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Abstract

This paper presents three new coupling methods for interior penalty discontin-
uous Galerkin finite element methods and boundary element methods. The new
methods allow one to use discontinuous basis functions on the interface between the
subdomains represented by the finite element and boundary element methods. This
feature is particularly important when discontinuous Galerkin finite element meth-
ods are used. Error and stability analysis is presented for some of the methods.
Numerical examples suggest that all three methods exhibit very similar convergence
properties, consistent with available theoretical results.

1 Introduction

This paper is concerned with coupling methods for finite element and boundary element
methods. Such coupling methods are advantageous for problems whose domain involves an
interior finite subdomain(s) embedded in an exterior unbounded subdomain, such that in
the interior subdomain the governing partial differential equations are complex and require
finite element methods, whereas in the exterior subdomain the governing partial differential
equations are simple and can be solved using boundary element methods. The coupling
methods are well established in the literature for classical (continuous) finite element and
boundary element methods; we refer to [11] and the references given therein.

This paper is motivated by applications that require discontinuous Galerkin (DG) rather
than continuous finite element methods. Coupling methods involving DG finite element



methods have been analyzed by Bustinza, Gatica, Heuer, and Sayas [2, 3, 8, 9], who
established that essentially any boundary element method can be combined with any DG
finite element method, as long as one uses approximations continuous on the interface.
For two—dimensional problems, this restriction can be removed if one combines DG finite
element methods with a particular Galerkin boundary element method [8].

The coupling methods considered by Bustinza, Gatica, Heuer, and Sayas are based on
the symmetric formulation of boundary integral equations. In this case, unique solvability
of the coupling method is a direct consequence of the unique solvability of the underlying
finite element and boundary element systems. A disadvantage of symmetric boundary
element methods is that they involve the hypersingular boundary integral operator that not
only precludes the use of basic collocation schemes but also requires functions continuous
on the interface. The latter restriction is particularly undesirable for coupling methods
involving DG finite element methods in R? [8].

In this paper, we present three new methods that allow for discontinuous functions on
the interface, and therefore significantly simplify the coupling between DG finite element
methods with either Galerkin or collocation boundary element methods. The first method
is based on the Johnson-Nédélec coupling [13] extended to DG finite element methods.
This method admits both collocation and Galerkin boundary element methods. However,
the method gives rise to non—symmetric linear algebraic problems and its mathematical
foundations have not been established. The second method, which combines a three—
field approach [1] and a symmetric boundary integral formulation, addresses some of the
drawbacks of the first method, but it involves the hypersingular operator, and therefore it is
limited to Galerkin boundary element methods. This method gives rise to non-symmetric
but well-structured linear algebraic problems that can be solved almost as efficiently as
symmetric ones. Following the coupling approach of DG and mixed finite element methods
[10] the third method gives one two options. The first option admits both collocation and
Galerkin schemes and results in non—symmetric linear algebraic problems. This option has
the advantage of having a sound mathematical foundation for the Galerkin scheme. The
second option is limited to Galerkin boundary element methods, but it results in symmetric
linear algebraic problems and has a sound mathematical foundation.

The rest of the paper is organized as follows. In Section 2, we introduce a model prob-
lem and briefly outline relevant existing results necessary for presenting the new methods.
In Section 3, we present the new coupling methods. In Section 4, we establish unique
solvability and error estimates for one of the methods. In Section 5, we present numerical
results indicating that the proposed methods and their variants have very similar conver-
gence properties, and those properties are consistent with available theoretical results. The
paper is concluded with a brief summary.



2 Model Problem and Background

For a bounded domain Q C R?® with a Lipschitz boundary I' := 9 and a given volume
density f € L?*(€2), the model problem involves the partial differential equations

~Au;=f inQ, —Au,=0 inQ°:=R\Q, (2.1)
the transmission conditions
[u] :=ue—u; =0 and [n-Vu]=n-(Vue—Vu;)=0 onT, (2.2)

and the radiation condition
1
ue(xr) =0 (W) as |z| — oo. (2.3)
T

Here n denotes the outward unit normal vector on I'.

