
Technische Universität Graz

16. Workshop on

Fast Boundary Element Methods in

Industrial Applications
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Program

Thursday, October 4, 2018
15.00 Coffee
16.30–16.45 Opening
16.45–17.15 C. Jerez–Hanckes (Santiago de Chile)

High–order Galerkin method for Helmholtz and Laplace problems
on multiple open arcs

17.15–17.45 S. Dohr (Graz)
Distributed space–time BEM for parabolic problems

17.45–18.15 J. Hauser (Graz)
Space–time variational formulations for Maxwell’s equations

18.30 Dinner
Friday, October 5, 2018

8.00–9.00 Breakfast
9.00–9.30 L. Kielhorn (Tailsit, Graz)

No solutions. Just problems.
9.30–10.00 M. Taus (MIT/Graz)

A scalable parallel preconditioner for the high–frequency
Helmholtz equation

10.00–10.30 G. Unger (Graz)
Boundary element methods for plasmonic resonance problems

10.30–11.00 Coffee
11.00–11.30 F. Kpadonou (Palaiseau)

Efficient preconditioners for the H–matrix based iterative solver
for 3D oscillatory kernels

11.30–12.00 A. Kleanthous (London)
Preconditioning for electromagnetic scattering of multiple
absorbing dielectric objects

12.00–12.30 C. Urzua–Torres (Graz)
Operator preconditioning for the electric field integral equation
on screens

12.30 Lunch
14.30–15.00 T. Betcke (London)

Strong forms of Galerkin discretisations and their applications
to integral equations

15.00–15.30 J. Dölz (Darmstadt)
On the best approximation of the hierarchical matrix product

15.30–16.00 Coffee
16.00–16.30 L. Giacomel (Zürich)

BEM on complex screens
16.30–17.00 D. Seibel (Saarbrücken)

The Virtual Element Method for elliptic partial differential
equations on polygonal and polyhedral meshes

17.00–17.15 Break
17.15–17.45 J. Stocek (Edinburgh)

Space–time adaptive FEM for nonlocal parabolic variational
inequalities

17.45–18.15 M. Scroogs (London)
Weak imposition of boundary conditions using a penalty method

18.30 Dinner



Saturday, October 6, 2018
8.00–9.00 Breakfast
9.00–9.30 H. Gimperlein (Edinburgh)

Stabilized boundary elements for dynamic contact problems for
the wave equation

9.30–10.00 D. Pölz (Graz)
A space–time collocation scheme for retarded potential integral
equations

10.00–10.30 M. Zank (Graz)
Inf–sup stable variational formulations for the wave equation

10.30–11.00 Coffee
11.00–11.30 C. Özdemir (Hannover)

A toolbox for higher–order time domain boundary element method
11.30–12.00 M. Merta (Ostrava)

Distributed fast boundary element methods
12.00–12.30 P. Zaspel (Basel)

Scalable parallel BEM solvers on many core clusters
12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, October 7, 2018
8.00–9.00 Breakfast
9.00–9.30 H. Harbrecht (Basel)

Multilevel quadrature for elliptic problems on random domains by
the coupling of FEM and BEM

9.30–10.00 D. Lukas (Ostrava)
A boundary element method for homogenization of periodic structures

10.00–10.30 G. Of (Graz)
Some boundary element methods for multiply–connected domains

10.30–11.00 Coffee
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Strong forms of Galerkin discretisations and their applications to

integral equations

Timo Betcke

University College London, UK

In this talk we revisit generalised Riesz maps (or mass matrices) in the context
of integral operators. We consider strong forms as the product of an inverse mass
matrix and a Galerkin discretisation of an integral operator. Based on this notion
we define a discrete operator product algebra for Galerkin discretisations and its
implementation in software. Several examples from acoustics and Maxwell problems
will demonstrate how this algebra makes it very simple to describe in software
complex operator preconditioning modalities.
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Distributed space-time BEM for parabolic problems

