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Abstract

We consider a space-time finite element method on fully unstructured
simplicial meshes for optimal sparse control of semilinear parabolic equa-
tions. The objective is a combination of a standard quadratic tracking-
type functional including a Tikhonov regularization term and of the L1-
norm of the control that accounts for its spatio-temporal sparsity. We
use a space-time Petrov-Galerkin finite element discretization for the first-
order necessary optimality system of the associated discrete optimal sparse
control problem. The discretization is based on a variational formulation
that employs piecewise linear finite elements simultaneously in space and
time. Finally, the discrete nonlinear optimality system that consists of
coupled forward-backward state and adjoint state equations is solved by
a semismooth Newton method.

Keywords: space-time finite element method, optimal sparse control, semilin-
ear parabolic equations
MSC 2010: 49J20, 35K20, 65M60, 65M50, 65M15, 65Y05

1 Introduction

Optimal sparse control with the L1-norm of the control in the objective func-
tional and with linear elliptic state equations has been analyzed in [30] about
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a decade ago. The method was extended to semilinear elliptic optimal control
problems in [10] and to problems governed by elliptic equations with uncertain
coefficients in [27]. In [15, 16, 29], the authors investigated problems of optimal
sparse control for the Schlögl and FitzHugh-Nagumo systems, where traveling
wave fronts or spiral waves were controlled. Directionally spatio-temporal opti-
mal sparse control of linear/semilinear elliptic/parabolic equations and its cor-
responding optimality conditions was studied in [11, 20]. Optimality conditions
for directionally sparse parabolic control problems without control constraints
were considered in [13]; see also [14]. The optimal sparse controls considered
therein exhibit sparsity in space, but not necessarily in time. We also mention
another class of optimal sparse control problems for parabolic equations with
controls in measure spaces instead of L1-spaces, see, e.g., [5, 8, 12, 17, 23]. A
thorough review of the existing literature on this challenging topic is beyond
the scope of this work. Therefore, we refer to the recent survey article [7] on
sparse solutions in optimal control of both elliptic and parabolic equations and
the references therein.

Moreover, numerical approximations of optimal sparse controls of elliptic and
parabolic problems were of great interest. For example, the standard 5-point
stencil was used in [30] for the discretization of elliptic optimal sparse control
problems. In [10], the authors proved rigorous error estimates for the finite
element approximation of semilinear elliptic sparse control problems with with
box constraints on the control. In the discrete optimality conditions, they used
piecewise linear approximations for the state and adjoint state, while a piecewise
constant ansatz was applied to the control and the subdifferential. We also
mention the approximation of sparse controls by piecewise linear functions in [9].
Here, the authors adopt special quadrature formulae to discretize the squared
L2-norm and the L1-norm of the control in the objective functional. This leads
to an elementwise representation of the control and of the subdifferential.

Later, error estimates were derived for the space-time finite element ap-
proximation of parabolic optimal sparse control problems without control con-
straints in [13]. The discretization was performed on tensor-structured space-
time meshes. In the associated discrete optimal control problem, these au-
thors used a spatio-temporal finite element ansatz for the state that consists of
products of continuous, piecewise linear basis functions in space, and piecewise
constant basis functions in time. For the control, they utilize space-time elemen-
twise constant basis functions. The same space as for the state was employed
for the adjoint state in the discrete optimality system. Improved approxima-
tion rates were achieved in [14]. For the control discretization, they employ
basis functions that are continuous and piecewise linear in space and piecewise
constant in time. These methods can be re-interpreted as an implicit Euler
discretization of the spatially discretized optimality system.

For optimal sparse control of the Schlögl and FitzHugh-Nagumo models that
were considered in [15], a semi-implicit Euler-method in time and continuous
piecewise linear finite elements in space were applied to both the state and
adjoint state equations. Recently, in [38], for the optimal control of the con-
vective FitzHugh-Nagumo equation, the state and adjoint state equations were
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discretized by a symmetric interior penalty Galerkin method in space and the
backward Euler method in time.

