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1 Introduction

As a model problem we consider the Dirichlet boundary value problem for the Laplace
equation,

−∆u(x) = 0 for x ∈ Ω, u(x) = g(x) for x ∈ Γ = ∂Ω, (1.1)

where Ω ⊂ R
3 is a bounded Lipschitz polyhedron. Using an indirect approach, the solution

of (1.1) can be described as single layer potential

u(x) = (Ṽ w)(x) :=

∫

Γ

U∗(x, y)w(y) dsy for x ∈ Ω, (1.2)

where

U∗(x, y) =
1

4π

1

|x− y|

is the fundamental solution of the Laplacian. It is well known, see, e.g. [2], that Ṽ :
H−1/2(Γ) → H1(Ω). The unknown density w ∈ H−1/2(Γ) is then found by applying the
interior Dirichlet trace operator γint0 : H1(Ω) → H1/2(Γ) to (1.2) which results in the
boundary integral equation

(V w)(x) :=

∫

Γ

U∗(x, y)w(y) dsy = g(x) for x ∈ Γ, (1.3)

and which is equivalent to a Galerkin–Bubnov formulation: Find w ∈ H−1/2(Γ) such that

〈V w, v〉Γ = 〈g, v〉Γ for all v ∈ H−1/2(Γ). (1.4)

Since the single layer boundary integral operator V = γint0 Ṽ : H−1/2(Γ) → H1/2(Γ) is
elliptic, [6],

〈V w,w〉Γ ≥ cV1 ‖w‖2H−1/2(Γ) for all w ∈ H−1/2(Γ), (1.5)
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unique solvability of the variational formulation (1.4) follows. Moreover we can deduce a
stability and error analysis of related boundary element discretization schemes, see, e.g., [7].
Error estimates then rely on the regularity of w = V −1g, i.e. on the regularity of the given
Dirichlet datum g, and on the mapping properties of the single layer boundary integral
operator V . In the case of a Lipschitz domain Ω we have that V : H−1/2+s(Γ) → H1/2+s(Γ)
is bijective for all s ∈ [−1

2
, 1
2
], see [2, 8], while in the case of a polyhedral bounded domain

this remains true for |s| < s0 where s0 > 1
2
is determined by the related interior and

exterior angles in corners and at edges, see, e.g., [5], and [4] for the two–dimensional case.
The error estimate for the Galerkin solution of the Galerkin–Bubnov variational formu-

lation (1.4) is given, due to Cea’s lemma, in the energy norm in H−1/2(Γ). Hence, to derive
error estimates in stronger norms, e.g. in L2(Γ), we have to use an inverse inequality for
the used boundary element space and where we have to assume a globally quasi–uniform
boundary element mesh, see, e.g., [7] for a more detailed discussion. In fact, this excludes
non–uniform and adaptive meshes as often used in practice.

Instead of the Galerkin–Bubnov variational formulation (1.4) we will consider a Galerkin–
Petrov variational formulation which allows the use of different trial and test spaces, both
in the continuous and discrete setting. In this case, the ellipticity estimate (1.5) has to be
replaced by an appropriate stability condition, also known as inf sup condition. While the
analysis of the Galerkin–Bubnov formulation (1.4) relies on a related domain variational
formulation in H1(Ω), our analysis is based on using a Galerkin–Petrov domain variational
formulation for which we have to introduce suitable Sobolev spaces. With this we can
not only conclude known mapping properties of the single layer boundary integral opera-
tor, but we can establish a new stability condition which ensures unique solvability of the
Galerkin–Petrov variational formulation.

In this note we will not consider a stability and error analysis of related Galerkin–
Petrov boundary element methods which will be a topic of further research. In fact,
such an approach can also be used for Galerkin–Petrov variational formulations in weaker
Sobolev spaces, e.g., when the given Dirichlet data have reduced regularity, for example
if we have g ∈ L2(Γ) only, see, e.g., [1]. However, the main focus of future work will be
on the extension of this concept to the mathematical and numerical analysis of boundary
integral equation and boundary element methods for time–dependent problems such as the
heat equation, see, e.g., [3] for related Galerkin–Bubnov formulations.