Stefan Dohr

TU Graz, Austria

Space-time discretization methods became very popular in recent years due to their
ability to drive adaptivity in space and time simultaneously, and to use parallel
iterative solution strategies for time-dependent problems. However, in order to solve
the global space-time system the application of an efficient parallelization technique
is required.
In this talk we consider the heat equation as a model problem and introduce a par-
allel solver for the discretized boundary integral equations, for both Dirichlet and
Neumann boundary conditions. The space-time boundary mesh is decomposed into
a given number of submeshes. Pairs of the submeshes represent blocks in the system
matrices. Due to the structure of the matrices one has to design a suitable scheme
for the distribution of the matrix blocks among compute nodes in order to get an
efficient method. In our case the distribution is based on a cyclic decomposition
of complete graphs. The results can be transfered to parabolic transmission pro-
blems as well. We present numerical tests to evaluate the efficiency of the proposed
parallelization approach.
The presented parallel solver is based on joint work with G. Of from TU Graz, J.
Zapletal and M. Merta from the Technical University of Ostrava.
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On the best approximation of the hierarchical matrix product

Jürgen Dölz1, Helmut Harbrecht2, Michael D. Multerer2

1TU Darmstadt, Germany, 2Universität Basel, Switzerland

We consider the computation of a hierarchical matrix approximation to the product
of pseudo-differential operators. In the discrete setting, this approximation can be
seen as the product of two hierarchical matrices. Although the classical arithmetic
of hierarchical matrices can compute this approximation in almost linear time, its
efficiency of the algorithm is based on a recursive scheme, which makes the error
analysis quite involved. Therefore, we discuss a new algorithmic framework for the
multiplication of hierarchical matrices. It improves currently known implementati-
ons by reducing the multiplication of hierarchical matrices towards finding a suitable
low-rank approximation of sums of matrix-products. We propose several compres-
sion schemes to address this task. As a consequence, we are able to compute the
best-approximation of hierarchical matrix products.
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BEM on complex screens

Lorenzo Giacomel1, R. Hiptmair1, C. Urzua–Torres2

1ETH Zürich, Switzerland, 2TU Graz, Austria

First-kind boundary integral equations for solving scalar elliptic boundary value
problems in the exterior of an orientable Lipschitz screen Γ ⊂ R

d are well esta-

blished. They are set in trace spaces H̃
1

2 (Γ) and H̃−

1

2 (Γ), respectively, and their
unknowns are the jumps of the fields across Γ.
Let us now consider multi-screens, d − 1-dimensional varieties composed of a few
orientable Lipschitz parts attached to each other at junctions, where several of them
can meet. What is the meaning of a jump of a function at these junctions? This
issue can be resolved by switching to a quotient space view of traces. This naturally
leads to the notion of multi-trace spaces of multi-valued functions, encompassing
single-valued “single-trace” functions. Jump spaces emerge as the quotient spaces
of the two.
Our key idea is to switch to the quotient-space approach also for the sake of Galerkin
discretization. Instead of trying to figure out boundary element (BE) subspaces of
jump traces, we start from the straightforward conforming BE discretization of
multi-trace spaces. On them the boundary integral equations (BIEs) will fail to
have a unique solution, but are still consistent, therefore amenable to being solved
by a conjugate gradient iterative solver. Thus, we implicitly recover the BIE on
the quotient space. We also give numerical demonstrations for the feasibility of this
approach.
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Stabilized boundary elements for dynamic contact problems for the

wave equation

H. Gimperlein, G. Barrenechea, C. Ozdemir, J. Stocek

Heriot-Watt University Edinburgh, UK

We discuss the numerical analysis of the Signorini problem for the time dependent
wave equation. The equation is reduced to a variational inequality for the Poincare-
Steklov operator on the contact boundary, which numerically is realized in terms
of retarded potentials. We review the existence of solutions to the dynamic contact
problem and, assuming existence, discuss the a priori analysis of an equivalent mixed
formulation, as well as its stabilization based on local projections. Even for time
independent problems our approach provides a simplified stabilization of boundary
element discretizations.
Numerical results illustrate the efficiency of our methods for dynamic contact in
three dimensions.

