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Abstract

The matter of appropriate boundary conditions for open or truncated outflow regions was
for a long time focus of intense discussion in the computational fluid dynamics community.
In the context of finite element methods, it is widely acknowledged that the “do-nothing”
natural boundary condition from the Laplace formulation of the Navier-Stokes system
yields accurate, physically consistent solutions. Nevertheless, when the viscosity is no
longer a constant, as in generalised Newtonian fluids, the use of the classical Laplace
formulation is not possible anymore. Thus, it is common practice to use the so-called
stress-divergence formulation with natural boundary conditions that are known to cause
unphysical behaviour close to the outlet. In order to overcome such issues, this work
presents a novel mixed variational formulation – and corresponding finite element method
– that can be seen as a generalisation of the Navier-Stokes Laplace formulation to fluids
with flow field-dependent viscosity. By appropriately manipulating the viscous terms in
the variational formulation and employing a simple projection of the constitutive law,
it is possible to devise a formulation with the desired natural boundary conditions and
low computational complexity. Several numerical examples are presented to showcase the
potential of this novel method.

1. Introduction

In various incompressible flow applications, it is often necessary to cut the spatial

domain due to computational limitations. For instance, when simulating the blood flow

in an artery, as it is not viable to consider the whole circulatory system, a truncated

computational domain containing only the region of interest must be considered. From

that arises the need to specify appropriate boundary conditions at the open outlet (i.e.,

where the “cut” was made). Since no a priori flow data is normally available at outlets,

it is crucial to apply boundary conditions that retain the correct physical behaviour – or
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at least minimise the upstream effect of the truncation. In that context, several varia-

tional formulations can be distinguished for the incompressible Navier-Stokes equations,

depending on how the viscous and convective terms are handled [1]. The most popular

treatments of the viscous stress are the Laplace formulation and the stress-divergence

form. The former is computationally cheaper and simpler [2], whereas the latter can be

applied straightforwardly to more general (e.g., non-Newtonian) fluids [3]. Although com-

pletely equivalent in the Dirichlet case, they can yield different solutions when natural

boundary conditions are considered [4]. In the stress-divergence formulation, assuming

zero natural outflow data is known for generating unphysical flow behaviour that can have

a considerable upstream effect, and for that reason the Laplace formulation is preferred

when possible [5].

For generalised Newtonian fluids, however, the presence of flow-dependent viscosity

prohibits the use of the simple Laplace form for the viscous term. Therefore, it is common

practice to use the stress-divergence formulation and, if necessary, extend the computa-

tional domain artificially in order to keep the unphysical outflow behaviour distant from

the region of interest [6]. To overcome such limitations, the present work aims at the

design of a suitable finite element framework for generalised Newtonian fluids, yielding

appropriate natural outflow boundary conditions. This is done through the derivation of

a mixed finite element method (FEM) that can be seen as a generalisation of the Laplace

formulation to the case of fluids with variable viscosity. Numerical examples considering

various fluid models showcase the potential of this novel formulation to attain accurate

solutions for problems with open boundaries.

2. Variational formulations

In what follows, three variational formulations are discussed: first, the stress-divergence

one, which is popular for generalised Newtonian fluids (while perhaps not so much for the

Newtonian case), then the classical Laplace formulation for Newtonian fluids, and finally

a novel formulation that generalises the Laplace form to variable viscosity cases. For sim-

plicity of presentation, only the stationary problem is tackled herein, but no modifications

are required for the time-dependent case.

The balance of linear momentum for a stationary flow can be stated as

(ρ∇u)u−∇ · T = ρg, (1)

where u is the flow velocity, T is the Cauchy stress tensor, g is a specific body force and

ρ is the density. For concision, the body force ρg will be dropped. Note that the gradient

of a vector u is defined as the second-order tensor ∇u, in which

(∇u)ij :=
∂ui
∂xj

, (2)

2



where ui is the i-th component of u and xj is the j-th spatial coordinate. The conservation

of mass for an incompressible flow is simply

∇ · u = 0. (3)

Consider a bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3. The boundary Γ := ∂Ω is

decomposed into two non-overlapping regions ΓD and ΓN . In ΓD the velocities are pre-

scribed: u|ΓD
= uD. The treatment of ΓN , on the other hand, depends on the variational

formulation employed for the momentum equation, as shown next.