2 Strong domain variational formulation

For the Dirichlet boundary value problem (1.1) we consider, instead of a standard domain
variational formulation inH1(Ω) which is based on Green’s first formula, a Galerkin–Petrov
variational formulation. For this we introduce

H∆(Ω) :=
{
v ∈ H1(Ω) : ∆v ∈ L2(Ω)

}
⊂ H1(Ω),

with the norm
‖v‖2H∆(Ω) = ‖v‖2L2(Ω) + ‖∇v‖2L2(Ω) + ‖∆v‖2L2(Ω) .
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Then we have to find u ∈ H∆(Ω) satisfying u(x) = g(x) for x ∈ Γ such that

∫

Ω

[−∆u(x)]v(x) dx = 0 for all v ∈ L2(Ω), (2.1)

where we have to assume that the given Dirichlet datum g is in the Dirichlet trace space
γint0 H∆(Ω) ⊂ H1/2(Γ). In particular, let ug ∈ H∆(Ω) be a bounded and norm preserving
extension of g ∈ γint0 H∆(Ω) with

‖g‖γint
0

H∆(Ω) = min
v∈H∆(Ω):v|Γ=g

‖v‖H∆(Ω) = ‖ug‖H∆(Ω) . (2.2)

It remains to find u0 ∈ XS := H∆(Ω) ∩H
1
0 (Ω) such that

aS(u0, v) :=

∫

Ω

[−∆u0(x)]v(x) dx =

∫

Ω

[∆ug(x)]v(x) dx for all v ∈ YS := L2(Ω). (2.3)

Related to the trial and test spaces we introduce the associated norms

‖u‖XS
:=

[
‖∇u‖2L2(Ω) + ‖∆u‖2L2(Ω)

]1/2
, ‖v‖YS

:= ‖v‖L2(Ω) .

Lemma 2.1 The bilinear form of the variational problem (2.3), is bounded, i.e.

|aS(u, v)| ≤ ‖u‖XS
‖v‖YS

for all u ∈ XS, v ∈ YS,

and satisfies the stability condition

cS ‖u‖XS
≤ sup

06=v∈YS

aS(u, v)

‖v‖YS

for all u ∈ XS, cS =

√
λmin(Ω)

1 + λmin(Ω)

where λmin(Ω) is the minimal eigenvalue of the Dirichlet eigenvalue problem

−∆u(x) = λu(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ.

Proof. The boundedness of the bilinear form aS(·, ·) is a direct consequence of the
Cauchy–Schwarz inequality,

|aS(u, v)| =

∣∣∣∣
∫

Ω

[−∆u(x)]v(x) dx

∣∣∣∣ ≤ ‖∆u‖L2(Ω)‖v‖L2(Ω) ≤ ‖u‖XS
‖v‖YS

.

To prove the stability condition we consider u ∈ XS and choose v = u − ∆u ∈ YS. By
using the minimal Dirichlet eigenvalue for the Laplacian in Ω,

λmin(Ω) = min
06=v∈H1

0
(Ω)

‖∇v‖2L2(Ω)

‖v‖2L2(Ω)

,
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and Hölders inequality we have

‖v‖YS
= ‖u−∆u‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖∆u‖L2(Ω)

≤
1√

λmin(Ω)
‖∇u‖L2(Ω) + ‖∆u‖L2(Ω)

≤
( 1

λmin(Ω)
+ 1

)1/2(
‖∇u‖2L2(Ω) + ‖∆u‖2L2(Ω)

)1/2

=

√
1 + λmin(Ω)

λmin(Ω)
‖u‖XS

.