7



High-order Galerkin method for Helmholtz and Laplace problems on

multiple open arcs

Carlos Jerez–Hanckes

Pontificia Universidad Catolica de Chile

We present a spectral numerical scheme for solving Helmholtz and Laplace problems
with Dirichlet boundary conditions on a finite collection of open arcs in R

2. An
indirect boundary integral method is employed, giving rise to a first kind formulation
whose variational form is discretized using weighted Chebyshev polynomials. Well-
posedness of both continuous and discrete problems is established as well as spectral
convergence rates under the existence of analytic maps to describe the arcs. In order
to reduce computation times, a simple matrix compression technique based on sparse
kernel approximations is developed. Numerical results provided validate our claims.
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Multilevel quadrature for elliptic problems on random domains by the

coupling of FEM and BEM

Helmut Harbrecht

Universität Basel, Switzerland

Elliptic boundary value problems which are posed on a random domain can be
mapped to a fixed, nominal domain. The randomness is thus transferred to the
diffusion matrix and the loading. This domain mapping method is quite efficient for
theory and practice, since only a single domain discretization is needed. Nonetheless,
it is not useful for applying multilevel accelerated methods to efficiently deal with
the random parameter. This issues from the fact that the domain discretization
needs to be fine enough in order to avoid indefinite diffusion matrices. To overcome
this obstruction, we are going to couple the finite element method with the boundary
element method. In this talk, we verify the required regularity with respect to the
random perturbation field, derive the coupling formulation, and show by numerical
results that the approach is feasible.
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Space-time variational formulations for Maxwell’s equations

Julia Hauser, Olaf Steinbach

TU Graz, Austria

Maxwell’s equations are everywhere in electro magnetic problems. There are many
approaches to solve these equations. Our approach is to consider time as another
dimension and look at Maxwell’s equations in a corresponding 4D space-time set-
ting. To be able to solve boundary integral equations in this setting, we first need
to take a look at variational formulations in the domain and their corresponding
finite element methods. For this purpose we consider the equations on a bounded
Lipschitz domain in space and a bounded interval in time. The electric permitti-
vity and magnetic permeability shall be symmetric, positive definite and bounded
matrix functions.
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No solutions. Just problems.

L. Kielhorn, T. Rüberg, J. Zechner

TAILSIT GmbH, Graz, Austria

This talk is concerned with open problems related to computational electromagne-
tism. TAILSIT gained quite some expertise in the development and implementation
of FEM-BEM coupling schemes for electromagnetic phenomena such as magneto-
statics and eddy-currents. While these coupling schemes are based on a sound ma-
thematical foundation, in practice however, one faces some issues which are not
covered by the theory. These issues are either related to the the coupling sheme
itself, or—in many instances—to the underlying Boundary Element Method. Thus,
some of the problems this talk addresses are of general nature rather than problem-
specific. The following list is intended to give a rough oveview on some of the issues
that will be discussed:

• The one equation coupling is stable but reveals severe accuracy problems.

• Our preconditioner for the coupled system of equations seems to be not optimal
w.r.t the material parameter.

• The ACA fails for magnetostatics and eddy-currents (. . . but FMM succeeds).

• Implementing symmetry constraints poses problems—especially in conjunction
with cohomology vector fields.

• Distributed computing: Domain decomposition vs. parallel FMM—what is the
best strategy?

The above topics will be covered in more detail within the talk. We hope this
presentation will create some curiosity out of which solutions might emerge.
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Preconditioning for electromagnetic scattering of multiple absorbing

dielectric objects

A. Kleanthous1, T. Betcke1, D. Hewett1, M. Scroggs1, and A. J. Baran2,3

1University College London, UK,
2Met Office, Exeter, UK,

3University of Hertfordshire, UK

In recent years Calderón preconditioning [1] and appropriate use of basis functions
[2] have become a popular strategy to speed up the iterative solution of electroma-
gnetic scattering by a single dielectric particle. In this talk we will discuss a different
type of preconditioning for single scattering problems, namely mass-matrix precon-
ditioning, and then extend the ideas of Calderón and mass-matrix preconditioning
in the case of scattering by multiple absorbing dielectric objects [3]. We will com-
pare the methods and then demonstrate applications of the above preconditioners
in the area of light scattering by single and multiple complex ice crystals found in
cirrus clouds, using the boundary element library Bempp [4].

References

[1] K. Cools, F. P. Andriulli, E. Michielssen: A Calderón multiplicative precondi-
tioner for the PMCHWT integral equation. IEEE Transactions on Antennas
and Propagation, 59 (12), 4579, 2011.