For our purposes, it is expedient to decouple the stated boundary value problem (2.1)—
(2.3) into an interior boundary value problem for the subdomain €2 and an exterior bound-
ary value problem for the subdomain €2¢. We suppose that the numerical treatment of the
interior and exterior problems is based on DG finite element and boundary element meth-
ods, respectively. Our objective is to identify appropriate interior and exterior boundary
value problems, boundary integral equations for the exterior problems, and discretization
schemes on T'.

2.1 Boundary Integral Equations

The Cauchy data w.r and t. := (n - Vu,);r uniquely define a harmonic function w.(z) for
x € Q° via the representation formula, e.g. [24],

* a *
ue<x> = - / U (.T,y)te(y>d3y + / —U ('ray)ue<y)d8y ) (24)
r r On,
which satisfies the radiation condition (2.3), and where
1 1
U~ = —

is the fundamental solution of the Laplace operator.
The Cauchy data wugr and ?. can be related to each other using boundary integral
equations on I', all of which follow from the exterior Calderon projection

U i1+ K -V U

)= 2 ‘). 2.5

()= e ) () 25
Here for z € T

Vi@ = [ U@, () = / O (e, gy ds,,

r ony



/anxU* T y)te(y)dsy, - (Due)(z) = _aim/iU*@ Y)ue(y)ds,

on,

denote the single layer, double layer, adjoint double layer, and the hypersingular bound-
ary integral operators, respectively. The mapping properties of these operators are well
established, e.g. [7, 12, 14, 21, 24]. In particular, the single layer operator V : H=/2(T") —
H'2(T') is bounded and H~'/2(T")-elliptic, and therefore invertible. Hence equations (2.5)
imply the Dirichlet to Neumann map

1 1 1
t, = —V—1(§I — K)u,=—|D+ (51 — K’)V‘1(§I — K) | ue =: —S™"u,. (2.6)

Let us note that both representations of the Steklov—Poincaré operator St : HY?(T') —
H=Y2(T') are self-adjoint in the continuous setting. However, these representations may
have different stability and symmetry properties in the discrete setting, e.g. [23]. Finally,

let us mention that the bilinear form induced by the hypersingular operator D allows for
an alternative representation that involves weakly singular surface integrals only [16]:

(Du, v) / / awlruly) - Qlv(®) ) 0o for all u,v € HYAT) A O, (2.7)
T4 rJr |z =y

where curl. is the surface curl operator. This representation is central to Galerkin boundary

element methods involving the hypersingular operator D, as it allows one to represent the

action of D in terms of the single layer operator V. Let us emphasize that (2.7) holds for

continuous densities u and v only; otherwise (2.7) must include additional terms.

2.2 Interior Penalty DG Finite Element Methods

In the proposed coupling methods, DG finite element methods are restricted to interior
penalty methods [19 20, 27] which are well studied and widely applied.

Let 7;, = {Tg ? be a finite element mesh of the interior domain 2. For an element
T €Ty, we 1dent1fy the boundary 0T, the diameter hr, and the outward unit normal vector
np. We define the global mesh size h := maxrc7;, hy. The interior and exterior element
faces of the finite element mesh are defined as

EMi={e: IT,,Ts € Tp: e =0T, N Ty, a # B},

and
EX={e: T €Tp:e=0TNT},

respectively. For an interior face e = 97, N J1p with a < 3, the jump and the average
values of an element—wise smooth function ¢ are defined as

6. = (e — @) and {0} = < ((Om )+ (0m, )i,

respectively, and the diameter of the face e is denoted by h,.
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For s > % we introduce the broken Sobolev space
V:i={vel*Q): vyreHT) YT €Ty},

and the semi—discrete bilinear form for u,v € V

apg(u,v) = Z /TVu(x) -Vou(x) dr — Z /az“ {n-Vu}(z) [v]e(z) ds, (2.8)