In contrast to the discretization methods discussed above, we apply con-
tinuous space-time finite element approximations on fully unstructured sim-
plicial meshes for parabolic optimal sparse control problems with control con-
straints. This can be seen as an extension of the Petrov-Galerkin space-time
finite element method proposed in [32] for parabolic problems, and in our recent
work [25] for parabolic optimal control problems. This kind of unstructured
space-time finite element approaches has gained increasing interest; see, e.g.,
[2, 3, 22, 24, 34, 36, 39], and the survey article [35].

In comparison to the more conventional time-stepping methods or tensor-
structured space-time methods [18, 19, 28], this unstructured space-time ap-
proach provides us with more flexibility in constructing parallel space-time
solvers such as parallel space-time algebraic multigrid preconditioners [24] or
space-time balancing domain decomposition by constraints (BDDC) precon-
ditioners [26]. Moreover, it becomes more convenient to realize simultaneous
space-time adaptivity on unstructured space-time meshes [24, 25, 33] than the
other methods. Here, time is just considered as another spatial coordinate. For
more comparisons of our space-time finite element methods with others, we refer
to [35].

The remainder of this paper will be structured as follows: Section 2 describes
a model optimal sparse control problem that we aim to solve. Some preliminary
existing results concerning optimality conditions are given in Section 3. The
space-time finite element discretization of the associated discrete optimal control
problem, the resulting discrete optimality conditions, as well as the application
of the semismooth Newton iteration are discussed in Section 4. The applicability
of our proposed method is confirmed by two numerical examples in Section 5.
Finally, some conclusions are drawn in Section 6.

2 The optimal sparse control model problem

We consider the optimal sparse control problem

min
z∈Zad

J (z) :=
1

2
‖uz − uQ‖2L2(Q) +

%

2
‖z‖2L2(Q) + µ ‖z‖L1(Q), (1)

where the admissible set is

Zad = {z ∈ L∞(Q) : a ≤ z(x, t) ≤ b for a.a. (x, t) ∈ Q} , (2)

and uz is the unique solution of the state equation

∂tu−∆xu+R(u) = z in Q := Ω× (0, T ),

u = 0 on Σ := ∂Ω× (0, T ),

u = u0 on Σ0 := Ω× {0}.
(3)

Here, the spatial computational domain Ω ⊂ Rd, d ∈ {1, 2, 3}, is supposed to be
bounded and Lipschitz, T > 0 is the fixed terminal time, ∂t denotes the partial
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time derivative, ∆x =
∑d
i=1 ∂

2
xi

the spatial Laplacian, and the source term z
acts as a distributed control in Q. Moreover, uQ ∈ L2(Q) is a given desired
state. We further assume

−∞ < a < 0 < b < +∞, % > 0, µ > 0.

The nonlinear reaction term R is defined by

R(u) = (u− u1)(u− u2)(u− u3)

with given real numbers u1 ≤ u2 ≤ u3. The functional g : L1(Q) → R defined
by g(·) = ‖ · ‖L1(Q) is Lipschitz continuous and convex but not Fréchet differ-
entiable. We notice that similar model problems for semilinear equations have
been studied, e.g., in [7, 11].

3 Preliminary results

Let us recall some facts that are known from literature, e.g., [7]. For all z ∈
Lp(Q), p > d/2+1, the state equation (3) has a unique solution uz ∈W (0, T )∩
L∞(Q), where

W (0, T ) =
{
v ∈ L2(0, T ;H1

0 (Ω)) : ∂tv ∈ L2(0, T ;H−1(Ω))
}
. (4)

Here, H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}. The mapping z 7→ uz is contin-

uously Fréchet differentiable in these spaces. The optimal control problem has
at least one optimal control that is denoted by z̄; the associated optimal state
is denoted by ū.