[2] A. Buffa, S. Christiansen: A dual finite element complex on the barycentric
refinement. Mathematics of Computation, 76 (260), 1743-1769, 2007.

[3] A. Kleanthous, T. Betcke, D. Hewett, M. Scroggs, J. Baran: Well-conditioned
boundary integral equations for multiple scattering by absorbing dielectric par-
ticles. Submitted to Arxiv, 2018.

[4] W. Smigaj, T. Betcke, S. Arridge, J. Phillips, M. Schweiger: Solving boundary
integral problems with BEM++. ACM Transactions on Mathematical Software
(TOMS), 41 (2), 6, 2015.
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Efficient preconditioners for the H-matrix based iterative solver for 3D

oscillatory kernels

F. D. Kpadonou, S. Chaillat, P. Ciarlet

Université Paris-Saclay ENSTA-UMA, Palaiseau, France

We are concerned in this contribution with the improvement of the efficiency of
Boundary Element Methods (BEMs) for 3D frequency domain oscillatory problems.
The need of efficient tools is crucial for the simulation of many real-life problems
such as soil-structure interaction, site-effects phenomenon, non-destructive controle
of structure (e.g. in nuclear area), and for the modelling and design of anti-noise
walls.
On the one hand, BEMs are based on the discretization of boundary integral equa-
tions [2] such that only the domain boundary is meshed. On the other hand, they
lead to a linear system with a fully-populated influence matrix, conversely to stan-
dard volume methods such as finite elements. Hence standard BEM solvers lead
to high computational costs both in terms of time and memory requirements. This
drawback prevents to treat large scale three-dimensional problems. Over the last
decades, various solutions have been proposed in order to circumvent the full as-
sembly and storage of the matrix. The most popular are probably the H-matrix
technique [1] and the Fast Multipole Method [4] to compute the integral opera-
tors, i.e the matrix-vector product which is, indeed, the essential operation for an
iterative solver.
Since the matrix-vector product is log-linear factor with these methods, iterative
solvers are very appealing. However the definition of an efficient preconditioner or
the number of iterations is still an issue and a limiting factor to treat large scale
problems. In the typical case of FMM based iterative solver, only the near-field
contributions of the system matrix are available. Therefore, one is rapidly limited in
the possibilities for the setting of that preconditioner (SPAI, LU factorization, etc..).
In the case of H-matrix, although two kinds of storage are used, namely the full
storage for non-admissible blocks and the low-rank representation for the admissible
ones, the system matrix is available. We investigate the definition of an efficient
preconditioner for the H-matrix based solver [3]. We consider the General Minimal
Residual (GMRES) [5,6] based algorithms for the iterative solver. Several numeral
tests are shown to illustrate the efficiency of the different applicant preconditioner
tested.

References

[1] M. Bebendorf: Hierarchical Matrices, Springer, 2008.

[2] M. Bonnet: Boundary Integral Equation Methods for Solids and Fluids, Wiley,
1999.

[3] S. Chaillat, L. Desiderio, P. Ciarlet: Theory and implementation of H-matrix
based iterative and direct solvers for Helmholtz and elastodynamic oscillatory
kernels. J. Comput. Phys. 351 (2017) 165–186.

[4] E. Darve: The Fast Multipole Method: Numerical Implementation. J. Comput.
Phys. 160 (2000) 195–240.
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[5] Y. Saad, M. H. Schultz: GMRES: A Generalized Minimal Residual Algorithm
for Solving Nonsymmetric Linear Systems. SIAM J. Sci. Comput. 7 (1986)
856–869.

[6] Y. Saad: A Flexible Inner-Outer Preconditioned GMRES Algorithm. SIAM J.
Sci. Comput. 14 (1993) 461–469.
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A boundary element method for homogenization of periodic structures

