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14.00–14.30 J. M. Melenk (Wien)

On Adaptivity in hp–FEM
14.30–15.00 M. Thalhammer (Innsbruck)

Exponential Splitting for Parabolic Problems
15.00–15.30 S. Beuchler (Linz)

Sparse Shape Functions for Triangular FEM
15.30–16.00 S. Engleder (Graz)

Modified Boundary Integral Formulations for the
Helmholtz Equation

16.00–16.30 Kaffee
16.30–17.00 B. Vexler (Linz)

Adaptive Space–Times Finite Element Methods for
Parabolic Optimization Problems

17.00–17.30 K. Krumbiegel (Linz)
Linear–Quadratic Optimal Control Problems:
Error Estimates and Numerical Treatment

17.30–18.00 A. Rösch (Linz)
Numerical Analysis for Optimal Control Problems
in Nonconvex Domains

18.00–18.30 B. Carpentieri (Graz)
Adaptively Preconditioned Krylov Methods for Solving
General Linear Systems

19.00 Gemeinsames Abendessen
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8.30–9.00 H. G. Feichtinger (Wien)

Numerical Problems in Gabor Analysis
9.00–9.30 G. Of (Graz)

Fast Boundary Element Methods and Applications
9.30–10.00 C. Pechstein (Linz)

Finite and Boundary Element Tearing and Interconnecting Solvers
for Nonlinear Potential Problems in Bounded and Unbounded
Domains

10.00–10.30 Kaffee
10.30–11.00 J. Kraus (Linz)

Multilevel Preconditioning of 2D Rannacher–Turek
Finite Element Problems

11.00–11.30 C. Pöschl (Innsbruck)
Duality and Higher Order TV–Regularization

11.30–12.30 Mittag
12.30–13.00 D. Praetorius (Wien)

Numerical Analysis for the Landau-Lifshitz Minimization Problem
in Micromagnetics

13.00–13.30 S. Zaglmayr (Linz)
High Order Nédélec Elements for Electromagnetic
Field Computation

13.30–14.00 A. Sinwel (Linz)
Tangential–Displacement and Normal–Normal–Stress
Continuous Mixed Finite Elements for Elasticity

14.00–14.30 A. Ostermann (Innsbruck)
Exponential Rosenbrock–Type Methods
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Sparse shape functions for triangular FEM

S. Beuchler

Universität Linz

In this talk, the second order boundary value problem −∇ · (A(x, y)∇u) = f is
discretized by the Finite Element Method using piecewise polynomial functions of
degree p on a triangular mesh. On the reference element, we define integrated
Jacobi polynomials as interior ansatz functions. If A is a constant function on each
triangle and each triangle has straight edges, we prove that the element stiffness
matrix has not more than 25

2
p2 nonzero matrix entries.

Two applications of this result are given.
Numerical examples show the advantages of the proposed basis. This talk is joint
work with Joachim Schöberl (Aachen).
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Adaptively preconditioned Krylov methods

for solving general linear systems

B. Carpentieri

Karl–Franzens Universität Graz

The solution of linear systems of equations is a crucial component of the simulation
in many engineering and scientific applications. Direct solution methods based on
variants of Gaussian elimination are often the method of choice because they are
fairly robust and predictable in terms of accuracy and cost. When direct meth-
ods become too demanding for the memory of the coefficient matrix of the linear
system is only accessible via matrix–vector products, iterative solution strategies
can be a reliable alternative. Iterative methods can be also combined with direct
method to design robust hybrid solvers. It is now well understood that iterative
methods, although they can solve the bottleneck of memory, have to be used in
combination with efficient preconditioners to be cost effective on realistic applica-
tions. In this talk, we present a class of adaptive preconditioners for both symmetric
and unsymmetric Krylov methods. The proposed class of algorithms can be used
as stand–alone preconditioners for solving the linear system, or as a refinement
technique constructed on top of an existing first–level preconditioner to enhance
its robustness on tough problems. Experiments are reported on sparse linear sys-
tems extracted from the harwell–Boeing matrix collections and dense linear systems
arising from realistic electromagnetic applications to assess the effectiveness and to
analyse the cost of the proposed method.
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Modified Boundary Integral Formulations for the Helmholtz Equation