Then,

aS(u, v) = aS(u, u−∆u) =

∫

Ω

[−∆u(x)] [u(x)−∆u(x)] dx

=

∫

Ω

[−∆u(x)]u(x) dx+

∫

Ω

[∆u(x)]2 dx

=

∫

Ω

|∇u(x)|2 dx+

∫

Ω

[∆u(x)]2 dx

= ‖∇u‖2L2(Ω) + ‖∆u‖2L2(Ω) = ‖u‖2XS
≥

√
λmin(Ω)

1 + λmin(Ω)
‖u‖XS

‖v‖YS

implies the stability condition as claimed.

As a consequence of Lemma 2.1 we conclude unique solvability of the variational problem
(2.3) to obtain u = u0 + ug ∈ H∆(Ω). In particular, when chosing in (2.1) v = −∆u ∈
L2(Ω), this gives

‖∆u‖2L2(Ω) =

∫

Ω

[−∆u(x)]2 dx = 0 . (2.4)

For the solution u ∈ H∆(Ω) ⊂ H1(Ω) of the variational formulation (2.1) we note that the
interior Neumann trace

γint1 u(x) := lim
Ω∋x̃→x∈Γ

nx · ∇x̃u(x̃) =
∂

∂nx
u(x) for x ∈ Γ (2.5)

is well defined, at least we have γint1 u ∈ H−1/2(Γ) due to duality arguments and the
use of Green’s first formula. To do a more detailed analysis, for u ∈ H∆(Ω) we define
ψ = ∆u ∈ L2(Ω) and we consider the Dirichlet boundary value problem

−∆φ(x) = ψ(x) for x ∈ Ω, φ(x) = 0 for x ∈ Γ.

In the case of a domain Ω with a sufficient smooth boundary Γ or in the case of a convex
polyhedron we find φ ∈ H2(Ω), and therefore H∆(Ω) = H2(Ω) follows. However, this
is not true when the domain Ω is polyhedral bounded, but non–convex. In this case,
H∆(Ω) includes harmonic functions which are not in H2(Ω) but in Hs(Ω), s < si, for some
si >

3
2
, see, for example, [5, Corollary 2.6.7]. In any case, the Neumann trace operator
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γint1 : H∆(Ω) → γint1 H∆(Ω) is well defined, implying the Neumann trace space γint1 H∆(Ω),
and satisfying

‖γint1 v‖γint
1

H∆(Γ) ≤ cN ‖v‖H∆(Ω) for all v ∈ H∆(Ω). (2.6)

Lemma 2.2 Let u ∈ H∆(Ω) be the unique solution of the variational formulation (2.1).
Then,

ci ‖γ
int
1 u‖2γint

1
H∆(Ω) ≤ ‖∇u‖2L2(Ω). (2.7)

Proof. Let u = u0 + ug ∈ H∆(Ω) be the unique solution of (2.3). We then define

ũ(x) = u(x)− γ, γ =
1

|Γ|

∫

Γ

g(x) dsx,

∫

Γ

ũ(x) dsx = 0 ,

and where ũ is the unique solution of the Dirichlet boundary value problem

−∆ũ(x) = 0 for x ∈ Ω, ũ(x) = g(x)− γ for x ∈ Γ.

Obviously, ũ ∈ H∆(Ω), and (2.6) together with (2.4) then implies

1

cN
‖γint1 ũ‖2γint

1
H∆(Ω) ≤ ‖ũ‖2H∆(Ω) = ‖ũ‖2L2(Ω) + ‖∇ũ‖2L2(Ω) + ‖∆ũ‖2L2(Ω)

= ‖ũ‖2L2(Ω) + ‖∇ũ‖2L2(Ω) = ‖ũ‖2H1(Ω) .

Since an equivalent norm in H1(Ω) is given by

‖v‖2H1

Γ
(Ω) :=

[∫

Γ

v(x) dsx

]2
+ ‖∇v‖2L2(Ω),

we immediately conclude

1

cN
‖γint1 ũ‖2γ1H∆(Ω) ≤ c ‖ũ‖2H1

Γ
(Ω) = c ‖∇ũ‖2L2(Ω) .

