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Abstract. This work is devoted to numerical studies on an algebraic
multigrid preconditioned GMRES method for solving the linear alge-
braic equations arising from an space–time finite element discretization
of the heat equation using h–adaptivity on tetrahedral meshes. The finite
element discretization is based on a Galerkin–Petrov variational formu-
lation using piecewise linear finite elements simultaneously in space and
time. In this work, we will focus on h–adaptivity relying on a residual
based a posteriori error estimation, and we study some important com-
ponents in the algebraic multigrid method for solving the space–time
finite element equations.
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1 Introduction

The space–time finite element method has a long history since the starting work
for the application in elastodynamics [11]. Recently, in [10, 16, 17], the authors
have proposed a discontinuous Galerkin space–time finite element approach and
robust multigrid methods for parabolic problems. In [12], space–time isogeo-
metric analysis discretization methods for parabolic evolution equations in fixed
and moving spatial computational domains have been investigated. In [3], the
classical streamline–diffusion and edge averaged finite element method for time
dependent convection–diffusion problems is considered. In [7, 8], space–time dis-
continuous Petrov–Galerkin finite elements with optimal test functions for fluid
problems have been exploited. Further, a class of methods based on well–known
space–time tensor product ansatz spaces can be found in, e.g., [1, 19, 22].

In this work, we follow the Galerkin–Petrov space–time finite element method
recently proposed and analyzed in [20] for solving the model heat equation

α∂tu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω × (0, T ), (1)

with the boundary and initial conditions u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω×(0, T )
and u(x, 0) = u0 for x ∈ Ω, respectively. Here, Ω ⊂ R2, is a bounded Lipschitz
domain, and α ∈ R+ is the heat capacity constant.



2 Olaf Steinbach and Huidong Yang

The Galerkin–Petrov variational formulation for the heat equation (1) is to find
u ∈ X := {v ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)), v(x, 0) = 0 for x ∈ Ω} such
that

a(u, v) = 〈f, v〉 − a(u0, v) (2)

is satisfied for all v ∈ Y := L2(0, T ;H1
0 (Ω)), where

a(u, v) :=

∫ T

0

∫
Ω

[
α∂tu(x, t)v(x, t) +∇xu(x, t) · ∇xv(x, t)

]
dx dt,

〈f, v〉 :=

∫ T

0

∫
Ω

f(x, t)v(x, t) dx dt,

and u0 ∈ L2(0, T ;H1
0 (Ω)) ∩ H1(0, T ;H−1(Ω)) denotes an arbitrary but fixed

extension of the initial datum u0 ∈ H1
0 (Ω). Existence and uniqueness of the

solution to (2) is provided in [20], see also [19, 22].

The related discrete Galerkin–Petrov problem is to find uh ∈ Xh ⊂ X such
that

a(uh, vh) = 〈f, vh〉 − a(u0, vh) (3)

is satisfied for all vh ∈ Yh ⊂ Y where we assume Xh ⊂ Yh. Then, the discrete
inf–sup condition was shown in [20], from which we conclude a standard stability
and error analysis.

In particular, the space–time cylinder Q is decomposed into finite elements
Qh = ∪N`=1q`. For simplicity we assume that Ω is polygonal bounded, Q = Qh.
The finite element spaces are given by Xh = S1

h(Qh) ∩ X and Yh = Xh with
S1
h(Qh) = span{ϕi}Mi=1 being the span of piecewise linear and continuous basis

functions ϕi. The following energy error estimate is shown in [20],

‖u− uh‖L2(0,T ;H1
0 (Ω)) ≤ c h |u|H2(Q), (4)

where u ∈ X and uh ∈ Xh denote the unique solutions of the variational prob-
lems (2) and (3), respectively, c > 0 is a constant independent of the mesh size
h, and we assume u ∈ H2(Q).

In comparison with other space–time methods, this approach is very suitable
for the development of h–adaptivity simultaneously in space and time, and we
may further pose the question how to solve the arising linear system of equations,
that will be tackled by an algebraic multigrid (AMG) preconditioned GMRES
method.

The remainder of this paper is organized as follows: In Section 2 we discuss
the space–time adaptive approach while Section 3 deals with the algebraic multi-
grid method for the finite element equations. Some numerical experiments are
prescribed in Section 4. Finally, some conclusions are drawn in Section 5.
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2 Space–time adaptivity

2.1 Local error indicator

Let uh ∈ Xh be the space–time finite element solution of the variational problem
(3) implying uh := u0 + uh for which we can define the local residuals

Rq`(uh) := f +∆xuh − α∂tuh

on each tetrahedral element q` and the jumps

Jγ(uh) := [nx · ∇xuh]|γ

of the normal flux in spatial direction across the inner boundaries γ between q`
and its neighbouring elements. The local error indicator on each element q` is
then given as

ηq` =
{
c1h

2
q`
‖Rq`‖2L2(q`)

+ c2hq`‖Jγ‖2L2(∂q`)

} 1
2

, (5)

with suitable chosen positive constants c1, c2. For more details, we refer to our
recent work [21]. In comparison with more conventional adaptive methods for
time dependent problems, see, e.g., [9, 14, 15], our method allows us to perform
the spatial and temporal adaptivity simultaneously.