S. Engleder, O. Steinbach

Technische Universität Graz

Although the exterior boundary value problems for the Helmholtz equation with ei-
ther Dirichlet or Neumann boundary conditions are unique solvable, related bound-
ary integral equations may not be solvable, or the solutions are not unique. In
particular, the boundary integral operators are not injective when the wave number
k2 is an eigenvalue of the interior Dirichlet or Neumann eigenvalue problem, respec-
tively. Considering linear combinations of different boundary integral formulations
this results in combined boundary integral equations, which are unique solvable for
all wave numbers. The most known formulations are those of Brakhage–Werner and
Burton–Miller. However, since the combined boundary integral equation involves
boundary integral operators of both first and second kind, the analytical framework
offers different settings. The classical combined boundary integral equations are
considered in L2(Γ), where the uniqueness results are based on G̊ardings inequality
and Fredholm’s alternative. To ensure the compactness of certain boundary inte-
gral operators, sufficient smoothness of the surface Γ is required. Recently, different
regularized formulations are discussed, which ensure the unique solvability even for
Lipschitz surfaces Γ.
Here we will describe a modified regularized boundary integral formulation for the
Helmholtz equation with either Dirichlet or Neumann boundary conditions. More-
over, we analyse the associated boundary element approximation and we give first
numerical results.

References

[1] S. Engleder, O. Steinbach: Modified boundary integral formulations for the
Helmholtz equation. Bericht 2006/1, Berichte aus dem Institut für Numerische
Mathematik, TU Graz, 2006.
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Numerical Problems in Gabor Analysis

H. G. Feichtinger

Universität Wien

Gabor analysis is an important branch within time-frequency analysis, based on the
use of the so-called short time Fourier transform (STFT) or sliding window Fourier
transform of a function (“signal”) f. One may think of some audio signal which is
locally decomposed into harmonics, very much like a musical score. It was the idea
of D.Gabor (who received the Nobel Prize for this pioneering work on the founda-
tions of holography) to decompose an arbitrary signal into a double series where
the building blocks are time-frequency shifted versions of a Gaussian. The reason
to take a Gaussian is due to the fact that it is the minimizer in the Heisenberg un-
certainty relation. Interpreting this accoustically, one can generate arbitrary noises
and melodies by playing sufficiently fast (and with arbitrarily many fingers) on a pi-
ano which is tuned sufficiently fine. It turned out that the original approach is only
realizable by redundant systems. However, one can enforce uniqueness by choosing
coefficients of minimial `2-norm. Moreover, one can show that the canonical Gabor
coefficients of a function can be computed efficiently as sample values of an STFT
by using the so called dual Gabor window.
Gabor multipliers are operators which can be realized by pointwise multiplication
of the Gabor coefficients (before synthesis). For instance this may be used to de-
noise an accoustic signal or to separate certain (time-frequency) parts of a signal.
Since “good” Gabor systems are never orthonormal bases, Gabor multipliers behave
completely different (e.g. with respect to composition or inversion) than Fourier
multipliers. The talk will shortly summarize basics on Gabor analysis including
several numerical and algorithmic aspects such as best approximation of matrices
with Gabor multipliers, methods to compute dual Gabor frames etc. . If time per-
mits we will point out the relevance of such algorithms for current projects at the
Numerical Harmonic Analysis Group (NuHAG) under supervision of the speaker,
in particular EUCETIFA (Marie Curie Excellence Grant 2005-2009) and MOHAWI
(2005-2008). Details can be found on the NuHAG homepage
http://www.univie.ac.at/nuhag-php/home/index.php
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Multilevel preconditioning of 2D Rannacher–Turek

finite element problems

I. Georgiev1, J. Kraus2, S. Margenov1

1Bulgarian Academy of Sciences, Sofia
2Johann Radon Institut (RICAM), Linz

Preconditioners based on various multilevel extensions of two–level finite element
methods (FEM) lead to iterative methods which often have an optimal order com-
putational complexity with respect to the number of degrees of freedom of the
system. Such methods were first presented in [1, 2], and are based on (recursive)
two–level splittings of the finite element space. The key role in the derivation of
optimal convergence rate estimates plays the constant γ in the so–called Cauchy–
Bunyakowski–Schwarz (CBS) inequality, associated with the angle between the two
subspaces of the splitting. More precisely, the value of the upper bound for γ ∈ (0, 1)
is a part of the construction of various multilevel extensions of the related two–level
methods.
In the present talk we concentrate on algebraic two–level and multilevel precondi-
tioners for second–order elliptic boundary–value problems discretized using
Rannacher–Turek non–conforming rotated bilinear finite elements on quadrilaterals.
An important point to make is that in this case the finite element spaces correspond-
ing to two successive levels of mesh refinement are not nested (in general). To handle
this, a proper two–level basis is required in order to fit the general framework for
the construction of two–level preconditioners for conforming finite elements and to
generalize the methods to the multilevel case. The proposed variants of hierarchical
two–level basis are first introduced in a rather general setting. Then, the involved
parameters are studied and optimized. As will be shown, the obtained bounds give
rise to optimal order algebraic multilevel iteration (AMLI) methods.