If z̄ is a locally optimal control of the model problem, then there exist a
unique adjoint state p̄ ∈ W (0, T ) and some λ̄ ∈ ∂g(ū) ⊂ L∞(Q) such that
(ū, p̄, z̄, λ̄) solves the optimality system

∂tu−∆xu+R(u) = z in Q, u = 0 on Σ, u = u0 on Σ0, (5a)

− ∂tp−∆xp+R′(u)p = u− uQ in Q, p = 0 on Σ, p = 0 on ΣT , (5b)∫
Q

(p+ %z + µλ)(v − z) dx dt ≥ 0 for all v ∈ Zad, (5c)

where ΣT := Ω× {T}. A detailed discussion of this optimality system leads to
the relations

z̄(x, t) = 0⇔ |p̄(x, t)| ≤ µ, (6a)

z̄(x, t) = Proj[a,b]

(
−1

%

(
p̄(x, t) + µλ̄(x, t)

))
, (6b)

λ̄(x, t) = Proj[−1,1]

(
− 1

µ
p̄(x, t)

)
, (6c)

that hold for a.a. (x, t) ∈ Q; see, e.g., [15]. Here, the projection Proj[α,β] :
R → [α, β] is defined by Proj[α,β](q) = max{α,min{q, β}}; see, e.g., [37]. The
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subdifferential of the L1-norm of the control is given as follows:

λ̄ ∈ ∂g(z̄)⇔

 λ̄ = 1 if z̄(x, t) > 0,
λ̄ ∈ [−1, 1] if z̄(x, t) = 0,
λ̄ = −1 if z̄(x, t) < 0

for a.a. (x, t) ∈ Q and z̄ ∈ L∞(Q). By these relations, we obtain the following
form of an optimal control:

z̄ =



a on Aa := {(x, t) ∈ Q : −p̄(x, t) + µ < %a},
b on Ab := {(x, t) ∈ Q : −p̄(x, t)− µ > %b},
0 on A0 := {(x, t) ∈ Q : |p̄(x, t)| ≤ µ},
− 1
% (p̄− µ) on I− := {(x, t) ∈ Q : %a ≤ −p̄(x, t) + µ < 0},
− 1
% (p̄+ µ) on I+ := {(x, t) ∈ Q : 0 < −p̄(x, t)− µ ≤ %b}.

(7)

The set A0 accounts for the sparsity of the control.
Eliminating the control from the optimality system and using the projection

formulae above, we obtain the following system for the state and the adjoint
state:

∂tu−∆xu+R(u) = Proj[a,b]

(
−1

%

(
p+ µProj[−1,1]

(
− 1

µ
p

)))
in Q, (8a)

u = 0 on Σ, u = u0 on Σ0,

− ∂tp−∆xp+R′(u)p = u− uQ in Q, (8b)

p = 0 on Σ, p = 0 on ΣT .

Let us define the Bochner spaces for the state and adjoint state variables as
follows:

X0 := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω)) = {v ∈W (0, T ), v = 0 on Σ0},
XT := L2(0, T ;H1

0 (Ω)) ∩H1
,0(0, T ;H−1(Ω)) = {v ∈W (0, T ), v = 0 on ΣT },

Y := L2(0, T ;H1
0 (Ω)).

Our space-time variational formulation for the coupled system (8) reads: Find
u ∈ X0 and p ∈ XT such that the variational equations∫

Q

∂tu v dx dt+

∫
Q

∇xu · ∇xv dx dt+

∫
Q

R(u) v dx dt

=

∫
Q

Proj[a,b]

(
−1

%

(
p+ µProj[−1,1]

(
− 1

µ
p

)))
v dx dt (9a)

−
∫
Q

u q dx dt−
∫
Q

∂tp q dx dt+

∫
Q

∇xp · ∇xq dx dt+

∫
Q

R′(u)p q dx dt

= −
∫
Q

uQ q dx dt (9b)
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hold for all v, q ∈ Y . This system is solvable, because the optimal control prob-
lem has at least one solution. Due to the projection formula on the right hand
side of (9a), we need special care to discretize the optimality system. In fact,
following the discretization scheme proposed in [1], we go back to the variational
inequality (5c) and use piecewise constant approximation for the control in order
to derive first order necessary optimality conditions for the associated discrete
optimal control problem. We will discuss this in the forthcoming Section.

