 〈V1τ, τ〉Γ1
+ 〈(

1

2
I −K1)v|Γ0

, τ〉Γ1

≥ λmin ‖∇v‖
2
L2(Ω0) + ‖τ‖2V1

− ‖(
1

2
I −K1)v|Γ0

‖V −1

1

‖τ‖V1

= λmin ‖∇ṽ‖
2
L2(Ω0) + λmin〈S0vΓ0

, vΓ0
〉Γ0

+ ‖τ‖2V1
− ‖(

1

2
I −K1)v|Γ0

‖V −1

1

‖τ‖V1

≥ λmin ‖∇ṽ‖
2
L2(Ω0) + λmin〈S0vΓ0

, vΓ0
〉Γ0

−
1

2
γ‖(

1

2
I −K1)v|Γ0

‖2
V −1

1

+

(
1−

1

2

1

γ

)
‖τ‖2V1

for some positive constant γ ∈ R, where we have used a similar splitting as in (2.25), and
where S0 = V −1(1

2
I+K) is the Steklov–Poincaré operator which is related to the Dirichlet

boundary value problem in Ω0, see the boundary integral equation (2.4). Similar as in
Lemma 2.1 we have

‖(
1

2
I −K1)v|Γ0

‖2
V −1

1

≤ cK 〈S1v|Γ0
, v|Γ0

〉Γ1
for all v ∈ H1

∗ (Ω0)

with the Steklov–Poincaré operator S1 := D1 + (1
2
I − K ′

1)V
−1
1 (1

2
I − K1). In analogy to

(2.16) we assume the equivalence inequality

µmin〈S1v|Γ0
, v|Γ0

〉Γ0
≤ 〈S0v|Γ0

, v|Γ0
〉Γ0

for all v ∈ H1
∗ (Ω0)

for some µmin > 0. With this we conclude the ellipticity estimate

a(v, τ ; v, τ) ≥ λmin ‖∇ṽ‖
2
L2(Ω0)

+

(
λmin −

1

2

cK

µmin
γ

)
〈S0vΓ0

, vΓ0
〉Γ0

+

(
1−

1

2

1

γ

)
‖τ‖2V1

≥

(
1−

1

2

1

γ∗

)[
‖∇ṽ‖2L2(Ω0)

+ 〈S0vΓ0
, vΓ0

〉Γ0
+ ‖τ‖2V1

]
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if

λmin −
1

2

cK

µmin
γ∗ = 1−

1

2

1

γ∗
> 0

is satisfied. From this we find

γ∗ =
µmin

cK
(λmin − 1) +

√
µ2
min

c2K
(λmin − 1)2 +

µmin

cK
,

and

λmin −
1

2

cK

µmin
γ∗ =

1

2

[
1 + λmin −

√
(λmin − 1)2 +

cK

µmin

]
> 0

is satisfied for

λmin >
1

4

cK

µmin
.

This condition is rather similar as condition (2.23) in the two–dimensional case of the
boundary value problem (2.1) with a hard inclusion, but now the orthogonal splitting is
included in the definition of H1

∗ (Ω1). While the determination of the constant µmin only
differs in the use of the exterior and interior Steklov–Poincaré operators, and in fact, it
is the same in the case of the ring domain, the contraction constant cK now corresponds
to Ω1. In particular for the ring domain as considered in Sect. 3 we find µmin = 1 and
cK = r+R

2R
.

5.2 Exterior boundary value problems

As a second extension we consider the model problem of an exterior boundary boundary
value problem, see Fig. 7,

−div[A(x)∇ui(x)] = f(x) for x ∈ Ωi, −∆ue(x) = 0 for x ∈ Ωe, (5.6)

with the boundary and transmission conditions

ui(x) = 0 for x ∈ Γ, ui(x) = ue(x), ni · A(x)∇ui(x) +
∂

∂ne
ue(x) = 0 for x ∈ ΓI , (5.7)

and the radiation condition

ue(x) = O
( 1

|x|

)
as |x| → ∞.