D. Lukáš1, J. Bouchala1, J. Zapletal1, and G. Of2

1TU VSB Ostrava, Czech Republic, 2TU Graz, Austria

Solution to a boundary value problem involving materials with composite microstruc-
ture is computationally demanding. Therefore, we look for homogeneous (constant)
material coefficients imitating the original microstructure so that the solution to
the original problem with a highly oscillating material function is in a sense close
to the solution of a related problem with the constant material function.
In case of periodic structures the homogenized coefficients are calculated via an
auxiliary partial differential equation in the periodic cell. Typically a volume fi-
nite element discretization is employed for the numerical solution. In this talk we
reformulate the problem as a boundary integral equation using Steklov-Poincare
operators. The resulting boundary element method introduces discretization along
the boundary of the periodic cell and the interface between the materials within the
cell. We prove that the homogenized coefficients converge super-linearly with the
mesh size. The proof relies on the inf-sup stability of the Steklov-Poincare operator
defined on a multiply-connected domain. To our best knowledge this case has not
been treated in literature yet. We support the theory with examples in 2 and 3
dimensions.
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Distributed fast boundary element methods

Michal Merta, Jan Zapletal

TU VSB Ostrava, Czech Republic

We present an approach for a distributed memory parallelization of the boundary
element method. The input mesh is decomposed into submeshes and the respecti-
ve matrix blocks are distributed among computational nodes (MPI processes). The
distribution which takes care of the load balancing during the system matrix assem-
bly and matrix-vector multiplication is based on the cyclic graph decomposition.
Moreover, since the individual matrix blocks are approximated using the adaptive
cross approximation method, we describe its modification capable of dealing with
zero blocks in the double layer operator matrix since these are usually problema-
tic when using the original ACA algorithm. Convergence and parallel scalability of
the method are demonstrated on the half- and full-space sound scattering problems
modeled by the Helmholtz equation.
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A toolbox for higher–order time domain boundary element method

Ceyhun Özdemir

Leibniz Universität Hannover, Germany

We discuss aspects of the theory and implementation of higher-order h and p-
versions of the time domain boundary element method for the wave equation in
R

3. Numerical examples illustrate the convergence properties and relevance to real-
world problems from traffic noise. We particularly address the performance of these
methods for problems in polyhedral domains or outside a screen, where the solution
exhibits singularities at the edges and corners. For the h-version, graded meshes
are shown to recover optimal approximation rates for the solution to both Dirichlet
and Neumann problems. Adaptive mesh refinement procedures based on a reliable
and efficient a posteriori error estimate are shown to recover the convergence rates
known for time-independent problems. In the second part of the talk we introduce
a p-version of the time domain boundary element method, discuss its conforming
implementation and the practical solution of the resulting space-time systems.
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Some boundary element methods for multiply-connected domains

Dalibor Lukas1, Günther Of2, Olaf Steinbach2

1TU VSB Ostrava, Czech Republic, 2TU Graz, Austria

In case of multiply-connected domains, some properties of the boundary integral
operators differ from the setting of a simply-connected domain. In particular, the
kernel and the ellipticity property of the hypersingular operator are different. As a
consequence, some boundary integral formulations, like the symmetric formulation
of mixed boundary value problems, may have a larger kernel than the considered
problem itself.
We will discuss some details of the changes in the analysis of the boundary integral
operators and of the considered boundary integral formulations. We will show some
examples of failures of specific formulations and how to fix these by appropriate
modifications.
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A space-time collocation scheme for retarded potential integral

equations

Dominik Pölz, Martin Schanz

TU Graz, Austria

We discuss a boundary element method for the wave equation in 3D based on re-
tarded potential integral equations. Most existing approximation methods for such
integral equations discretize space and time separately, however, our goal is to de-
velop a discretization scheme that does not rely on this separation. The key idea
of such space-time methods is to treat the time variable as a coordinate similar to
the spatial ones. This enables the application of well-established finite and boun-
dary element technology for stationary problems to time domain boundary integral
equations.
To achieve such a discretization, the lateral boundary of the space-time cylinder is
decomposed into an unstructured tetrahedral mesh. On this mesh, standard fini-
te element spaces are employed to approximate the surface densities. The central
challenge is the evaluation of the retarded layer potentials, which integrate over
the intersection of the space-time mesh and the boundary of the backward light
cone. Since these integrals can be quite complicated we restrict our considerations
to collocation methods only. For tetrahedral space-time meshes we provide an ac-
curate numerical integration scheme for the pointwise evaluation of retarded layer
potentials. Several numerical examples illustrate the capacity of the method.
The talk concludes by addressing critical issues encountered in this early stage of
development as well as the limitations of the presented approach.
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Weak imposition of boundary conditions using a penalty method