Inserting ũ = u− γ concludes the proof.

In addition to the interior Dirichlet boundary value problem (1.1) we also consider the
exterior Dirichlet problem

−∆u(x) = 0 for x ∈ Ωc := R
n\Ω, u(x) = g(x) for x ∈ Γ, (2.8)

where in addition we have to impose a suitable radiation condition,

u(x) = O(1/|x|) as |x| → ∞. (2.9)

When introducing the bounded domain Ωr := Br\Ω with Br := {x ∈ R
3 : |x| < r}, and

chosing r > 0 such that Ω ⊂ Br, we can proceed as in the case of the interior Dirich-
let boundary value problem (1.1), when considering the limit r → ∞ and the radiation
condition (2.9). As in (2.7) we may define the exterior Neumann trace of the solution u
satisfying

ce ‖γ
ext
1 u‖2γext

1
H∆(Ωc) ≤ ‖∇u‖2L2(Ωc). (2.10)

Note that H∆(Ω
c) ⊆ Hs(Ωc), s < se, for some se >

3
2
which may differ from si.
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3 Ultra week domain variational formulation

To derive mapping properties of the single layer boundary integral operator V we may
also consider the ultra week domain variational formulation, see, e.g., [1]. Multiplying the
partial differential equation in (1.1) with a test function v ∈ H∆(Ω) ∩H

1
0 (Ω), integrating

over Ω, and applying integration by parts twice, this gives

0 =

∫

Ω

[−∆u(x)]v(x) dx =

∫

Ω

∇u(x) · ∇v(x) dx

=

∫

Ω

u(x)[−∆v(x)] dx+

∫

Γ

u(x)
∂

∂nx
v(x) dsx .

When inserting the Dirichlet boundary condition, this results in the Galerkin–Petrov vari-
ational formulation to find u ∈ XU = L2(Ω) such that

aU(u, v) :=

∫

Ω

u(x)[∆v(x)] dx =

∫

Γ

g(x)
∂

∂nx
v(x) dsx (3.1)

is satisfied for all v ∈ YU = H∆(Ω)∩H
1
0 (Ω). In this case we have to assume that the given

Dirichlet datum g is in the dual of the interior Neumann trace space, i.e. g ∈ [γint1 H∆(Ω)]
′.

We obviously have XU = YS and YU = XS, respectively, with the associated norms

‖u‖XU
= ‖u‖L2(Ω), ‖v‖YU

=
[
‖∇v‖2L2(Ω) + ‖∆v‖2L2(Ω)

]1/2
.

Similar as in Lemma 2.1 we can prove boundedness,

|aU(u, v)| ≤ ‖u‖XU
‖v‖YU

for all u ∈ XU , v ∈ YU ,

and the stability condition

cS ‖u‖XU
≤ sup

06=v∈YU

aU(u, v)

‖v‖YU

for all u ∈ XU .

As a consequence, we conclude unique solvability of the variational problem (3.1) to obtain
u ∈ XU = L2(Ω).

4 Single layer potential

We now consider the single layer potential (1.2), u(x) = (Ṽ w)(x), x ∈ R
3\Γ. When defining

g = γint0 Ṽ w, we observe that u is a solution of the Dirichlet boundary value problem (1.1)
being also the unique solution of the strong Galerkin–Petrov formulation (2.1). To ensure
u ∈ H∆(Ω), we chose ψ ∈ [H∆(Ω)]

′ and we consider

〈Ṽ w, ψ〉H∆(Ω)×[H∆(Ω)]′ =

∫

Ω

ψ(x)

∫

Γ

U∗(x, y)w(y) dsy dx

=

∫

Γ

w(y)

∫

Ω

U∗(x, y)ψ(x) dx dsy = 〈ϕ|Γ, w〉Γ

6



where the duality pairing has to be specified. Using the Newton potential

ϕ(y) = (N0ψ)(y) =

∫

Ω

U∗(x, y)ψ(x)dx for y ∈ Ω

and the Dirichlet datum φ(y) = ϕ(y) = (N0ψ)(y) for y ∈ Γ, we note that ϕ ∈ XU is the
solution of the Dirichlet boundary value problem

−∆yϕ(y) = ψ(y) for y ∈ Ω, ϕ(y) = φ(y) for y ∈ Γ.