References

[1] O. Axelsson and P.S. Vassilevski, Algebraic multilevel preconditioning methods
I, Numer. Math., 56 (1989), 157-177.

[2] O. Axelsson and P.S. Vassilevski, Algebraic multilevel preconditioning methods
II, SIAM J. Numer. Anal., 27 (1990), 1569-1590.
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Linear–quadratic optimal control problems

error estimates and numerical treatment

K. Krumbiegel, A. Rösch

Johann Radon Institut (RICAM), Linz

We consider a linear-quadratic optimal control problem governed by an elliptic par-
tial differential equation with pointwise control constraints. Such problems are often
treated by multilevel iterative methods. We present an error estimation technique
for the iterates with respect to the solution. These error estimates can be used
as stopping criteria for the iterative methods. The presented theory is illustrated
by numerical examples. Here, we used the primal-dual active set strategy and a
CG-algorithm as iterative methods.
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On adaptivity in hp–FEM

T. Eibner1, J. M. Melenk2

1TU Chemnitz, 2TU Wien

In the hp-version of the finite element method convergence can be achieved by
refining the mesh refinement or increasing the approximation order or a combination
of both. In fact, suitable combinations of both techniques can lead, for a large
problem classes, to very fast convergence.
Many adaptive algorithms are based on two ingredients: an error estimator and
a marking strategy. The error estimator discussed in the talk is of residual type.
This estimator is shown to be reliable for elliptic problems in 2 and 3 dimensions;
for 2D problems, the efficiency estimate is slightly suboptimal (optimal in the mesh
parameters but suboptimal by essentially one factor p, where p is maximal approx-
imation order). Numerical experiments for the pure p-version FEM show that this
reliability-efficiency gap is not an artifact of the proof. The numerical experiments
with the p-version FEM applied to problems with an isolated singularity also show
that the appearance of the reliablity-efficiency gap of the estimator depends signif-
icantly on whether the singularity is located at a mesh point or not.
In the hp-version of the finite element method (hp-FEM), convergence can be
achieved either through mesh refinement or by increasing the approximation or-
der. We presented an hp-adaptive algorithm where the decision whether to perform
h-refinement or p-enrichment is based on locally testing for analyticity. Analytic-
ity is detected by estimating the decay rate of the coefficients of the elementwise
expansion of the hp-FEM solution in orthogonal polynomials: elements where the
coefficients decay rapidly are candidates for p-enrichment whereas those with slow
increase are candidates for h-refinement.
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Fast Boundary Element Methods and Applications

G. Of, O. Steinbach

Technische Universität Graz

Fast boundary element methods are applied for engineering and industrial real life
problems with homogeneous partial differential equations in complicated structures.
Examples are the computation of capacity curves of micromechanical sensors, the
simulation of spray painting processes and the elastic deformation of mechanical
transformation tools and of a foam. For the discretization of the symmetric bound-
ary integral formulation a Galerkin boundary element method is used, where all
boundary integral operators can be reduced to the single and douple layer potential
of the Laplace equation. From this we obtain a fast boundary element method by
using the fast multipole method. A main feature of this method is a fast realization
of the Dirichlet to Neumann map by the so-called Steklov-Poincare operator. Fi-
nally we discuss the preconditioned iterative solution process of the resulting linear
systems.
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Exponential Rosenbrock-type methods

A. Ostermann

Universität Innsbruck

Exponential integrators have been developed for the numerical solution of semilinear
evolution equations ∂tu = Au+g(u). In contrast to implicit Runge–Kutta methods,
they make explicit use of the decomposition of the vector field into a linear part
Au and a (possibly) nonlinear remainder g(u). This decomposition is usually kept
constant along the integration.
In my talk, which is based on joint work with Marlis Hochbruck and Julia Schweitzer
(Düsseldorf), I will present a new class of exponential integrators that update the
above decomposition in each step by linearising the vector field along the numer-
ical solution (whence the name Rosenbrock-type methods). This strategy has two
advantages. On the one hand, it simplifies the actual construction of high-order
methods, on the other hand it leads to methods with much smaller error constants.
I will discuss in detail the implementation of an exponential integrator of order four
with variable step size selection based on a local error control. This new method is
explicit, and its performance compares very well with that of implicit Runge–Kutta
methods (for instance RADAU5).

