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Abstract

In this paper we present an efficient - both in CPU time and memory - numerical
scheme for the computation of electric capacities within micromechanical transducers.
Our scheme is based on solving a first kind boundary integral equation by a Galerkin
Boundary Element Method (BEM). The arising linear system of equations is solved
by an conjugate gradient (CG) method with an artifical Multilevel Boundary Element
Preconditioner. For the matrix-vector operations within the CG-iterations we apply
an appropriate Fast Multipole Method (FMM). The numerical studies demonstrate
the efficiency and robustness of our computational scheme.

1 Introduction

A wide range of state-of-the-art Micro-Electro-Mechanical-Systems (MEMS) are based on
the electrostatic principle, e.g. capacitive acceleration sensors, micropumps, gyro-sensors,
etc. For the design of such sensors and actuators the computation of the electric capacities
is of great importance. Due to the complex structure we need a numerical scheme such as
the Finite Element Method (FEM) or Boundary Element Method (BEM). In most cases
we are interested in the capacities as a function of all possible positions of the two electrode
structures within the transducer. Therewith, a BEM, where we just have to discretize the
electrode structures and not the air-regions in-between as in the case of a pure FEM, is
favorable from the user’s point of view. Since a BEM results in an algebraic system of
equations with a fully populated system matrix, a fast BEM as first introduced in [6, 16]
is needed. In addition, the iterative solution needs a preconditioning in order to guarantee
convergence and to accelerate the solution process [3]. The paper is organized as follows:
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In Sec. 2 we shortly discuss the physical equations and how we derive a first kind boundary
element equation, which we have to solve numerically. The following section describes the
application of the Galerkin Boundary Element Method, the preconditioner for the CG-
solver, and the fast multipole algorithm for the evaluation of the matrix-vector operations.
Finally, in Sec. 4 we present a detailed discussion on the performance of the computational
scheme concerning the accuracy, the number of CG-iterations, CPU time and memory.

2 Physical Equations and Boundary Integral Equa-

tions

We consider a micromechanical transducer consisting of two bounded subdomains Ωi ⊂
� 3

with boundaries Γi = ∂Ωi and with given constant potentials φi, i = 1, 2. Our interest is
an efficient computation of the capacities Ci

Ci =
Qi

φ1 − φ2
, i = 1, 2 (1)

where

Qi = ε

∫

Γi

∂

∂ni
φ(x)dsx (2)

are the corresponding charges of the transducers and ε is the dielectric permittivity of the
media between (usual air). Therefore we have to solve the exterior boundary value problem

−div [ε∇φ(x)] = 0 for x ∈ Ωc :=
� 3\(Ω1 ∪ Ω2) (3)

with given Dirichlet boundary conditions

φ(x) = φi for x ∈ Γi, i = 1, 2 (4)

and with the far field boundary condition

φ(x) = φ0 + O(
1

|x|
) as |x| → ∞. (5)

In fact, to compute the local charges Qi via (2) we need to have the normal derivatives
ti = ∂

∂ni
φ on Γi, i = 1, 2. The solution of the exterior Dirichlet boundary value problem

(3)–(5) is given by the representation formula

φ(x) = φ0 −

∫

Γ

U∗(x, y)t(y)dsy +

∫

Γ

∂

∂ny
U∗(x, y)φ(y)dsy

for x ∈ Ωc where Γ = Γ1 ∪ Γ2 and

U∗(x, y) =
1

4π

1

|x− y|
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is the fundamental solution of the Laplace operator. Since φ(x) ≡ 1 is a solution of the
interior Laplace equation, we conclude

∫

Γi

∂

∂ny
U∗(x, y)dsy = 0 for x ∈

� 3\Ωi.

Taking the trace of the representation formula on the boundary Γ, we obtain a boundary
integral equation

∫

Γ

U∗(x, y)t(y)dsy = φ0 −
1

2
φ(x) +

∫

Γ

∂

∂ny
U∗(x, y)φ(y)dsy

for x ∈ Γ almost everywhere. Using again φ(x) ≡ 1, we conclude

∫

Γi

∂

∂ny

U∗(x, y)dsy = −
1

2
for x ∈ Γi

almost everywhere and therefore we end up with the boundary integral equation

∫

Γ

U∗(x, y)t(y)dsy = φ0 − φi for x ∈ Γi, i = 1, 2. (6)

This is a first kind boundary integral equation with the single layer potential

(V t)(x) =
1

4π

∫

Γ

1

|x− y|
t(y)dsy for x ∈ ∂Γ.