2.1. Stress-divergence form

To devise a variational formulation, Eq. (1) is first multiplied by a test function w ∈
[H1(Ω)]

d
, with w|ΓD

= 0, and integrated over Ω:∫
Ω

[(ρ∇u)u] ·w dΩ−
∫

Ω

(∇ · T) ·w dΩ = 0. (4)

Since T in general depends on ∇u, integration by parts is applied to avoid second-order

derivatives of u in the formulation. This leads to the weak form∫
Ω

[(ρ∇u)u] ·w dΩ +

∫
Ω

T : ∇w dΩ =

∫
ΓN

t ·w dΓ =: 〈t,w〉ΓN
, (5)

where t := Tn is the normal boundary traction and n is the outward unit normal vector

on Γ. This formulation is a very general one, since no conditions on the material behaviour

have been assumed so far. Before introducing a material law, the Cauchy stress tensor T
is split into hydrostatic and deviatoric parts:

T = −pI + S, (6)

in which p is the pressure, I is the d × d identity tensor and S is the deviatoric stress

tensor. For a generalised Newtonian fluid, the stress-strain relationship is given by

S = 2µ∇su, (7)

where µ is the dynamic viscosity, which in general depends on the symmetric part of the

velocity gradient, ∇su, namely,

∇su :=
1

2

[
∇u + (∇u)>

]
. (8)

Substituting Eqs. (6) and (7) into the weak form (5) leads to the variational formulation:

Find (u, p) ∈ [H1(Ω)]
d × L2 (Ω), with u|ΓD

= uD, such that for all (w, q) ∈ [H1(Ω)]
d ×
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L2 (Ω), with w|ΓD
= 0,

c (u,u,w) + a (u,w)− b(p,w) = 〈t,w〉ΓN
, (9)

b(q,u) = 0, (10)

where t = (−pI + 2µ∇su) n and

c (u,v,w) :=

∫
Ω

[(ρ∇v) u] ·w dΩ, (11)

a (u,w) :=

∫
Ω

2µ∇su : ∇sw dΩ, (12)

b (p,w) :=

∫
Ω

(∇ ·w) p dΩ. (13)

If µ depends on ∇su, the function that describes such dependence is introduced directly

into the form a(u,w).

In this so-called stress-divergence formulation, the natural boundary condition is to

prescribe normal boundary tractions t on ΓN . On an open outflow boundary, the usual

approach is to “do nothing”, i.e., simply consider t = 0 and drop the boundary term.

However, it is widely known that prescribing zero normal traction on a cut outflow bound-

ary can lead to unphysical flow behaviour, even for the simplest case of laminar flow

through a straight pipe [4]. Nonetheless, this is still the most popular approach in the

non-Newtonian case (e.g., [6, 7, 8, 9, 10]). Then, what is often done is to extend the

computational domain artificially to keep the spurious behaviour away from the region of

interest.

2.2. Laplace form (Newtonian case)

For a Newtonian fluid, since the viscosity µ is a constant, it is possible to simplify the

viscous term as

∇ · (2µ∇su) = µ∇ · (∇u) + µ∇ ·
[
(∇u)>

]
= µ∆u + µ∇ (∇ · u) = µ∆u, (14)

since ∇ ·u = 0. Now, as the term ∇ ·T reduces to −∇p+ µ∆u, integration by parts will

lead to a viscous bilinear form and a natural boundary condition that are different from

the stress-divergence case:∫
Ω

[(ρ∇u)u]·w dΩ+

∫
Ω

µ∇u : ∇w dΩ−
∫

Ω

p∇·w dΩ =

∫
ΓN

[(−pI + µ∇u) n]·w dΓ. (15)

In this Laplace formulation, the boundary term is no longer the normal traction t, but

instead a “pseudo-traction” t̃ = (−pI + µ∇u) n. In fact, for this formulation, the “do-

nothing” boundary condition (t̃ = 0) on the outlet allows the flow to leave the compu-

tational domain “freely”, in the sense that it has minimal effect on the flow and allows
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the use of truncated computational domains (excellent discussions and examples can be

found in [1, 4, 11, 12]).

2.3. New formulation

In spite of the shortcomings of the stress-divergence formulation for problems with

open boundaries, it can be readily applied to generalised Newtonian fluids, whereas the

Laplace form is not possible when µ = µ (∇su). Of course, it is possible to enforce the

appropriate outflow condition (t̃ = 0) in the stress-divergence formulation – despite not

being the natural one – by adding appropriate boundary integrals to the weak form.

However, for implementation-related reasons, the use of boundary operators is normally

avoided in most finite element frameworks.