Matthew Scroggs, Timo Betcke, Erik Burman

University College London, UK

In recent years, Nitsche’s method has become increasingly popular within the finite
element community as a method for weakly imposing boundary conditions. Inspi-
red by this, we propose a penalty-based method for weakly imposing boundary
conditions within boundary element methods.
We consider boundary element methods where the Calderon projector is used for
the system matrix and boundary conditions are weakly imposed using a particular
variational boundary operator. Regardless of the boundary conditions, both the
primal trace variable and the flux are approximated. We focus on the imposition of
Dirichlet, mixed Dirichlet, Neumann, and Robin conditions for Laplace problems.
The theory is illustrated by a series of numerical examples using the software library
Bempp.
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The Virtual Element Method for elliptic partial differential equations

on polygonal and polyhedral meshes

Daniel Seibel

Universität des Saarlandes, Saarbrücken, Germany

The virtual element method (VEM) is a generalisation of the Finite Element Me-
thod (FEM) to support polygonal and polyhedral meshes. In contrast to classi-
cal triangulations, polygonal/polyhedral meshes consist of almost arbitrary shaped
elements and are specifically suited for adaptive refinement and coarsening, since
post-processing to maintain the mesh admissibility is rendered unnecessary. Simi-
lar to other generalised FEM, the shape functions used in the VEM, called virtual
element functions, are defined as solutions to local boundary value problems on
the elements of the mesh. The virtual element space, which is spanned by these
functions, is designed to contain some polynomial subspace, and other, possibly
non-polynomial, virtual functions, which are only given implicitly. The key feature
here is that the virtual functions are not evaluated at any time, but all computati-
ons resolve around the polynomial component of the space. In this talk, we give an
overview of the VEM in 2D and present numerical examples afterwards.
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Space-time adaptive FEM for nonlocal parabolic variational inequalities

Jacub Stocek

Heriot-Watt University Edinburgh, UK

We present an a priori and a posteriori error analysis for finite element discretizati-
ons of elliptic and parabolic variational inequalities involving integral operators of
order s ∈ (0, 2). A typical example is given by the fractional Laplacian in a bounded
Lipschitz domain, and we consider variational and mixed formulations of general
dynamic contact problems involving non-penetration or friction. The a posteriori
error estimate leads to space-time adaptive mesh refinement procedures. Numerical
experiments confirm the theoretical results and show the advantages and limitations
of the adaptive methods.
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A scalable parallel preconditioner for the high-frequency Helmholtz

equation

Matthias Taus

Massachusetts Institute of Technology, USA

In many science and engineering applications, solving time-harmonic high-frequency
wave propagation problems quickly and accurately is of paramount importance. For
example, in geophysics, particularly in oil exploration, such problems can be the
forward problem in an iterative process for solving the inverse problem of subsur-
face inversion. It is important to solve these wave propagation problems accurately
in order to efficiently obtain meaningful solutions of the inverse problems: low or-
der forward modeling can hinder convergence. Additionally, due to the volume of
data and the iterative nature of most optimization algorithms, the forward problem
must be solved many times. Therefore, a fast solver is necessary to make solving
the inverse problem feasible. For time-harmonic high-frequency wave propagation,
obtaining both speed and accuracy is historically challenging.
Recently, there have been many advances in the development of fast solvers for such
problems, including methods which have linear complexity with respect to the num-
ber of degrees of freedom. While most methods scale optimally only in the context of
low-order discretizations and smooth wave speed distributions, the method of pola-
rized traces has been shown to retain optimal scaling for high-order discretizations,
such as hybridizable discontinuous Galerkin methods and for highly heterogeneous
(and even discontinuous) wave speeds. The resulting fast and accurate solver is
consequently highly attractive for geophysical applications. To date, this method
relies on a layered domain decomposition together with a preconditioner applied in
a sweeping fashion, which has limited straight-forward parallelization.
In this work, we introduce a new version of the method of polarized traces which
reveals more parallel structure than previous versions while preserving all of its
other advantages. We achieve this by further decomposing each layer and applying
the preconditioner to these new components separately and in parallel. We demon-
strate that this produces an even more effective and parallelizable preconditioner
for a single right-hand side. As before, additional speed can be gained by pipelining
several right-hand-sides.
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Boundary element methods for plasmonic resonance problems