The unique solvability of the boundary integral equation (6) follows from the ellipticity of
the single layer potential V , see for example [19] for details.

3 Galerkin Boundary Element Methods

Let Sν
h(Γ) = span{ψν

k}
N
k=1 be a finite dimensional trial space of piecewise polynomial basis

functions ψν
k of polynomial degree ν which are defined with respect to an admissible and

globally quasi–uniform triangulation Γh = ∪n
i=1τ k of the boundary Γ = Γ1∪Γ2 into n plane

triangular boundary elements τk of mesh size h. Here we will use piecewise constant basis
functions ψ0

k with N = n and piecewise linear but globally discontinuous basis functions
ψ1

k with N = 3n. The Galerkin variational formulation of the boundary integral equation
(6) is to find an approximate solution th ∈ Sν

h(Γ) such that

∫

Γ

ψν
` (x)

∫

Γ

U∗(x, y)th(y)dsydsx =

∫

Γ

ψν
` (x)[φ0 − φ(x)]dsx
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is satisfied for all ` = 1, . . . , N . This is equivalent to a linear system of equations, V ν
h t

ν =
f ν, where the stiffness matrix V ν

h is given by the matrix elements

V ν
h [`, k] =

1

4π

∫

Γ

ψν
` (x)

∫

Γ

1

|x− y|
ψν

k(y)dsydsx

for k, ` = 1, . . . , N while the vector of the right hand side is given by the components

f ν
` =

2∑

i=1

∫

Γi

ψν
` (x)[φ0 − φi]dsx, ` = 1, . . . , N.

After solving the linear system V ν
h t

ν = f ν the corresponding approximate solution th ∈
Sν

h(Γ) induces an approximate value for the capacity,

Ci,h,ν =
ε

φ1 − φ2

∫

Γi

th(x)dsx, i = 1, 2.

Using the Aubin–Nitsche trick and assuming sufficient regularity for the exact normal
derivative t one can derive an optimal error estimate, see for example [19],

|Ci − Ci,h,ν| ≤ c(ε, t) h2(ν+1)+1. (7)

This error estimate shows a higher order of convergence when using piecewise linear, glob-
ally discontinuous basis functions instead of piecewise constant basis functions.

We will apply the described Galerkin boundary element method to compute the capac-
ities of micromachined transducers. As a simple model geometry we consider transducers
with two fingers per structure as given in Fig. 1.

PSfrag replacements

221µm

3µm

4.5µm

50µm

Figure 1: Geometry of a two–finger transducer.
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Figure 2: Centered location of the fingers.

First we assume that both transducers are centered to each other as depicted in Fig. 2.
The aim is to compute the capacity of the transducers as a function of the offset in z
direction. The corresponding results of these computations are given in Fig. 3 when using
piecewise constant basis functions and in Fig. 4 when using piecewise linear basis functions
for different boundary element discretizations.
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Figure 3: Capacity for centered transducers and ν = 0 (piecewise constant functions).

Applying a boundary element method, we need only one triangulation of the single
finger structures. In comparison, a finite element discretization of the exterior domain
would require remeshings when considering different offsets in z directions.

In the standard configuration, the finger structures are centered to each other (see
Fig. 2). In this situation the distance between the fingers corresponds to the thickness of
the fingers themselves. Therefore a boundary element discretization of the fingers already
resolves the distance. As shown in the Fig. 3 and Fig. 4, boundary element meshes of 1112
or 9436 elements give sufficiently good approximations. Note that 9436 boundary elements
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Figure 4: Capacity for centered transducers and ν = 1 (piecewise linear functions).

are needed to discretize the thin structures with regular elements.
The more challenging task are computations when the distance between the fingers is

small compared to the thickness of the fingers (see Fig. 5), where the gap is only 0.1µm.

Figure 5: Minimal distance between the fingers: 0.1µm.

Although the geometry of each finger seems to be simple some effort is needed to resolve
the different length scales in particular when the distance between the fingers becomes
small. Hence the number of boundary elements needed in the discretization process to
ensure an efficient accuracy is quite huge. Therefore, a standard Galerkin boundary element
method yielding dense stiffness matrices is not applicable anymore. There is a need to
use fast boundary element methods such as the Fast Multipole Method (FMM) [6], the
panel clustering algorithm [8], algebraic approximation methods like the Adaptive Cross
Approximation [1, 15] and hierarchical matrices [7], or wavelets [17].