4 Space-time finite element discretization

For the space-time finite element approximation of the optimal control problem
(1), we consider an admissible triangulation Th(Q) of the space-time domain Q
into shape regular simplicial finite elements τ . Here, the mesh size h is defined
by h = maxτ∈Th hτ with hτ being the diameter of the element τ ; see, e.g., [6, 31].
For simplicity, we assume Ω to be a polygonal spatial domain. Therefore, the
triangulation exactly covers Q = Ω× (0, T ).

Let S1
h(Q) be the space of continuous and piecewise linear functions that are

defined with respect to the triangulation Th(Q). The discrete variational form
of the state equation (3) reads as follows: Find uh ∈ X0,h = S1

h(Q) ∩X0 such
that∫

Q

∂tuh vh dx dt+

∫
Q

∇xuh·∇xvh dx dt+
∫
Q

R(uh) vh dx dt =

∫
Q

z vh dx dt (10)

is satisfied for all vh ∈ X0,h. For approximating the control z, we define the
space

Zh =
{
zh ∈ L∞(Q) : zh is constant in each τ ∈ Th

}
.

An element zh ∈ Zh can be represented in the form

zh =
∑
τ∈Th

zτXτ ,

with Xτ being the characteristic function of τ . Moreover, the set of discrete
admissible controls is defined by

Zad,h =
{
zh ∈ Zh : a ≤ zh|τ ≤ b for all τ ∈ Th

}
.

Now, we consider the discrete optimal control problem

min
zh∈Zad,h

Jh(zh) :=
1

2
‖uzh − uQ‖2L2(Q) +

%

2
‖zh‖2L2(Q) + µ ‖zh‖L1(Q),

where uzh denotes the solution of the discrete variational problem (10) with
the discrete control zh. We assume that the discrete optimal control problem
has at least one locally optimal control that is denoted by z̄h. The associated
state is denoted by ūh. If z̄h =

∑
τ∈Xh

z̄τXτ is a locally optimal control of
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the discrete optimal control problem, then there exists a unique adjoint state
p̄h ∈ XT,h = S1

h(Q) ∩XT and λ̄h ∈ ∂g(z̄h) such that (ūh, p̄h, z̄h, λ̄h) solves the
discrete optimality system∫

Q

∂tuh vh dx dt+

∫
Q

∇xuh · ∇xvh dx dt+

∫
Q

R(uh) vh dx dt

=

∫
Q

z̄h vh dx dt, for all vh ∈ X0,h, (11a)

−
∫
Q

uh qh dx dt−
∫
Q

∂tph qh dx dt+

∫
Q

∇xph · ∇xqh dx dt

+

∫
Q

R′(uh)ph qh dx dt = −
∫
Q

uQ qh dx dt, for all qh ∈ XT,h, (11b)∫
Q

(
ph + %zh + µλh

)(
vh − zh

)
dx dt ≥ 0, for all vh ∈ Zad,h. (11c)

The existence of a solution to the discretized optimality system will not be
discussed in this paper. We tacitly assume that a locally unique solution exists.
Note that λ̄h ∈ ∂g(z̄h) is equivalent to the form

λ̄h =
∑
τ∈Th

λ̄τXτ with

 λ̄τ = 1 if z̄τ > 0,
λ̄τ ∈ [−1, 1] if z̄τ = 0,
λ̄τ = −1 if z̄τ < 0.

Then, the inequality (11c) can be represented as follows:∑
τ∈Th

(∫
τ

p̄h dx dt+ |τ |
(
%z̄τ + µλ̄τ

))(
v̄τ − z̄τ

)
≥ 0 for all a ≤ v̄τ ≤ b,

which is recasted in the equivalent form(∫
τ

p̄h dx dt+ |τ |
(
%z̄τ + µλ̄τ

))(
v̄τ − z̄τ

)
≥ 0, a ≤ v̄τ ≤ b,

for all τ ∈ Th. Therefore, we have the projection representation formula [37]

z̄τ = Proj[a,b]

(
−1

%

(
1

|τ |

∫
τ

p̄h dx dt+ µλ̄τ

))
(12)

for the optimal control on each element τ ∈ Th. From this, we have the following
results:

z̄τ = 0 ⇔ 1

|τ |

∣∣∣∣∫
τ

p̄h dx dt

∣∣∣∣ ≤ µ,
λ̄τ = Proj[−1,1]

(
− 1

µ|τ |

∫
τ

p̄h dx dt

)
.