In this context, the motivation of the present work is to reformulate the variational

problem for generalised Newtonian fluids so as to yield the same natural boundary condi-

tions as in the Newtonian Laplace formulation – whilst maintaining simple implementation

and low computational cost. The first step is to rewrite the viscous term as

∇·(2µ∇su) = 2∇su∇µ+µ∇·(2∇su) = 2∇su∇µ+µ∆u+µ∇ (∇ · u) = 2∇su∇µ+µ∆u.

(16)

Hence, the viscous contribution in the variational formulation reads

−
∫

Ω

(∇u∇µ) ·w dΩ−
∫

Ω

[
(∇u)>∇µ

]
·w dΩ−

∫
Ω

(µ∆u) ·w dΩ. (17)

As in the Newtonian case, the natural boundary condition is obtained through integration

by parts of the terms containing the velocity Laplacian and the pressure gradient:∫
Ω

w ·(∇p− µ∆u) dΩ =

∫
Ω

∇u : ∇ (µw) dΩ−
∫

Ω

p∇·w dΩ−
∫

ΓN

w · [(−pI + µ∇u) n] dΓ,

(18)

where exactly the same natural boundary condition as in the Laplace formulation for

Newtonian fluids can be identified. Moreover,∫
Ω

∇u : ∇ (µw) dΩ =

∫
Ω

∇u : (µ∇w + w ⊗∇µ) dΩ =

∫
Ω

µ∇u : ∇w + (∇u∇µ) ·w dΩ.

(19)

Since the second term in Eq. (19) and the first integral in Eq. (17) cancel out, the weak

form of the momentum equation finally reduces to∫
Ω

[(ρ∇u)u]·w dΩ+

∫
Ω

µ∇u : ∇w dΩ−
∫

Ω

[
(∇u)>∇µ

]
·w dΩ−

∫
Ω

p∇·w dΩ =

∫
ΓN

t̃·w dΓ.

(20)

Note that, if µ is a constant, the integral containing ∇µ vanishes and the Laplace form

for Newtonian fluids is recovered.
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At this point, there is one final issue to be addressed: the need to compute ∇µ.

For a generalised Newtonian fluid, the viscosity is normally a function of ∇su. This

means that the presence of ∇µ in the variational formulation would require second-order

derivatives of the velocity field, which is prohibitive in the framework of classical C0

finite elements. However, a mixed approach can be employed to circumvent this issue.

Instead of substituting the non-Newtonian law µ = µ (∇su) explicitly into the weak

form, the idea is to introduce the viscosity as an independent unknown µ̃, and recover

it weakly through a continuous L2 projection. The mixed formulation then reads: Find

(u, p, µ̃) ∈ [H1(Ω)]
d × L2 (Ω) × H1(Ω), with u|ΓD

= uD, such that for all (w, q, r) ∈
[H1(Ω)]

d × L2 (Ω)× L2(Ω), with w|ΓD
= 0,

c (u,u,w) + l (µ̃,u,w)− b(p,w) = 〈t̃,w〉ΓN
, (21)

b(q,u) = 0, (22)

(µ̃, r) = (µ (∇su) , r) , (23)

with

l (µ̃,u,w) :=

∫
Ω

µ̃∇u : ∇w dΩ−
∫

Ω

[
(∇u)>∇µ̃

]
·w dΩ, (24)

(µ̃, r) :=

∫
Ω

µ̃r dΩ. (25)

One then ends up with a nonlinear mixed formulation having velocity, pressure and viscos-

ity as unknowns. Therefore, at the expense of one additional scalar unknown, it is possible

to compute physically accurate solutions on truncated domains, as shown in Section 4.

3. Discretisation and solution

Let ψu
i , ψpi and ψµ̃i denote the shape functions used for velocity, pressure and viscosity,

respectively, at some mesh node i. In order to attain a stable formulation, Taylor-Hood

elements are used for the velocity-pressure pair: second- and first-order polynomial inter-

polation for velocity and pressure, respectively. First-order interpolation is used for the

viscosity.