Before discussing an application of the fast multipole method to solve the linear system
V ν

h t
ν = f ν, we have to consider an appropriate iterative solution method. Since the stiffness
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matrix V ν
h is symmetric and positive definite, we may apply the conjugate gradient scheme

as an iterative solver. Since the spectral condition number κ2(V
ν
h ) behaves like O(h−1) a

suitable preconditioner is needed. In particular, we use the Artifical Multilevel Boundary
Element Preconditioner C−1

V,h introduced in [18]. It is a BPX–like preconditioner [2] build
on an artifical hierarchy of trial spaces. Let Zh = ZJ ⊂ S0

h(Γ) be the space of piecewise
constant basis functions. Further, let a series of nested trial spaces Zj

Z0 ⊂ Z1 ⊂ . . . ⊂ ZJ = Zh

exit with mesh sizes hj = 1
2
hj−1. The multilevel operator As is defined for s ∈

�
as

As =

J∑

j=0

h−2s
j (Qj −Qj−1),

where Qj is the L2(Γ) projection onto Zj by

〈Qjw, τ〉Γ = 〈w, τ〉Γ for all τ ∈ Zj, j = 0, . . . , J,

for w ∈ L2(Γ) and Q−1 = 0. Due to the spectral equivalence inequalities [13]

c1‖w‖
2
H−1/2(Γ) ≤ 〈A−1/2w,w〉Γ ≤ c2J

2‖w‖2
H−1/2(Γ)

for all w ∈ ZJ , the multilevel operator A−1/2 can be used as a preconditioner of the single
layer potential. Since the single layer potential is elliptic and bounded with constants cV

1

and cV2 independent of h, the spectral equivalence inequalities

cV1
J2c2

〈A−1/2w,w〉Γ ≤ 〈V w,w〉Γ ≤
cV2
c1

〈A−1/2w,w〉Γ (8)

hold for all w ∈ H−1/2(Γ). Note that A−1/2A1/2 = I holds. The corresponding precondi-
tioning matrix C−1

V,h is given by

C−1
V,h = M−1

h A
1/2
h M−1

h . (9)

The entries of the used matrices are defined by

A
1/2
h [`, k] = 〈A1/2ψ0

k, ψ
0
` 〉Γ, Mh[`, k] = 〈ψ0

k, ψ
0
` 〉L2(Γ).

Due to the exact representation of the basis functions ψ0
k of Zk by the basis functions of

the finer trial space Zk+1, any discrete function zk
h ∈ Zk can be writen in terms of the basis

functions of Zk+1 as
zk+1 = Rk,k+1z

k

where Rk,k+1 ∈
� nk+1×nk . A spectrally equivalent realization [19] of v = C−1

V,hr is given by

v =

J∑

k=0

h−1
k RkR

>
k r,
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where RJ = I and Rk = Rk+1Rk,k+1 for 0 ≤ k < J .
This kind of preconditioning has been used in [4] based on a nested sequence of boundary

element spaces constructed by geometrical refinement of the boundary elements. Here, we
use the cluster hierarchy of the fast multipole method to construct the sequence of nested
boundary element spaces due to the idea in [18]. The clusters ωj

i on level j ≤ L of the
cluster tree with cluster depth L define the fictitious boundary elements τ j

i of the coarser
trial spaces Zj for j < J = L+ 1.

This construction is restricted to piecewise constant basis functions. For piecewise
linear and discontinuous basis functions, we use an piecewise constant approximation on a
refined boundary element mesh to define a preconditioner.