The above results are obtained by the discretization approach proposed in [1,
10] for the optimal control of semilinear elliptic equations, and in [15] of the
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Schlögl and FitzHugh-Nagumo systems. In fact, by a close look to the projection
formula, we have the following form of the discrete optimal control:

z̄τ =



a on Aa,Th := {τ ∈ Th : −p̄τ + µ < %a},
b on Ab,Th := {τ ∈ Th : −p̄τ − µ > %b},
0 on A0,Th := {τ ∈ Th : |p̄τ | ≤ µ},
− 1
% (p̄τ − µ) on I−,Th := {τ ∈ Th : %a ≤ −p̄τ + µ < 0},
− 1
% (p̄τ + µ) on I+,Th := {τ ∈ Th : 0 < −p̄τ − µ ≤ %b},

(13)

where

p̄τ =
1

|τ |

∫
τ

p̄h dx dt.

Inserting (12) into (11a), we obtain an equivalent form of the discrete optimality
system that consists of the state and adjoint state equations. Namely, find
ūh ∈ X0,h and p̄h ∈ XT,h such that (ūh, p̄h) solves the coupled system∫

Q

∂tuh vh dx dt+

∫
Q

∇xuh · ∇xvh dx dt+

∫
Q

R(uh) vh dx dt

−
∑
τ∈Th

∫
τ

Proj[a,b]

(
−1

%

(
p̄τ + µProj[−1,1]

(
− 1

µ
p̄τ

)))
vh dx dt

= 0, for all vh ∈ X0,h, (14a)

−
∫
Q

uh qh dx dt−
∫
Q

∂tph qh dx dt+

∫
Q

∇xph · ∇xqh dx dt

+

∫
Q

R′(uh)ph qh dx dt = −
∫
Q

uQ qh dx dt, for all qh ∈ XT,h. (14b)

The convergence of the solution of the discrete optimal control problem to the
solution of its associated continuous optimal control problem as well as the error
analysis of our finite element approximation are beyond the scope of this work
and will be studied elsewhere.

To solve the above discrete coupled nonlinear optimality system, we apply
the semismooth Newton method as discussed in [30], where a generalized deriva-
tive needs to be computed at each Newton iteration. In fact, each iteration turns
out to be one step of a primal-dual active set strategy [21]: Given (ukh, p

k
h), find
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(δuh, δph) such that∫
Q

∂tδuh vh dx dt+

∫
Q

∇xδuh · ∇xvh dx dt+

∫
Q

R′(ukh) δuh vh dx dt

+
1

%

(
XI−,Th

+ XI+,Th

)(∑
τ∈Th

∫
τ

(
1

|τ |

∫
τ

δph dx dt

)
vh dx dt

)

= −
∫
Q

∂tu
k
h vh dx dt−

∫
Q

∇xukh · ∇xvh dx dt+

∫
Q

R(ukh) vh dx dt

+ XAa,Th

(∑
τ∈Th

∫
τ

a vh dx dt

)
+ XAb,Th

(∑
τ∈Th

∫
τ

b vh dx dt

)

− 1

%
XI−,Th

(∑
τ∈Th

∫
τ

(
1

|τ |

∫
τ

pkh dx dt− µ
)
vh dx dt

)

− 1

%
XI+,Th

(∑
τ∈Th

∫
τ

(
1

|τ |

∫
τ

pkh dx dt+ µ

)
vh dx dt

)

and

−
∫
Q

δuh qh dx dt−
∫
Q

∂tδph qh dx dt+

∫
Q

∇xδph · ∇xqh dx dt

+

∫
Q

R′(ukh)δph qh dx dt+

∫
Q

R′′(ukh)pkhδuh qh dx dt

=

∫
Q

ukh qh dx dt+

∫
Q

∂tp
k
h qh dx dt−

∫
Q

∇xpkh · ∇xqh dx dt

−
∫
Q

R′(ukh)pkhqh dx dt−
∫
Q

uQ qh dx dt

are fulfilled, and uk+1
h = ukh + ωδuh, pk+1

h = pkh + ωδph with some damping
parameter ω ∈ (0, 1].