References

[1] M. Hochbruck, A. Ostermann: Explicit exponential Runge–Kutta methods for

semilinear parabolic problems. SIAM J. Numer. Anal. 43, 1069-1090 (2005)

[2] M. Hochbruck, A. Ostermann, J. Schweitzer: Exponential Rosenbrock-type meth-

ods. In preparation (2006)
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Finite and boundary element tearing and interconnecting solvers

for nonlinear potential problems in bounded and unbounded domains

U. Langer, C. Pechstein

Johannes Kepler Universität Linz

In nonlinear magnetic field computations, one is not only confronted with large
jumps of coefficients over material interfaces but often also with high variation of
coefficients inside homogeneous material. As a model problem, we consider the
potential equation −∇ · [ν(|∇u|)∇u] = f with a nonlinear coefficient ν.
Domain decomposition (DD) methods like the rather popular finite element tearing
and interconnecting (FETI) methods, dual-primal FETI (FETI-DP) methods and
balanced domain decomposition by constraints (BDDC) techniques offer precondi-
tioners which are robust with respect to jumps in the coefficients across subdomain
interfaces. Furthermore, the boundary element method (BEM) allows a rather com-
fortable treatment of unbounded domains and air gaps, whereas source terms and
nonlinearities can be modelled with finite elements. In order to benefit from the
advantages of both methods, BEM and FEM are coupled within a DD framework,
the coupled finite and boundary element tearing and interconnecting (FETI/BETI)
methods. Applying Newton’s method, the spectrum of the Jacobi matrices in the
nonlinear subdomains may show high variation. A special FETI preconditioner is
proposed to overcome these problems.
Finally, we discuss our first numerical results obtained from the solution of a two-
dimensional magnetostatic problem.

References

[1] U. Langer, C. Pechstein: Coupled Finite and Boundary Element Tearing and
Interconnecting Methods Applied to Nonlinear Potential Problems. SFB Report
2006–01. Johannes Kepler University Linz.
http://www.sfb013.uni-linz.ac.at

[2] U. Langer, C. Pechstein: Coupled Finite and Boundary Element Tearing and
Interconnecting Solvers for Nonlinear Potential Problems. Submitted to ZAMM.

[3] U. Langer, O. Steinbach: Boundary Element Tearing and Interconnecting Meth-
ods. Computing 71 (2003) 205–228.

[4] U. Langer, O. Steinbach: Coupled Boundary and Finite Element Tearing and
Interconnecting Methods. In: Proceedings of the 15th International Conference
on Domain Decomposition (R. Kornhuber, R. Hoppe, J. Periaux, O. Pironneau,
O. Widlund, J. Xu eds.), Lecture Notes in Computational Sciences and Engi-
neering, vol. 40, Springer, Heidelberg, pp. 83–97, 2004.
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Duality and higher order TV–regularization

C. Pöschl

Universität Innsbruck

This talk is concerned with variational scale space methods for analysis of data uδ.
In particular we investigate the families of regularization methods

F(u) := S(u) + α‖Dku‖ (k = 1, 2, . . .), (α > 0),

where

(1) ‖Dku‖ denotes the total variation of the (k − 1)–th derivative of u and

(2) S(u) is a similarity measure. Typical examples are S(u) = 1

p

∫
Ω
|u − uδ|p

Y. Meyer charakterized minimizers of the ROF–functional, where
S(u) = 1

2

∫
Ω
(u− uδ)2 and k = 1, in terms of the G–norm. This research has signifi-

cant impact on the research in image analysis.