Next, we describe an application of the fast multipole method to the single layer po-
tential based on the original version in [5, 6]. Detailed descriptions of the fast multipole
method and further references can be found in [12]. A matrix times vector multiplication
w = V ν

h t of the single layer potential can be written component-wise

w` =

N∑

k=1

V ν
h [`, k]tk =

N∑

k=1

tk
4π

∫

Γ

ψν
` (x)

∫

Γ

ψν
k(y)

|x− y|
dsydsx (10)

for all ` = 1, . . . , N . The effort for setting up this matrix and for one matrix times vector
multiplication is quadratic in N . If we could write the kernel k(x, y) = |x− y|−1 as a
product f(x) · g(y) with a separation of variables, this effort would be reduced to linear
complexity. Unfortunately, this separation of variables is only possible by using a series
expansion of the kernel. In the case of the Laplacian, spherical harmonics [9] are more
suitable to use than a Taylor series. Therefore, an appropriate approximation kp(x, y) of
the kernel k(x, y) is given by

kp(x, y) =

p∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x) for |x| < |y|, (11)

using modified spherical harmonics [14, 20, 21]

R±m
n (x) =

1

(n +m)!

dm

dum
Pn(u)

∣∣
u=bx3

(x̂1 ± ix̂2)
m |x|n ,

S±m
n (y) = (n−m)!

dm

dum
Pn(u)

∣∣
u=by3

(ŷ1 ± iŷ2)
m 1

|y|n+1

for m ≥ 0 and x̂ = x/|x|. Pn denote the Legendre polynomials. Since this degenerated
kernel is not valid everywhere, it is only used when the boundary element τk is sufficiently
far away from the evaluation element τ`. Therefore we distinguish in a far-field FF(`) and
a near-field NF(`) to realize the matrix times vector multiplication for ` = 1, . . . , N as

w̃` =
∑

k∈NF(`)

Vh[`, k]tk +
1

4π

p∑

n=0

n∑

m=−n

Mm
n (O, `)L̃m

n (FF(`)). (12)
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The coefficients

Mm
n (O, `) =

∫

Γ

ψν
` (x)Rm

n (x)dsx

can be evaluated by a numerical quadrature rule or exactly for plain triangles [10, 11] with
respect to a local origin O. Note, the support of a basis function ψν

` is just one triangle. If
the coefficients

L̃m
n (FF(`)) =

∑

k∈FF(`)

tk

∫

Γ

ψν
k(y)Sm

n (y)dsy (13)

can be computed for n = 0, . . . , p,m = −n, . . . , n efficiently, we will have a fast realization
of the matrix times vector multiplication by (12). The difficulties are that the coefficients

L̃m
n (FF(`)) depend on the different far-fields FF(`). So a hierarchical structure is built

on the boundary elements τk. All boundary elements {τk}
n
k=1 are positioned in a cube

containing the whole domain Ω and form the cluster ω0
1 of the coarsest level 0. For any

cluster ωλ
i the corresponding cube is refined in eight similar smaller cubes. The triangles of

the cluster ωλ
i are assigned to these smaller cubes and form up to eight new clusters ωλ+1

j

as sons of the cluster ωλ
i . This refinement is carried out up to a maximal level L. Now we

can concretize the definitions of the near-field and the far-field. A cluster ωλ
i is said to be

in the near-field of a cluster ωλ
j of the same level λ, if the condition

dist {Cλ
i , C

λ
j } ≤ (d+ 1)max {rλ

i , r
λ
j } (14)

is fulfilled. Cλ
i denotes the midpoint of the cube of cluster ωλ

i , d the nearfield parameter
and rλ

i the corresponding radius of the cluster, i.e. rλ
i = supx∈ωλ

i

∣∣x− Cλ
i

∣∣. This definition
is transferred to the boundary elements τk via the leafs of the cluster tree:

NF(`) := {k : 1 ≤ k ≤ N and (14) is valid for the

clusters ωL
i of τk and ωL

j of τ`.
}
,

FF(`) := {1, . . . , N} \NF(`).

Now this cluster hierarchy is used to evaluate the coefficients L̃m
n (FF(`)). First, the

multipole coefficients

M̃m
n (CL

j , P
L
j ) =

∑

τk∈ωL
j

∫

τk

th(x)R
m
n (x)dsx

are evaluated for all clusters ωL
j of the finest cluster level L. P λ

j := {k : τk ∈ ωλ
j } denotes

the set of all boundary elements τk of the cluster ωλ
j . Then the coefficients M̃m

n are used
to compute the multipole coefficients of all coarser levels by means of the translation

M̃m
n (Cλ

j , P
λ
j ) =

∑

ωλ+1

i ∈Sons(ωλ
j )

n∑

s=0

s∑

t=−s

Rt
s(
−−−−−→
Cλ

j C
λ+1
i )

·M̃m−t
n−s (Cλ+1

i , P λ+1
i ).