Here, Ω ⊂ R
n, n = 2, 3, is a bounded Lipschitz domain with boundary Γ = ∂Ω, where its

exterior is decomposed into two non–overlapping subdomains Ωi and Ωe with interface ΓI ,
i.e.

Ωc := R
n\Ω = Ωe ∪ ΓI ∪ Ωi.

As before we assume f ∈ L2(Ωi), and that A(x) is uniform positive definite in Ωi.
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Ωi

Ωe −∆ue = 0

−div[A∇ui] = f

Ω

Γ

ΓI

-
ni

�
ne

Figure 7: Exterior boundary value problem.

The variational problem of the exterior Dirichlet boundary value problem (5.6)–(5.7)

is to find (ui, te) ∈ H1
0 (Ωi,Γ)×H

−1/2
∗ (ΓI) such that

∫

Ωi

[A(x)∇ui(x)] · ∇v(x)] dx−

∫

Γi

te(x)v(x) dsx =

∫

Ωi

f(x)v(x) dx

is satisfied for all v ∈ H1
0 (Ωi,Γ) :=

{
v ∈ H1(Ωi) : v|Γ = 0

}
and

〈V te, τ〉ΓI
= 〈(−

1

2
I +K)ui|ΓI

, τ〉ΓI
for all τ ∈ H−1/2

∗ (ΓI).

Note that the requirement te =
∂

∂ni
ue ∈ H

−1/2
∗ (ΓI) ensures the correct radiation condition

for the solution ue of the exterior problem.
The related bilinear form is now given by

a(u, t; v, τ) := 〈A∇u,∇v〉L2(Ωi) − 〈t, v〉ΓI
+ 〈V t, τ〉ΓI

+ 〈(
1

2
I −K)u, τ〉ΓI

,

and we can proceed as in the proof of Theorem 2.2 to obtain, for (v, τ) ∈ H1
0 (Ωi,Γ) ×

H
−1/2
∗ (Γ),

a(v, τ ; v, τ) =

∫

Ωi

A(x)∇v(x) · ∇v(x) dx+ 〈V τ, τ〉ΓI
− 〈(

1

2
I +K)v|Γ, τ〉Γ

≥ λmin

[
‖∇ṽ‖2L2(Ωi)

+ 〈SivΓ, vΓ〉ΓI

]
+ ‖τ‖2V − ‖(

1

2
I +K)v|Γ‖V −1‖τ‖V ,

where Si is the Steklov–Poincaré operator which is related to the Dirichlet boundary value
problem

−∆wi(x) = 0 for x ∈ Ωi, wi(x) = 0 for x ∈ Γ, wi(x) = vΓ(x) for x ∈ ΓI ,
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i.e.

SivΓ =
∂

∂ni
wi(x) for x ∈ ΓI .

Instead of (2.16) we now consider the spectral equivalence inequality

µmin〈S
intv, v〉ΓI

≤ 〈Siv, v〉ΓI
for all v ∈ H1/2(ΓI),

where S int is the Steklov–Poincaré operator which is related to the Dirichlet boundary
value problem

−∆w(x) = 0 for x ∈ Ωi ∪ Γ ∪ Ω, w(x) = vΓ(x) for x ∈ ΓI .

Now, by using

1

cK
‖(
1

2
I +K)v|Γ‖

2
V −1 ≤ 〈S intv|Γ, v|Γ〉ΓI

for all v ∈ H1/2(ΓI),

we further obtain

a(v, τ ; v, τ) ≥ λmin

[
‖∇ṽ‖2L2(Ωi)

+ 〈SivΓ, vΓ〉ΓI

]
+ ‖τ‖2V −

√
cK

µmin
〈S intvΓ, vΓ〉ΓI

‖τ‖V ,

and as in the case n = 3 of Theorem 2.2 we conclude ellipticity for

λminµmin >
1

4
cK .