In fact, ϕ ∈ XU solves, due to ψ ∈ [H∆(Ω)]
′ ⊂ Y ′

U = [H∆(Ω) ∩ H1
0 (Ω)]

′, the ultra–week
variational formulation

∫

Ω

ϕ(x)∆v(x) dx =

∫

Γ

φ(x)
∂

∂nx
v(x) dsx −

∫

Ω

ψ(x)v(x)dx for all v ∈ YU .

This variational formulation implies

φ = ϕ|Γ ∈
[
γint1 YU

]′
=

[
γint1 [H1

0 (Ω) ∩H∆(Ω)]
]′

from which we further conclude

w ∈ γint1 [H1
0 (Ω) ∩H∆(Ω)] = γint1 H∆(Ω)

as well as
Ṽ : γint1 H∆(Ω) → H∆(Ω) ,

and finally,
V : γint1 H∆(Ω) → γint0 H∆(Ω) (4.1)

follows. In particular, when H∆(Ω) ⊆ Hs(Ω)is satisfied for 3
2
< s < si, we have

V : Hs− 3

2 (Γ) → Hs− 1

2 (Γ) .

Since we can do the same considerations subject to the exterior problem, we finally conclude

V : Hs−1(Γ) → Hs(Γ) for all s ∈ (1,min{si − 1/2, se − 1/2}) . (4.2)

Note that in the case of a polygonal bounded domain Ω ⊂ R
2 this result was already given

in [4].
Due to the mapping properties (4.2) and when assuming g ∈ Hs(Γ) for some s ∈

(1,min{si, se}) we may consider the Galerkin–Petrov variational formulation to find w ∈
Hs−1(Γ) such that

〈V w, v〉Γ = 〈g, v〉Γ for all v ∈ H−s(Γ). (4.3)

To prove unique solvability of the Galerkin–Petrov formulation (4.3) we need to establish
an appropriate stability condition.
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Theorem 4.1 Let w ∈ Hs−1(Γ) be given for some s ∈ (1,min{si, se}). Then there holds
the stability condition

cV ‖w‖Hs−1(Γ) ≤ sup
06=v∈H−s(Γ)

〈V w, v〉Γ
‖v‖H−s(Γ)

(4.4)

with a positive constant cV > 0 independent of w.

Proof. In fact, we follow the standard approach to prove the ellipticity estimate (1.5),

see, e.g., [6, 7]. Since u = Ṽ w is harmonic in Ω, Green’s first formula implies

∫

Γ

∂

∂nx

u(x)u(x) dsx =

∫

Ω

|∇u(x)|2 dx . (4.5)

With the jump relations for the interior Dirichlet and Neumann trace operators for the
single layer potential we have

γint0 u(x) = (V w)(x), γint1 u(x) =
1

2
w(x) + (K ′w)(x) for x ∈ Γ,

where in addition to the single layer boundary integral operator V we used the adjoint
double layer boundary integral operator,

(K ′w)(x) =

∫

Γ

∂

∂nx
U∗(x, y)w(y)dsy, x ∈ Γ.

Hence, (4.5) gives

〈(
1

2
I +K ′)w, V w〉Γ = ‖∇u‖2L2(Ω) .

When doing the same considerations subject to the exterior Dirichlet boundary value prob-
lem, this gives

〈(
1

2
I −K ′)w, V w〉Γ = ‖∇u‖2L2(Ωc).

Note that in R
3 the single layer potential u = Ṽ w satisfies the radiation condition (2.9).