13



Based on these multipole coefficients of a cluster ωλ
j , the local coefficients of another cluster

ωλ
i in the far-field of ωλ

j are determined by the conversion

L̃m
n (Cλ

i , P
λ
j ) =

∞∑

s=0

s∑

t=−s

(−1)nSm+t
n+s (

−−−→
Cλ

j C
λ
i )M̃ t

s(C
λ
j , P

λ
j ).

These conversions are only executed on the coarsest level on which the admissibility con-
dition is satisfied. The local coefficients are summed up for each cluster ωλ

i . Further, they
are translated from each cluster ωλ

i to its sons ωλ+1
j by

L̃m
n (Cλ+1

j ,FF(ωλ
i )) =

p∑

s=n

s∑

t=−s

Rt−m
s−n (

−−−−−→
Cλ

i C
λ+1
j )

·L̃t
s(C

λ
i ,FF(ωλ

i )).

The sum of all coefficients L̃m
n (CL

j , ·) gives the coefficients L̃m
n (FF(`)) needed for the matrix

times vector product (12), where ωL
j is the cluster containing τ`. Note, the computation of

all the coefficients has to be redone for each matrix times vector multiplication.
A detailed analysis [12] of the method and numerical tests show that the fast multipole

approximation preserves the main properties of the matrix V ν
h . For example, the fast

multipole boundary element method provides the same asymptotic convergence rate as the
standard boundary element method for the approximation th of the solution t|Γ.

Due to this consistency analysis the expansion degree has to be chosen as p ∼ log n for
a fixed parameter d. This leads to a total effort of O(n log2 n) for a matrix times vector
multiplication as well as the memory requirements.

4 Numerical Studies

We now consider the characteristic curves of the computed capacitances in Fig. 6 obtained
for the configuration of Fig. 5 with the small gap of 0.1 µm. The computations have been
executed for steps of 1 µm in z–direction. The coarse boundary element meshes give a bad
approximation of the characteristic curves. If we take a look at a good approximation th,
we will see a huge jump on each of finger structures at the height where the other finger
structure ends. If a new row of boundary elements starts at the actual z–offset, we will get
a better approximation by the coarse boundary element meshes. This explains the peaks
in the approximations of the characteristic curves by the piecewise constant trial functions
on the coarse boundary element grids in Fig. 6. The approximations of the characteristic
curve are worse than for the centered configuration, as the boundary element mesh has to
resolve the small distance between the two domains in some way. For the finer boundary
element meshes of 37744 and 150976 boundary elements we obtain good approximations
of the characteristic curve.
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Figure 6: Capacity for transducers with small gap and ν = 0.

If we use piecewise linear and discontinuous trial functions, we get better results as
shown in Fig. 7 for the same boundary element meshes due to the higher number of
degrees of freedom and the possibly higher convergence rate in (7).
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Figure 7: Capacity for transducers with small gap and ν = 1.
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The use of piecewise linear and discontinuous trial functions leads to a higher number
of unknowns and larger matrices. The number of entries in a standard boundary element
method is increased by a factor of nine. Therefore their use is more expensive than the
one of the piecewise constant basis functions. In Fig. 8 we compare the characteristic
curves obtained by the piecewise constant trial functions with 37744 and 150976 boundary
elements to the characteristic curves of piecewise linear and discontinuous trial functions
with 37744 boundary elements.
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progression of the capacity as a function of the z−offset

z−offset (µm)

C
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c37744
c150976
l37744

Figure 8: Comparison of constant and linear trial functions.

In the zoom, the solid line of the characteristic curve of the piecewise linear basis
functions is at least a better approximation than the dotted one of the piecewise constant
trial functions on the same boundary element mesh. It is hard to decide whether the
approximation by the piecewise linear basis functions is better than the one of the piecewise
constant trial functions on the refined mesh.

Next, we will comment on the numbers of iterations and computational times needed
for this numerical examples. The computations have been executed on an Linux PC with
an INTEL 3.066 GHz processor and 1GB of RAM. We have selected values of the z–offsets
of 0 µm, 25 µm and 50 µm. In Table 1 the number of iterations and the computational
times for the centered configuration are listed.