Moreover, exploiting the Fenchel duality concept we exemplarily derive solutions
for minimizers of the ROF–functional for denoising one–dimensional data (repeat-
ing the results of Strong & Chan and Y. Meyer), the L1 − BV (Ω) regularization
(repeating the results of Chan & Esedoglu), and also for novel metrical regulariza-
tion techniques as well as regularization techniques with higher order penalization.
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Numerical Analysis for the Landau–Lifshitz Minimization Problem

in Micromagnetics

D. Praetorius

TU Wien

The Landau-Lifshitz minimization problem in micromagnetics is to find a minimizer
m : Ω → IRd E(m) =

∫
Ω

φ(m) dx−
∫
Ω
f ·m dx+ 1

2

∫
IRd |∇u|2 dx+α

∫
Ω
|∇m|2 dx under

the side constraint |m| = 1. Here, Ω ⊂ IRd is the spatial domain of the magnet,
φ is the anisotropy density of the material, f is an applied exterior field, and u is
the magnetic potential which solves the magnetostatic (Maxwell) equation in the
entire space IRd. For large-soft bodies, the exchange parameter α ≥ 0 vanishes.
Then, there are no classical solutions of the minimization problem, and one has to
consider appropriate relaxations. One possible relaxation introduced by DeSimone

is to consider a convexified problem.

In our talk, we provide a discretization of the convexified problem, where the side
constraint is replaced by a penalization strategy. Numerical aspects addressed in
the presentation include a priori and a posteriori error control with a reliability-
efficiency gap and adaptive mesh-design.
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Numerical analysis for optimal control problems in nonconvex domains

A. Rösch

Johann Radon Institut (RICAM), Linz

Optimal control problems have to be discretized for numerical computations. Conse-
quently, many papers on error estimates and approximation properties of discretized
optimal control problems are published in the last years. Discretization approaches
with higher approximation order benefit strongly from the regularity of the optimal
solution. Therefore, such approaches have to be adapt to nonconvex domains. We
generalize here results of the superconvergence approach by Meyer and Rösch [1].
The corner singularities are treated by a-priori mesh grading such that we are able
to prove results of the same quality as in the case of regular solutions. Numerical
experiments are presented at the end of the talk. This is a joint work with Thomas
Apel and Gunter Winkler from Munich.

References

[1] C. Meyer and A. Rösch. Superconvergence properties of optimal control prob-
lems. SIAM Journal Control and Optimization, 43(3): 970–985, 2004.

[2] T. Apel, A. Rösch and G. Winkler. Optimal control in non-convex domains:
a priori discretization error estimates. Submitted, RICAM-Report 2005-17,
Johann-Radon-Institut Linz, 2005.

[3] T. Apel, A. Rösch and G. Winkler. Discretization error estimates for an optimal
control problem in a nonconvex domain. Accepted for the proceedings of the
ENUMATH 2005.
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Tangential–Displacement and Normal–Normal–Stress Continuous

Mixed Finite Elements for Elasticity

J. Schöberl, A. Sinwel

Johann Radon Institut (RICAM), Linz

We introduce finite elements to approximate the Hellinger–Reissner formulation of
elasticity. For the displacements, we use vector–valued, tangential continuous Ned-
elec elements, whereas we use symmetric, tensor–valued, normal–normal continuous
elements for the stresses. These elements are suitable for nearly incompressible ma-
terials, where the Poisson ratio tends to 1/2. Also they do not suffer from shear
locking when anisotropic elements are used.
We present the analysis of these elements. We see that the discrete system sat-
isfies a stability condition without need for further stabilization. We discuss the
implementation of the new elements, and give numerical results.
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Exponential splitting for parabolic problems

M. Thalhammer

Universität Innsbruck

Recent advances in numerical linear algebra enable the efficient calculation of the
matrix exponential and related functions, also for matrices of large dimension. As
a consequence, exponential integration methods are presently attracting a lot of
research interest. In particular, they show a favourable behaviour in the time inte-
gration of hyperbolic and parabolic initial-boundary value problems and therefore
provide an alternative to established schemes.
In this talk, I will consider an exponential splitting method for parabolic problems
and study its error behaviour. For the theoretical investigation of the time integra-
tion method, it is useful to employ the abstract framework of analytic semigroups,
which will be reviewed in brief.
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Adaptive space–time finite element methods

for parabolic optimization problems

B. Vexler

Johann Radon Institut (RICAM), Linz

In this talk we discuss a posteriori error estimates for space–time finite element dis-
cretization of parabolic optimization problems. The provided error estimates assess
the discretization error with respect to a given quantity of interest and separate
the influence of different parts of the discretization (time, space, and control dis-
cretization). This allows to set up an efficient adaptive algorithm which successively
improves the accuracy of the computed solution by construction of locally refined
meshes for time and space discretizations.
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High Order Nédélec Elements for Electromagnetic Field Computation