TeTn ec&int
—52 [t Vo) (o) s, + Z [ 5 [ ks

where ¢ is a formulation parameter. In particular, the values £ € {—1,0,1} correspond to
non-symmetric, incomplete, and symmetric interior penalty DG finite element methods,
respectively. The parameters o. > 0 are required for stabilization. The related energy
norm is given by

Oe
lolfbe = D IVollgemy + Y D01 Z2qe)- (2.9)
T€Th ecgint
Let
Vi = {wv, € L*(Q) : vyr €P,(T) VT € Tn} = span{y; } 2, (2.10)

denote the standard finite element space of local polynomials of degree p. For the coupling
with boundary element methods it is useful to consider a splitting of V, = V¥ @ VI' with

V' = span{y; : Pilr = 027 and V, = Span{‘ﬂi}i]‘iMQHa (2.11)

where V¥ is the space spanned by the degrees of freedom in the interior of €2, and VI is
the space spanned by the degrees of freedom on the interface I'. In addition, let

35 ~ M
Vil; = Spall {%‘}MQ-H - Vll;

be the subspace of boundary basis functions continuous on I'.

2.3 Coupling Methods

In this section, we briefly describe the coupling method of Gatica, Heuer, and Sayas [8].
We regard this method as the current state of the art for coupling DG finite element and
boundary element methods. To this end, we consider the interior Neumann boundary value
problem

0

—Au;(x) = f(x) forx €, 8—ul(:p) =t;(z) forzel.

Ny
In the context of the interior penalty methods, this problem results in the variational
problem of finding w;; € V}, such that

apc (Ui, vp) = / f(@)vp(x)dz +/ti(x)vh(x)dsm for all v, € V. (2.12)
Q r

bt



By using the Neumann transmission condition, ¢; = t., and the Dirichlet to Neumann map
(2.6), te = —S"u,, we obtain
apc(in, Vn) + (S Ue, vp)r = (f,vn)a, Ui = Ue.

As in the symmetric coupling of classical finite element and boundary element methods
6, 23], we use the symmetric representation (2.6) of the Steklov—Poincaré operator S™* to

obtain 1
apc (Wi p, V) + (De, Up)r — <(§I — K'te,vn)r = (f,vn)0 (2.13)

where ]
te = —V*l(af — K)u, € H Y4

is the unique solution of the variational problem
1
(Vie,w)r + (51 = K)ue,wyr =0 for allw € H-YVX(D). (2.14)

For a Galerkin discretization of the variational problem (2.13) and (2.14), we introduce a
finite-dimensional ansatz space

Wi = span{yy )5, € H™VA(D),

and approximate u. by the Dirichlet trace of w;; on I'. This results in the variational
problem of finding (u;p,t.) € (Vi' & VL) x W, such that

1
apc(Uins V) + (Duip, Vn)r — ((51 — K')ten, vn)r = (f,vn)a (2.15)
for all v, € V¥ & 17,1;, and
1
(Vten, wn)r + ((51 — K)u;p, wp)r =0 for all wy, € W, (2.16)

This variational problem was first proposed and analyzed in [8]. Since the hypersingular op-
erator D requires the use of continuous basis functions, one must use the subspace V5! 6917,1;
instead of the general space V). Although this restriction guarantees unique solvability
and leads to optimal error estimates, it is incompatible with the spirit of DG finite element
methods. Furthermore, constructing the restricted subspace poses significant practical dif-
ficulties, especially for three-dimensional problems, and therefore the entire approach may
not be appealing to practitioners. This issue may be addressed by introducing additional
Lagrange multipliers that ensure continuity of w; on I' [8]. However, this modification
seems to be also cumbersome for three-dimensional problems.