A quick choice of iterative method to solve the present nonlinear problem would be

Newton-Raphson. Yet, by naively doing so, one would spoil the simple coupling between

velocity and viscosity on the projection step, thereby generating a fully-coupled system

and increasing computational cost. Conversely, Picard-like methods are an attractive

option here. In fact, an iterative method can be specifically devised so as to exploit the

particular features of the nonlinear system at hand here. First, the following splitting is
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considered for the viscous term:

l (µ,u,w) = k (µ,u,w)− s (µ,u,w) =

∫
Ω

µ∇u : ∇w dΩ−
∫

Ω

[(∇u) w] · ∇µ dΩ. (26)

The form k is the usual weak Laplacian arising in the Navier-Stokes problem, and is

normally incorporated into the velocity-velocity block of the system. The main question

is then how to handle the additional part s, as it can be incorporated into either the

velocity-velocity block or the velocity-viscosity block. The following approach is proposed:

Given a previous iterate (un, pn, µ̃n), the next iterate (un+1, pn+1, µ̃n+1) is such that

(
µ̃n+1, r

)
= (µ (∇sun) , r) , (27)

c
(
un+1,un,w

)
+ k

(
µ̃n+1,un+1,w

)
− b(pn+1,w) = s

(
µ̃n+1,un,w

)
+ 〈t̃,w〉ΓN

, (28)

b(q,un+1) = 0, (29)

whose discrete counterpart is

Mµ̃n+1 = f (un) , (30)[
C (un) + K

(
µ̃n+1

)
−B>

B 0

]{
un+1

pn+1

}
=

{
b + S (un) µ̃n+1

0

}
, (31)

where K, C and B are the usual stiffness, convection and divergence matrices from the

Navier-Stokes problem (c.f. John [2]), M is a standard mass matrix and b is a vector

coming from the boundary conditions and/or body forces; matrix S (u) has d blocks with

the following structure:

S =


S1

...

Sd

 , with Skij =

∫
Ω

∂u

∂xk
·
(
ψu
i ∇ψ

µ̃
j

)
dΩ. (32)

In this way, it is possible to recover the viscosity separately from the rest of the system,

which keeps the computational overhead from introducing an additional unknown to a

minimum. As a consequence, the additional viscous term introduced by the present

formulation can be treated simply as a right-hand side instead of contributing to the

coefficient matrix. Therefore, the system matrix left to be inverted in Eq. (31) is as in

the classical Laplace formulation for Navier-Stokes, which allows a variety of well known

efficient incompressible flow solvers and preconditioners to be readily applied here – at

this stage, however, direct solvers are used. Then, a simple Aitken relaxation step is

added after each iteration, which results in quadratic convergence for the overall iterative

solver (refer to [13] for details).
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4. Numerical examples

In this section, the method developed herein is tested for various benchmark problems.

For simplicity, only the two-dimensional problem is tackled, with quadrilateral elements

for the discretisation. The spatial coordinates x1 and x2 will be denoted by x and y,

respectively, and the corresponding velocity components are denoted by u and v. For the

nonlinear solver, in all examples the initial guess (velocity and pressure) is taken as zero,

the initial relaxation factor as 0.5, and the relative tolerance as 10−8.

4.1. Benchmark problems

Before presenting the rheological fluid models, the scalar shear rate must be defined:

γ̇ :=

√
1

2
∇su : ∇su. (33)

The generalised Newtonian models are normally given in terms of the dependence between

µ and γ̇, i.e., µ = µ (∇su) = η (γ̇). In most of the examples studied here, the chosen

material parameters are those of blood. The robustness of the method will be put to test

by tackling different models and flow regimes.

4.1.1. Channel flow with power-law fluid

The power-law model is one of the simplest ones used for blood and polymer flows:

η (γ̇) = kγ̇n−1. (34)

In a straight channel Ω = (0, L) ×
(
−H

2
, H

2

)
, it is possible to compute the analytical

solution for the hydraulically developed flow:

u(x, y) =

{(
2n+1
n+1

)
Q
H

(
1− |2y

H
|n+1

n

)
0

}
, (35)

p(x, y) =
4k

H

[(
2n+ 1

n

)
Q

H2

]n
(L− x) , (36)

where Q is the volumetric flow rate per unit width. This solution can be used for verifying

the order of approximation of the present formulation. The following boundary conditions

are considered for the numerical problem: no-slip (u = 0) at the walls (y = ±H/2), the

profile from Eq. (35) with Q = 100 mm2/s at the inlet (x = 0), and the do-nothing

condition (t̃ = 0) at the outlet (x = L). The material parameters, taken from [14], are:

ρ = 1050 kg/m3, k = 0.035 Pa.s0.6 and n = 0.6. As for the geometry, L = 3H = 3 mm.