2.2 Adaptive mesh refinement

Two local mesh refinement methods on the tetrahedral meshes Qh have been
employed in order to perform the space–time adaptivity, namely, the octasec-
tion based method [4], and the newest vertex bisection based method [2]. In the
octasection based method, the marked tetrahedral elements are refined using a
regular refinement [24], the handing nodes are closed by the so–called irregular
refinement with 62 possible cases. It is important that the irregular elements
will never be further refined on the next refinement levels in order to keep shape
regularity of the tetrahedral elements. If such irregular elements are marked for
a further refinement, we have to return to their parents, which are regular, and
perform the regular refinement on these parental elements, and irregular refine-
ment on those affected neighbouring elements. In the newest vertex bisection
based method, the local refinement pattern for each tetrahedral element is fixed
a priori following certain rules. In [2], there exist 5 refinement patterns defined
for tetrahedral elements. The local refinement strictly follows the natural rules
from one pattern to another. The closure of hanging nodes is realized by calling
such local refinement recursively until no more hanging nodes exist.

2.3 The adaptive space–time finite element loop

The adaptive space–time finite element loop follows the standard adaptive finite
element loop, see, e.g., [23], that consists of the following four main steps: Given
a conforming decomposition Q0 on the initial mesh level k = 0,
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1. SOLVE: Solve the discrete problem (3) on the adaptive mesh level k,
2. ESTIMATE: Compute the local error indicators (5) on each element q`,
3. MARK: Mark the elements for refinement using a proper marking strategy,
4. REFINE: Perform the local mesh refinement using octasection or bisection,

increase level k := k + 1, obtain the conforming decomposition Qk, and go
to Step 1 if the solution is not accurate enough.

In particular, for the module MARK, we use the Dörfler marking strategy [6]:
For a given parameter θ ∈ [0, 1], find Nk such that

θ

Nk∑
`=1

ηq` ≥
Mk∑
`=1

ηq` ,

where Mk denotes the total number of tetrahedral elements on the current level
k. In order to mark as few elements as possible, it is desirable to hold q` ≥ qm
if ` < m. The tetrahedral elements with index from 1 to Nk will be marked for
the refinement on the next level k + 1. In our numerical experiments, θ = 0.5.

3 The algebraic multigrid method

The remaining task is to solve the linear system of algebraic equations arising
from the space–time finite element discretization of the Galerkin–Petrov problem
(3). It is clear that the stiffness matrix is not symmetric but positive definite.
Hence we develop an AMG preconditioner for the GMRES method, that requires
special care for its components, namely, the coarsening and smoother. So far,
we have considered a greedy strategy for coarse–grid selection [13]. After the
selection of coarse and fine grids. the interpolation matrix is defined as in clas-
sical AMG [5]. As a smoother, we employ the ω—Kaczmarz relaxation which
satisfies the algebraic smoothing property [18]. More details on the development
of the robust AMG method for such space–time finite element equations will be
provided in a near future report.

4 Numerical experiments

4.1 Convergence history

As numerical example we consider Ω = (0, 1)2 and T = 1, i.e. Q = (0, 1)3, and
we chose a sufficiently smooth solution u given as

u(x, t) = (x21 − x1)(x22 − x2)(t2 − t)e−100.0((x1−0.25)2+(x2−0.25)2+(t−0.25)2). (6)

To verify the estimated order of convergence (eoc), the L2(0, T ;H1
0 (Ω))–norm of

the error eh := u− uh between the given and the discrete solution is calculated
on five uniformly refined mesh levels L1–L5 with increasing number of degrees
of freedom (#Dof) and tetrahedral elements (#Tet), and deceasing mesh size h.
The mesh information is prescribed in Table 1.
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Level L1 L2 L3 L4 L5

#Dof 125 729 4913 35937 274625

#Tet 384 3072 24586 196608 1572864

h 0.25 0.125 0.0625 0.03125 0.015625
Table 1. Mesh information on five uniformly refined levels.