5.3 Macro–elements

As in [7] we finally consider the case that the boundary element subdomain is considered
as a macro–element within a finite element discretization, e.g., to model singularities more
accurately. In this situation, the boundaries of both subdomains have a piece of the
boundary Γ = ∂Ω where Dirichlet boundary conditions are predescribed, see Fig. 8. In
particular, we consider the Dirichlet boundary value problem

−div[A(x)∇u(x)] = f(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ := ∂Ω, (5.8)

where we assume A(x) = I, f(x) = 0 in Ω0, Γ1 ∩ Γ 6= ∅, and Γ0 ∩ Γ 6= ∅.
Instead of the global problem (5.8) we consider the local subproblems

−div[A(x)∇u1(x)] = f(x) for x ∈ Ω1, −∆u0(x) = 0 for x ∈ Ω0,

with the boundary and transmission conditions

ui(x) = 0 for x ∈ Γ, u1(x) = u0(x),
∂

∂n0
u0(x) + n1 ·A(x)∇u1(x) = 0 for x ∈ ΓC ,

where ΓC := (Γ1 ∩ Γ2) \ Γ denotes the interface of the two subdomains.
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Ω0

−∆u0 = 0

Ω1

−div[A∇u1] = f

Γ

ΓC

?
n1

6n0

-
n1

Figure 8: Boundary value problem with a macro–element.

As before, we consider the variational formulation for the diffusion equation in Ω1, and
the weakly singular boundary integral (2.4) for the Laplace equation in Ω0. Thus we end
up with the variational problem to find (u1, t0) ∈ H1

0 (Γ1,Γ1 ∩ Γ)×H−1/2(Γ) such that

∫

Ω1

[A(x)∇u1(x)] · ∇v(x) dx+

∫

ΓC

t0|ΓC
(x)v(x) dsx =

∫

Ω1

f(x)v(x) dx (5.9)

〈V t0, τ〉Γ0
− 〈(

1

2
I +K)u1|ΓC

, τ〉Γ0
= 0 (5.10)

is satisfied for all (v, τ) ∈ H1
0 (Γ1,Γ1 ∩ Γ) × H−1/2(Γ), where t0 := ∂

∂n0

u0. Note that we

consider the extension of u1|ΓC
∈ H̃1/2(ΓC) to Γ0 by zero whenever needed. Due to the fact

that both subproblems involve a Dirichlet boundary condition, we do not need to impose
any additional constraints. The associated bilinear form reads as

a(u, t; v, τ) := 〈A∇u,∇v〉L2(Ω1) + 〈t, v〉ΓC
+ 〈V t, τ〉Γ0

− 〈(
1

2
I +K)u|ΓC

, τ〉Γ0
, (5.11)

and to ensure ellipticity we need to consider the spectral equivalence inequality

µmin 〈S0v, v〉ΓC
≤ 〈S1v, v〉ΓC

for all v ∈ H̃1/2(ΓC), (5.12)

where the Steklov–Poincaré operators Si are defined with respect to the solution of related
Dirichlet boundary value problems in the subdomains Ωi. As in the proof of the three–
dimensional case in Theorem 2.2 we can now prove the ellipticity estimate

a(v, τ ; v, τ) ≥ cA1

[
‖∇v‖2L2(Ω1)

+ ‖τ‖2V

]
for all (v, τ) ∈ H1

0 (Ω1,Γ1 ∩ Γ)×H−1/2(Γ0)

with some positive constant cA1 > 0 if the condition

λmin >
1

4

cK

µmin

is satisfied.
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6 Conclusions

In this paper we have presented a stability analysis for the Johnson–Nédélec coupling of
finite and boundary element methods in the case of boundary value problems. While the
sufficient and necessary conditions to ensure ellipticity are comparable to the conditions
obtained in the case of transmission boundary value problems, they involve minimal eigen-
values of related Steklov–Poincaré operator eigenvalue problems in addition. Although
these eigenvalues can be reformulated as eigenvalue problems for underlying partial differ-
ential equations, it seems that not so much is known on the analysis and numerics of these
eigenvalue problems, and hence, this may require further considerations. Moreover, these
results have to be extended to systems of partial differential equations, and to nonlinear
equations.

As a general result we can state, that the one–equation or Johnson–Nédélec coupling of
finite and boundary element methods is stable for almost arbitrary choices of basis func-
tions, as long as some analytical conditions on the underlying partial differential equations,
and on the shape of the interface and subdomain boundaries are satisfied.
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