For the convergence study, the coarsest mesh is created by dividing both L and H by

five, and four levels of uniform refinement are considered. Figure 1 shows the velocity and

pressure errors with respect to the mesh size h. Optimal convergence rates can be verified:
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cubic for velocity and quadratic for pressure, in the L2–norm. Iterative convergence has

also been assessed. The iteration residual is defined as

εn+1 :=
|Wn+1 −Wn|
|Wn+1|

, with Wn =


un

pn

µ̃n

 . (37)

The residual evolution for the coarsest mesh and the finest mesh are depicted in Figure

2, where the expected quadratic convergence can be clearly verified.

h/H
10−2 10−1 100

R
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r
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L
2
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n
or
m

10−6
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10−4
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10−2

10−1

Velocity
Pressure
O(h3)
O(h2)

Figure 1: Error plot for the power-law channel flow problem.

Figure 2: Evolution of the iteration residual for the power-law channel flow problem.

9



4.1.2. Channel flow with Bingham plastic

For this example, a Bingham plastic is considered. Such materials only start flowing

when a minimum shear level is reached, but then behave as Newtonian fluids [5]. To avoid

the need for tracking yield surfaces, Papanastasiou [15] proposed a smoothened version

which fits into the generalised Newtonian framework:

η (γ̇) = µ∞ +
τ0

(
1− e−mγ̇

)
2γ̇

, (38)

where µ∞ is the Newtonian viscosity, τ0 is the yield stress and m > 0 is a regularisation

parameter. The exact Bingham model is recovered whenm→∞, but in most applications

it is sufficient to consider m ≥ 10 s [15]. The analytical expression for the fully developed

Bingham flow profile in a straight channel is also known:

u =

{
− α

2µ∞

(
H−D

2

)2
+ αD2

8µ∞

(
1− 2

D
|y|
)2
, if D

2
< |y| ≤ H

2
,

− α
2µ∞

(
H−D

2

)2
, if 0 ≤ |y| ≤ D

2
,

(39)

where D is the width of the unyielded region, given by [15]

D = −2
τ0

α
, (40)

and α is the pressure gradient in the x direction. However, when an inflow velocity profile

is prescribed instead of a pressure drop, one must first compute α in terms of Q. From

Eqs. (39) and (40) and the definition of Q, it is possible to derive a polynomial expression

to find α in terms of the input parameters:

α3 +
3

H

(
4µ∞Q

H2
+ τ0

)
α2 − 4

( τ0

H

)3

= 0. (41)

For this example, a parabolic velocity profile is prescribed at the inlet, and the numer-

ical velocity profile at x = L is compared to the analytical one. The parameters used are

ρ = 1050 kg/m3, µ∞ = 3.45 mPa.s, τ0 = 0.2 Pa, m = 50 s and L = 10H = 10 mm. The

domain is divided uniformly into 300× 300 elements. The Reynolds number is defined as

Re :=
uH

ν∞
=
ρQ

µ∞
, (42)

and three values are considered: Re = 1, 10 and 100. The comparison between numerical

and analytical results, depicted in Figure 3, reveals excellent agreement for all three cases

considered. Note that the non-Newtonian behaviour is stronger for low Reynolds numbers,

while hardly noticeable for Re = 100.
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Figure 3: Comparison between numerical and analytical solutions for the Bingham channel flow profile.

4.1.3. Backward-facing step with Carreau fluid

Aiming to test the method for more complex flows, the classical backward-facing step

benchmark is considered next, with the geometry shown in Figure 4. This problem is

particularly interesting for moderately high Reynolds numbers, since a large recirculation

area appears (e.g., for Re = 100). The Carreau model is chosen for this example:

η (γ̇) = µ∞ + (µ0 − µ∞)
[
1 + (λγ̇)2]n−1

2 . (43)

The material parameters for blood are taken again from [14]: ρ = 1050 kg/m3, µ∞ = 3.45

mPa.s, µ0 = 56 mPa.s, n = 0.3568, λ = 3.313 s. A parabolic velocity profile is used at

the inlet, and the do-nothing boundary condition is considered at the outlet. No-slip is

considered on the remainder of the boundary. The inlet height is set as H = 1 mm, and

the Reynolds number for this problem is defined as

Re :=
uinletH

ν∞
=
ρQ

µ∞
. (44)

Figure 4: L-shaped domain used for the backward-facing step benchmark.
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Reference solutions for comparison have been generated with OpenFOAM, which has

the Carreau model already built in and uses the Finite Volume Method (FVM). The outlet

boundary conditions applied for the finite volume solution are p = 0 and ∂u
∂n

= 0. Three

Reynolds numbers are considered: Re = 1, 10 and 100. For the finite element solution, the

domain is uniformly divided into square elements of length H/50. A uniform quadrilateral

mesh of sizesH/100×H/75 is used for the FVM solution. The velocity profile is sampled at

six downstream positions, and the comparison is depicted in Figure 5. It can be observed

that the solutions are in very good agreement, and that the present method accurately

captures both the complex flow structure (recirculation) and the non-Newtonian effect