We do not show results of the solution process without preconditioning, but the used
artificial multilevel preconditioner reduces the iteration numbers and the computational
times significantly. The bad quality of the two coarsest boundary element meshes influences
the quality of the preconditioning. These values are dropped in the Tables, since they might
give a wrong idea of the asymptotic behavior. Therefore, only the values of the regular
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0µm 25µm 50µm
DoF Iter sec Iter sec Iter sec

piecewise constant basis functions
9436 53 82 52 71 47 51

37744 58 419 60 347 54 246
150976 64 2018 66 1702 58 1361

piecewise linear basis functions
28308 109 349 106 295 96 212

113232 113 1377 113 1112 102 796

Table 1: computational efforts for the centered configuration

mesh and its uniform refinements are considered. There is a slight logarithmic grow of
the number of iterations due to the increase of the number of unknowns, as expected from
theory. The number of iterations of the piecewise linear and discontinuous trial functions
are higher, since the preconditioner is only applied to a piecewise constant approximation
on a finer grid. The increase of the computational times is in good agreement with the
O(n log2 n) asymptotic of the fast multipole method and the logarithmic grows of the
iteration numbers. The piecewise linear and discontinuous trial functions benefit a lot
from the use of the fast multipole method. Using a fast multipole method, only the near-
field part is increased by a factor of nine. In the far-field part the three local basis functions
only effect the setup of the multipole coefficients and the evaluation of the local expansions
by a factor of three. The rest, the computation of the other coefficients in the fast multipole
method, can be done at once. This effect can be seen in the computational times.

We now go back to the more interesting case of the small gap between the two finger
structures, where we have compared the quality of the different approximations. In Table
2 the numbers of iterations and the computational times are shown.

0µm 25µm 50µm
DoF Iter sec Iter sec Iter sec

piecewise constant basis functions
9436 106 97 88 82 48 54

37744 142 567 80 359 54 232
150976 159 2820 78 1701 60 1327

piecewise linear basis functions
28308 180 394 166 334 105 265

113232 152 1351 133 1122 108 782

Table 2: Computational efforts for a small gap
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Compared to the values for the centered configuration in Table 1, the numbers of itera-
tions are increased. This can be explained by the higher complexity due to the small gap,
which leads to worse ellipticity and boundedness constants of the single layer potentials.
These constants worsen the condition number of the considered problem. This effect is
decreasing with increasing z–offset, such that there is almost no difference in the iteration
numbers of the centered configuration and the setting with a small gap in the case of a
z–offset of 50 µm. The increasing number of iterations leads to larger computational times.
There are also small differences in the computational times due to changes in the cluster
tree of the fast multipole method. In some cases the iteration number is decreasing while
the number of boundary elements is increasing. This is due to the better resolution of the
complexity of the problem by the finer mesh. This effect is also observed for the coarse
meshes in the centered configuration.

centered small gap
DoF 0µm 25µm 50µm 0µm 25µm 50µm

piecewise constant basis functions
9436 46 43 37 48 45 38

37744 169 157 139 163 157 142
150976 731 674 631 739 698 642

piecewise linear basis functions
28308 254 218 168 276 245 179

113232 812 708 543 812 755 614

Table 3: Memory requirements (MB)

In Table 3, we compare the memory requirements for the considered configurations and
basis functions. For piecewise constant basis functions, the memory requirements increase
almost linearly with the increasing number of boundary elements as expected from theory.
The compression of the number of near-field matrix entries gets better with increasing
z–offset, since the near-fields get smaller. Therefore the memory requirements are reduced.
In the case of the small cap between the two structures, the near-fields get a little bit larger
and the memory requirements increase. The size of the near-field matrix of the piecewise
linear and discontinuous basis functions is nine times the size of the one of the piecewise
constant basis functions. The memory requirements of the far-field part are the same for
both kind of basis functions. Therefore the observed increase of the memory requirements
is smaller than expected asymptotically.

Overall, it seems that the piecewise linear and discontinuous trial functions give an
approximation, which is almost as good as the one of the piecewise constant trial functions
on the refined mesh, at lower costs computational cost and at about the same memory
requirements.
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5 Conclusions and Further Remarks

We have presented an efficient computational scheme for the evaluation of electric capacities
within micromechanical transducers. The arising algebraic system of equation obtained by
a Galerkin BEM is efficiently solved by a CG-method with an multilevel BE-Preconditioner
and an appropriate fast multipole algorithm for the matrix-vector operations within the
CG-iterations. The numerical case study demonstrated the robustness of the developed
numerical method with respect to the number of iterations and the complexity of the
problem.
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