Now we conclude, by using (2.7) and (2.10),

〈w, V w〉Γ = ‖∇u‖2L2(Ω) + ‖∇u‖2L2(Ωc) ≥ ci‖γ
int
1 u‖2Hs−1(Γ) + ce‖γ

ext
1 u‖2Hs−1(Γ).

On the other hand we have

‖w‖2Hs−1(Γ) = ‖γint1 u− γext1 u‖2Hs−1(Γ) ≤ 2
(
‖γint1 u‖2Hs−1(Γ) + ‖γext1 u‖2Hs−1(Γ)

)

and therefore we obtain

〈w, V w〉Γ ≥ cS ‖w‖
2
Hs−1(Γ) ≥ cV ‖w‖Hs−1(Γ)‖w‖H−s(Γ)

due to Hs−1(Γ) ⊂ H−s(Γ) for s > 1, which finally gives (4.4).
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From the stability condition (4.4) we can conclude unique solvability of the Galerkin–Petrov
formulation (4.3).

By using
〈V w, v〉Γ = 〈w, V v〉Γ for w ∈ Hs−1(Γ), v ∈ H−s(Γ)

we can define the single layer boundary integral operator V : H−s(Γ) → H1−s(Γ), which
satisfies the following stability condition.

Lemma 4.2 Let v ∈ H−s be given for some s ∈ (1,min{si, se}). Then there holds the
stability condition

cV ‖v‖H−s(Γ) ≤ sup
06=w∈Hs−1(Γ)

〈V v, w〉Γ
‖w‖Hs−1(Γ)

(4.6)

with the positive constant cV > 0 as used in (4.4).

Proof. For g ∈ Hs(Γ) we find, by solving (4.3), w ∈ Hs−1(Γ), and the stability condition
(4.4) gives

cV ‖w‖Hs−1(Γ) ≤ sup
06=v∈H−s(Γ)

〈V w, v〉Γ
‖v‖H−s(Γ)

= sup
06=v∈H−s(Γ)

〈g, v〉Γ
‖v‖H−s(Γ)

≤ ‖g‖Hs(Γ) .

Using duality we then conclude the stability estimate

‖v‖H−s(Γ) = sup
06=g∈Hs(Γ)

〈v, g〉Γ
‖g‖Hs(Γ)

≤
1

cV
sup

06=w∈Hs−1(Γ)

〈v, V w〉Γ
‖w‖Hs−1(Γ)

as claimed.

Using the indirect single layer potential u(x) = (Ṽ v)(x), x ∈ Ω we can describe the solution
of the Dirichlet boundary value problem (1.1) with a given Dirichlet datum g ∈ H1−s(Γ),
i.e. v ∈ H−s(Γ) is the unique solution of the Galerkin–Petrov formulation

〈V v, w〉Γ = 〈g, w〉Γ for all w ∈ Hs−1(Γ). (4.7)

Due to s > 1 it is possible to consider g ∈ L2(Γ) ⊂ H1−s(Γ) within the variational
formulation (4.7) which can be seen as the boundary integral equation counter part of the
ultra–week finite element formulation [1].

Remark 4.1 In the two–dimensional case Ω ⊂ R
2 we need to have w ∈ Hs−1(Γ) with the

constraint 〈w, 1〉Γ = 0 to satisfy the radiation condition (2.9) for the single layer potential

u(x) = (Ṽ w)(x) as |x| → ∞. To ensure solvability of the Galerkin–Petrov formulation
(4.3), g has to satisfy the solvability condition 〈g, weq〉Γ = 0 with the natural density weq =
V −11. So solvability of the Dirichlet boundary value problem (1.1) for general g can always
be guaranteed when considering an appropriate additive splitting of g(x) = γg + g̃(x),

γg =
〈g,weq〉Γ
〈1,weq〉Γ

, where we have to assume diamΩ < 1 to ensure 〈1, weq〉Γ > 0. All other

results then remain true when considering appropriate factor spaces.
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