S. Zaglmayr, J. Schöberl

Johann Radon Institut (RICAM), Linz

Electromagnetic problems are formulated in the function space H(curl), which nat-
urally contains the continuity of tangential components across sub–domains. This
calls for the construction of finite elements with tangential continuity. The goal of
the presented work is the efficient computation of Maxwell boundary value problems
using high-order H(curl)-conforming finite elements.
In the first part, we introduce a systematic strategy for the realization of arbi-
trary order hierarchical (edge-,face-, and cell-based) shape functions for common
element geometries. Our new approach bases on using gradients of higher-order
H1-conforming shape functions explicietely in the construction of the Nédélec shape
functions. In fact this implies a local exact sequence property for each edge, face,
cell, which allows arbitrary and variable polynomial degree on each edge, face, and
cell.
In the second part, we focus on efficient Additive Schwarz preconditioning for
A(u, v) = ν(curlu, curlv) + ε(u, v), which occur in time–stepping methods for
Maxwell’s equations and in the regularized formulation of the magnetostatic bound-
ary value problem. We show that the local complete sequence property provides
robustness with respect to the parameters ν,ε even for cheap ASM-block precondi-
tioning. We illustrate the dependency of the condition number on the polynomial
degree in 3d for several block variants of ASM by numerical experiments.

23



Participants

1. Behrooz Alizadeh
Institut für Optimierung und Diskrete Mathematik, TU Graz,
Steyrergasse 30, A 8010 Graz
alizadeh@opt.math.tu-graz.ac.at

2. Prof. Dr. Anton Arnold
Institut für Analysis und Scientific Computing,
Wiedner Hauptstrasse 8, A 1040 Wien
anton.arnold@tuwien.ac.at

3. Prof. Dr. Winfried Auzinger
Institut für Analysis und Scientific Computing,
Wiedner Hauptstrasse 8, A 1040 Wien
w.auzinger@tuwien.ac.at

4. Dr. Sven Beuchler
Institut für Numerische Mathematik, Universität Linz,
Altenberger Strasse 69, A 4040 Linz
sven.beuchler@jku.at

5. Dr. Bruno Carpentieri
Institut für Mathematik und Wissenschaftliches Rechnen, Universität Graz,
Heinrichstrasse 36, A 8010 Graz
bruno.carpentieri@uni-graz.at

6. Sarah Engleder
Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, A 8010 Graz
sarah@sbox.tugraz.at

7. Prof. Dr. Hans G. Feichtinger
Fakultät für Mathematik, Universität Wien,
Nordbergstrasse 15, A 1090 Wien
hans.feichtinger@univie.ac.at

8. Prof. Dr. Gundolf Haase
Institut für Mathematik und Wissenschaftliches Rechnen, Universität Graz,
Heinrichstrasse 36, A 8010 Graz
gundolf.haase@uni-graz.at

9. Dr. Johannes Kraus
Johann Radon Institut (RICAM)
Altenberger Strasse 69, A 4040 Linz
johannes.kraus@oeaw.ac.at

10. Dipl.–Ing. Klaus Krumbiegel
Johann Radon Institut (RICAM)
Altenberger Strasse 69, A 4040 Linz
klaus.krumbiegel@oeaw.ac.at

24



11. Prof. Dr. Karl Kunisch
Institut für Mathematik und Wissenschaftliches Rechnen, Universität Graz,
Heinrichstrasse 36, A 8010 Graz
karl.kunisch@uni-graz.at

12. Prof. Dr. Markus Melenk
Institut für Analysis und Scientific Computing, TU Wien,
Wiedner Hauptstrasse 8–10, A 1040 Wien
melenk@tuwien.ac.at

13. Dr. Günther Of
Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, A 8010 Graz
of@tugraz.at

14. Prof. Dr. Alexander Ostermann
Institut für Mathematik, Universität Innsbruck,
Technikerstrasse 13, A 6020 Innsbruck
alexander.ostermann@uibk.ac.at

15. Dipl.–Ing. Clemens Pechstein
Institut für Numerische Mathematik, Johannes Kepler Universität Linz,
Altenberger Strasse 69, A 4040 Linz
clemens.pechstein@numa.uni-linz.ac.at

16. Dipl.–Ing. Christiane Pöschl
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