The convergence results are recorded in Table 2 for varying heat conductivity
parameters α = 1, α = 10, and α = 100. From the numerical results we observe a
linear order of convergence as predicted. The convergence history of the space–
time finite element method using an adaptive mesh refinement in comparison
with the uniform one is plotted in Figure 1 for α = 1. The adaptive mesh always
starts from the L1 mesh level. To reach the same accuracy as the uniformly
refinement, the two adaptive methods require much fewer degrees of freedom.
Further, they provide a linear order of convergence.

Level
α = 1 α = 10 α = 100

‖eh‖L2(0,T ;H1
0 (Ω)) eoc ‖eh‖L2(0,T ;H1

0 (Ω)) eoc ‖eh‖L2(0,T ;H1
0 (Ω)) eoc

L1 3.77 · 10−3 − 3.78 · 10−3 − 4.10 · 10−3 −
L2 2.93 · 10−3 0.36 3.01 · 10−3 0.33 4.21 · 10−3 −
L3 2.00 · 10−3 0.55 2.04 · 10−3 0.56 2.36 · 10−3 0.84
L4 1.07 · 10−3 0.89 1.08 · 10−3 0.91 1.13 · 10−3 1.06
L5 5.47 · 10−4 0.97 5.49 · 10−4 0.98 5.56 · 10−4 1.02

Table 2. The estimated order of convergence (eoc) on the mesh levels L1–L5 with
different values for the heat conductivity: α = 1, α = 10, and α = 100.

Fig. 1. Convergence history of the space–time finite element using a uniform and adap-
tive refinements: Uniform (− + −), octasection (− ◦ −), bisection (− ∗ −) and linear
(−), for α = 1.0.
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4.2 AMG performance

To study the AMG performance, in Table 3 we show the number of AMG pre-
conditioned GMRES iterations and the cost in seconds (s) for solving the model
heat equation on uniformly refined five mesh levels (L1–L5). We set the relative
residual error ε = 10−7 as the stopping criterion for the GMRES iteration, and
run 1− 2 AMG iterations in each preconditioning step. We observe a relatively
fair robustness with respect to the mesh size h and heat capacity α.

α L1 L2 L3 L4 L5

1 3 4 7 14 32

10 2 4 6 14 24

100 3 4 6 9 15

α L1 L2 L3 L4 L5

1 0.001 s 0.032 s 0.373 s 7.437 s 143.190 s

10 0.001 s 0.033 s 0.667 s 9.171 s 190.070 s

100 0.001 s 0.060 s 1.383 s 27.060 s 448.590 s
Table 3. Performance of the AMG precontioned GMRES method on five uniform mesh
levels: Number of GMRES iterations (left) and time in seconds (right).

In Figure 2 and Figure 3, respectively, we compare the computational time in
seconds (s) and the number of AMG precontioned GMRES iterations to reach the
same accuracy of the space–time finite element solution between the adaptive and
uniform refinements. In comparison with the uniform refinement, the adaptive
one shows more efficiency in saving the number of AMG preconditioned GMRES
iterations as well as in the computational time.

Fig. 2. Comparison of the computional cost in seconds (s) to reach the same accuracy of
the space–time finite element solution using uniform and adaptive refinements: Uniform
(−+−), octasection (− ◦ −) and bisection (− ∗ −), for α = 1.0.

4.3 Visualization

The visualization of the numerical solution and of the adaptive space–time
meshes at three planes, in particular for x1 = 0.5, x2 = 0.5, and t = 0.25,
are shown in Figure 4. It is easy to see that our adaptive methods capture
the interest in the space–time domain effectively and make the adaptive mesh
refinement in space and time simultaneously.



An AMG method for an adaptive space-time FEM discretization 7

Fig. 3. Comparison of the AMG preconditioned GMRES iterations to reach the same
accuracy of the space–time finite element solution using the uniform and adaptive
refinements: Uniform (−+−), octasection (− ◦ −) and bisection (− ∗ −), for α = 1.0.

Fig. 4. Visualization of the numerical solution and of the adaptive space–time meshes
at the three planes for x1 = 0.5, x2 = 0.5, and t = 0.25: Numerical solution (left),
adaptive meshes using octasection at the 9th refinement level (middle) and bisection
at the 19th refinement level (right).

5 Conclusions

In this work, we have developed an AMG preconditioned GMRES method for
solving the adaptive space–time finite element discretized heat equation. The
proposed method has demonstrated a relatively good performance with respect
to the mesh size and heat capacity. The adaptive space–time finite element
method has shown a better accuracy and performance than the uniform one
with respect to the number of degrees of freedom and computational time, re-
spectively. The ongoing work is to develop a fully robust AMG preconditioner
with respect to the discetization, heat capacity, and more diffusion coefficients.
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