5 Numerical experiments

For the two numerical examples considered in this section, we set Ω = (0, 1)2,
T = 1, and therefore Q = (0, 1)3. Using an octasection-based refinement [4],
we uniformly decompose the space-time cylinder Q until the mesh size reaches
h = 1/128. Therefore, the total number of degrees of freedom for the coupled
state and adjoint state equations is 4, 194, 304. We will also use an adaptive
refinement procedure that is driven by a residual based error indicator for the
coupled state and adjoint state system similar to that one that was developed for
the state equation in [33]. We perform our numerical tests on a desktop with
Intel@ Xeon@ Processor E5-1650 v4 (15 MB Cache, 3.60 GHz), and 64 GB
memory. For the nonlinear first order necessary optimality system, we use the
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Figure 1: Example 1, plots of the target at time t = 0.5, 0.55, 0.75 for the
moving target example.

relative residual error 10−5 as a stopping criterion in the semismooth Newton
iteration, whereas the algebraic multigrid preconditioned GMRES solver for
the linearized system at each Newton iteration is stopped after a residual error
reduction by 10−6; cf. also [35].

5.1 Moving target (Example 1)

In the first example, the desired state is given by the function

uQ(x, t) = exp
(
−20(x1 − 0.2)2 + (x2 − 0.2)2 + (t− 0.2)2

)
+

exp
(
−20(x1 − 0.7)2 + (x2 − 0.7)2 + (t− 0.9)2

)
,

which is adapted from an example constructed in [11]; see an illustration of the
target at time t = 0.5, 0.55, and 0.75 in Fig. 1. The same desired state was
also used in the numerical test for spatially directional sparse control in [13, 14].
The parameters in the optimal control problem are % = 10−4, µ = 0.004, a =
−10, and b = 20. For the nonlinear reaction term in the state equation, we
set R(u) = u(u − 0.25)(u + 1). Homogeneous initial and Dirichlet boundary
conditions are used for the state equation.
To reach the relative residual error 10−5 for the nonlinear first order necessary
optimality system, we needed 21 and 37 semismooth Newton iterations for the
nonsparse and sparse optimal control, respectively; see Fig.2. We clearly see a
superlinear convergence of the semismooth Newton method. The total system
assembling and solving time is about 4 and 4.7 hours on the desktop computer,
respectively.
Comparisons of sparse and nonsparse controls as well as of associated states
at different times are displayed in Fig. 3 and Fig. 4, respectively. A close look
to sparse and nonsparse controls along different lines in the space-time domain
is illustrated in Fig. 5. In this example, we clearly see that the L1 cost func-
tional promotes spatial and temporal sparsity, with some precision loss of the
associated state to the target, cf. Fig. 4.
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Figure 2: Example 1, relative residual error reduction in the semismooth Newton
method for the nonsparse and sparse control in the moving target example.

Figure 3: Example 1, Comparisons of sparse (up) and nonsparse controls (down)
at time t = 0.25, 0.5, 0.75 for the moving target example.
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Figure 4: Example 1, Comparisons of states associated to sparse (left) and
nonsparse controls (right) at time t = 0.75 for the moving target example.

Figure 5: Example 1, comparisons of sparse (red) and nonsparse (blue) controls
along the line between [0, 0, 0.25] and [1, 1, 0.25], between [0, 0, 0.5] and [1, 1, 0.5],
and between [0, 0, 0.75] and [1, 1, 0.75] for the moving target example.
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Figure 6: Example 2, plots of the target at time t = 0, 0.25, 0.5, 0.75 for the
turning wave example.