(profile flattening), all the way up to the boundary.
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Figure 5: Velocity profiles for the backward-facing step problem with Carreau material, for different
Reynolds numbers. Solid lines: FEM (new formulation); dotted lines: FVM (OpenFOAM).
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4.2. Effect of domain truncation

In this section, the new method is compared to the classical finite element stress-

divergence formulation with respect to the effects of domain truncation on the solution.

The problem setup and mesh are the same as in Section 4.1.3, using for each formulation

its respective do-nothing outlet boundary condition (t̃ = 0 or t = 0). The comparison is

done with respect to the normalised viscosity, namely,

µ :=
η (γ̇)− µ∞
µ0 − µ∞

. (45)

In the classical formulation, the (post-processed) viscosity field is discontinuous. There-

fore, to allow a fair comparison, that viscosity is post-processed using the same continuous

L2–projection as for the new formulation. Figure 6 depicts the normalised viscosity field

computed from both formulations, and considering domains truncated on different po-

sitions. Here, the importance of using the right outflow boundary condition is evident.

Using the new formulation with t̃ = 0 yields physically consistent solutions all the way

up to the boundary, even when the domain is truncated before the flow is fully developed.

On the other hand, the solution produced by the classical approach is highly dependent

on the position of the cut, and yields clear unphysical behaviour around the outlet region.

If the cut is not placed far enough from the region of interest, great inaccuracy is observed

over a large area, as in Figure 6 (bottom).

Finally, it is worth noting that in problems with multiple outlets, different mean

pressure values pi can be enforced individually at each outlet ΓNi by setting t̃|ΓNi
=

−pin [5]. Especially in biomedical applications, various models are available to estimate

such mean outflow pressures based on problem-specific features (e.g., Fogliardi et al.

[16], Coccarelli et al. [17]).

5. Concluding remarks

This work has presented a new finite element formulation for generalised Newtonian

fluid flows, aiming to yield appropriate natural boundary conditions for problems set in

truncated computational domains. By manipulating the viscous stress tensor appropri-

ately, a formulation can be devised which consists of the Laplace form for the Navier-

Stokes equation, plus a contribution from the spatial variation of the viscosity. This

novel formulation possesses the same natural boundary conditions as the standard one

for Newtonian fluids, which is known to provide physically accurate solutions in trun-

cated domains. For generalised Newtonian fluids, whose viscosity depends on the velocity

gradient, a continuous L2 projection of the viscosity field is employed to avoid higher

regularity requirements on the finite element spaces. Comparison with benchmark flow

solutions using various non-Newtonian fluid models showcases the accuracy and robust-

ness of the method. Furthermore, comparing the novel formulation and the classical

13



(a) New formulation.

(b) Classical formulation

Figure 6: Viscosity distribution resulting from zero natural outflow condition in truncated domains.
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one for non-Newtonial fluids reveals the importance of using appropriate outflow bound-

ary conditions in problems with open outflow boundaries. Although only models with

velocity-dependent viscosity have been analysed here, the present formulation requires no

modifications for cases where there is also a dependence on the pressure.
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[13] U. Küttler and W.A. Wall. Fixed-point fluid-structure interaction solvers with dy-

namic relaxation. Computational Mechanics, 43(1):61–72, 2008.

[14] Y.I. Cho and K.R. Kensey. Effects of the non-Newtonian viscosity of blood on flows

in a diseased arterial vessel. Part 1: Steady flows. Biorheology, 28(3-4):241–62, 1991.

[15] T.C. Papanastasiou. Flows of materials with yield. Journal of Rheology, 31(5):

385–404, 1987.

[16] R. Fogliardi, M. Di Donfrancesco, and R. Burattini. Comparison of linear and non-

linear formulations of the three-element windkessel model. American Journal of

Physiology-Heart and Circulatory Physiology, 271(6):H2661–H2668, dec 1996.

[17] A. Coccarelli, A. Prakash, and P. Nithiarasu. A novel porous media-based approach

to outflow boundary resistances of 1D arterial blood flow models. Biomechanics and

Modeling in Mechanobiology, 18(4):939–951, aug 2019.

16