U. Hohenester1, A. Trügler1, G. Unger2

1KFU Graz, Austria, 2TU Graz, Austria

The concept of resonances and modes for the description of particle plasmons has
recently received great interest, both in the context of efficient simulations as well
as for an intuitive interpretation in physical terms. While resonance modes have
been successfully employed for geometries whose optical response is governed by a
few modes only, the resonance mode description exhibits considerable difficulties
for larger nanoparticles with their richer mode spectra. In this talk we analyze the
problem using a boundary element method approach and identify the fixed link
between the electric and magnetic components in the modal expansion of the op-
tical response as the main source for this shortcoming. We suggest a novel modal
approximation scheme that allows in principle to overcome this problem by propo-
sing separate coefficients of the the electric and magnetic components of the modal
expansion.
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Operator preconditioning for the electric field integral equation on

screens

Ralf Hiptmair1, Carolina Urzúa–Torres2

1ETH Zürich, Switzerland, 2TU Graz, Austria

We consider the electric field integral equation (EFIE) arising from the scattering
of time-harmonic electromagnetic waves by a perfectly conducting screen. When
discretizing the EFIE by means of low-order Galerkin boundary element methods
(BEM), one obtains linear systems that are ill-conditioned on fine meshes. This
makes iterative solvers perform poorly and motivates the use of preconditioning.
The construction of a suitable preconditioner for the EFIE on screens poses some
challenges one should take into account. On the one hand, the energy trace spaces
involved are different from the closed surface setting. On the other hand, since in this
case the solution features edge singularities, it is important that the preconditioner
can also handle meshes refined towards the boundary of the screen. For these two
reasons, the standard “Calderón preconditioning” technique is suboptimal when
dealing with screens [1].
In this talk, we present a new strategy to build a preconditioner for the EFIE on
screens. First, we find a compact equivalent inverse of the EFIE operator on the
disk using recently found Calderón-type identities [2]. Then, we use this to construct
an operator preconditioner on more general screens. This approach not only offers
h-independent condition numbers, but it allows for non-uniform meshes without
additional computational effort. We provide some numerical results to verify our
theoretical findings.

References

[1] F. P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen,
E. Michielssen: A multiplicative Calderón preconditioner for the Electric Field
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Inf–sup stable variational formulations for the wave equation

Olaf Steinbach, Marco Zank

TU Graz

For the discretisation of time-dependent partial differential equations usually expli-
cit or implicit time stepping schemes are used. An alternative approach is the usage
of space-time methods, where the space-time domain is discretised and the resulting
global linear system is solved at once. In this talk the model problem is the scalar
wave equation. First, a brief overview of known results for the wave equation and
its boundary integral equations is presented. Second, two space-time approaches
for the second order wave equation are introduced. Uniqueness and existence inclu-
ding corresponding inf-sup conditions are proven. In both cases the starting point
is a Hilbert space H and then the idea is to use a completion procedure to define
a subspace H0 ⊂ H where a Poincaré-Friedrichs type inequality holds. This idea
leads to a uniquely solvable variational formulation in H0. In the first approach the
second order wave equation is considered in the sense of L2, whereas in the second
one a weaker sense than L2 is examined. Finally, examples for solutions of the wave
equation are presented and discussed.
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Scalable parallel BEM solvers on many-core clusters

Peter Zaspel

Universität Basel, Switzerland

Our aim is to solve large scale problems discretized by the boundary element me-
thod. To this end, we propose to use parallel computers equipped with graphics
processing units to assemble and solve the linear systems involved in the discretiza-
tion. Depending on the application case, we either assemble the full dense system
matrix (in parallel) or we compress the matrix by hierarchical matrices with adapti-
ve cross approximation. In either case, Krylov subspace solvers are applied to solve
the linear system. Our multi-GPU parallel implementation is achieved by porting a
sequential CPU BEM code to GPUs and by parallelizing our GPU-based hierarchi-
cal matrix library (hmglib). In our presentation, we will give details on the parallel
implementation and we will show our latest parallel performance benchmarks.
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dalibor.lukas@vsb.cz

15. Dr. Michal Merta
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