5.2 Turning wave target (Example 2)

In this example, we consider the target

uQ(x, t) =

(
1.0 + exp

(
cos(g(t))

(
70
3 − 70x1

)
+ sin(g(t))

(
70
3 − 70x2

)
√

2

))−1

+

(
1.0 + exp

(
cos(g(t))

(
70x1 − 140

3

)
+ sin(g(t))

(
70x2 − 140

3

)
√

2

))−1
− 1,

where g(t) = 2π
3 min

{
3
4 , t
}

. This is an adapted version of the turning wave
example considered in [15]. The wave front turns 90 degrees from time t = 0 to
t = 0.75, and remains fixed after t = 0.75; see the target at t = 0, 0.25, 0.5, and
0.75 as illustrated in Fig. 6.

The nonlinear reaction term is given by R(u) = u(u− 0.25)(u+ 1). We use
the initial data

u0(x) =

(
1 + exp

( 70
3 − 70x1√

2

))−1
+

(
1 + exp

(
70x1 − 140

3√
2

))−1
− 1

on Σ0, and homogeneous Neumann boundary condition on Σ for the state. As
parameters, we use % = 10−6, µ = 10−4 for the sparse case and % = 10−6, µ = 0
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Figure 7: Example 2, relative residual error reduction in the semismooth Newton
method for the nonsparse and sparse control in the turning wave example.

for the nonsparse case. The bounds a = −100 and b = 100 are set for both
cases.

To solve the nonlinear first order necessary optimality system, we needed
7 and 35 semismooth Newton iterations for the nonsparse and sparse optimal
control, respectively; see Fig. 7. The total system assembling and solving time
is about 3 and 12.7 hours on the desktop computer, respectively.

The numerical solutions of sparse and nonsparse controls as well as associated
optimal states are illustrated in Fig. 8. We clearly see certain sparsity of our
optimal sparse control as compared to pure L2-regularization, without too much
precision loss of the associated state to the target. A closer look to the sparse
and nonsparse controls confirms that our optimal sparse control exhibits sparsity
with respect to the spatial direction; see Fig. 9.

Instead of an uniform refinement, we may also adopt an adaptive strategy.
In this way, local refinements are made in the region where the solution shows
a more local character, whereas coarser meshes appear in the other region. For
example, in the optimal sparse control case (% = 10−6, µ = 10−4), we start from
an initial mesh with 729 grid points, 9 in each spatial and the temporal direction.
We use a residual based error indicator for the coupled state and adjoint state
system to guide our adaptive mesh refinement, similar to the approach [33].
After the 6th adaptive octasection refinement [4], the mesh contains 1, 053, 443
grid points; see the adaptive space-time mesh and the meshes on the cutting
plans at different times in Fig. 10. As we observe, the adaptive refinements
follow the rotation of the wave front of the state.
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Figure 8: Example 2, plots of the sparse (left) and nonsparse (right) controls
(in the first row) and the associated states (in the second row) at time t = 0.5
for the turning wave example.

6 Conclusions

In this work, we have considered a space-time Petrov-Galerkin finite element
method on fully unstructured simplicial meshes for semilinear parabolic opti-
mal sparse control problems. The objective functional involves the well-known
L1-norm of the control in addition to the standard L2-regularization term. The
proposed method is able to capture spatio-temporal sparsity, which has been
confirmed by our numerical experiments. A rigorous convergence and error anal-
ysis of our space-time Petrov-Galerkin finite element methods for such optimal
sparse control problems is left for future work.
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Figure 9: Example 2, comparisons of sparse (red) and nonsparse (blue) con-
trols along the line between [0.5, 0, 0.5] and [0.5, 1, 0.5], between [0, 0.5, 0.25] and
[1, 0.5, 0.25], and between [0, 0, 0.5] and [1, 1, 0.5] for the turning wave example.
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and FitzHugh-Nagumo systems. Comput. Methods Appl. Math., 13(4):415–
442, 2013.
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