The variational problem (2.15)—(2.16) is equivalent to the system of linear algebraic
equations

K8 KPS uf /e
K3 KRE+D, —(IM] - K]) o =1 (2.17)
%Mh - [?h Vh ie Q



where

Kg§liil = apc(ei, ¢)) fori,j=1,..., Mg,

281, i] = apa(Pageir ©5) fori=1,...,M —Mq,j=1,..., Mg,
K56[5,1] = apc(ei Bross) fori=1,...,Mq,j=1,...,M — Mg,
KRElG i) = apa(@uaris Batary)  fori,j=1,..., M — Mg

are the blocks of the DG finite element matrix. Further,

5h[.7i] = <D6M9+i>6MQ+j>F7 Mh[&i] = <&Mﬂ+i7¢f>l—‘7
Vhka] = <V7vbka7vb€>F7 I?hwvz] = <K6Mg+iawé>117

fori,j =1,..., M — Mgq, k,¢ = 1,..., Np are the Galerkin boundary element matrices,
and the right hand side is given by

fjQ = /Qf(:p)goj(x)dx forj=1,..., Mg,

f]F = / f(@)ormg+j(x)de forall j=1,...,M — M.
0

Since the discrete single layer integral operator V} is symmetric and positive definite, we
can eliminate the discrete exterior Neumann datum ¢, to obtain the Schur complement

system
K DG DG Q Q
~QQ _ FQ~ ( le ) _ ir‘ ’ (218)
Kor Kpp + 5™ U f
where . .
Si" = Dy + (M — KV, (5My — Kr) (2.19)

is a symmetric Galerkin boundary element approximation of the exterior Steklov—Poincaré
operator (2.6). Note that S;"™ is positive definite for any choice of admissible basis functions
©; and ¥y, e.g. [23].

3 New Coupling Methods

In this section, we present three new coupling methods for the interior penalty DG finite
element methods and boundary element methods. All three methods allow one to use the
standard space V}, of globally discontinuous finite element functions, which significantly
simplifies the implementation in comparison to the coupling methods that require functions
continuous on I". Some of the coupling methods admit both collocation and Galerkin
boundary element methods, which is particularly useful for practitioners.



3.1 First Method: Non—-Symmetric Coupling

This method simply extends Johnson-Nédélec’s coupling method [13] involving classical
finite element methods to DG finite element methods. This method uses only the first
integral equation in (2.5), and therefore the corresponding Steklov—Poincaré operator is

represented as

1
te = =Sy, = —V*1(§1 — K)u,.

By combining this equation with the Dirichlet transmission condition u; = u., we obtain
the variational problem of finding (u;p,t.n) € Vi X W, such that

aDG(ui,h,vh) — <te,h7 Uh>p = <f, Uh>Q for all Vp € Vh, (31)

1
(Vten, wp)r + ((51 — K)u;p, wp)r = 0 for all w, € W, (3.2)

Since the hypersingular operator D does not appear in these equations, we can solve them
using the standard discontinuous finite element space V.

The variational problem (3.1) and (3.2) is equivalent to the system of linear algebraic
equations

Kgg  Krg uf! f*
Kgg  KpE o <M || A | =] ] (33)
M, - Ky W t, 0

where
KDG[ja'L.] = aDG(SO’DSOj)? f] = <f7 @])Q for Z)] = ]-7' . '7M'

The blocks of the stiffness matrix and the right hand side vector are obtained according to
the splitting (2.11). The blocks

Mh[& i] = (Pmq+is Ye)r  and f?h[fa i) = (K@nqis Yo)r

fori=1,....,.M — Mq,¢ = 1,..., Np, and the block V} has been already introduced in
(2.17). This system of linear algebraic equations does not have any apparent symmetry
properties.

By eliminating the discrete Neumann datum ¢, we obtain the Schur complement system

kg KR )\ (a2 [ f°
kg Kee+Spe )\t )T\ ) o4

A~ 1/\ A~
Gt — J\erh—l(th — Kp) (3.5)

where

is a non-symmetric Galerkin boundary element approximation of the exterior Steklov—
Poincaré operator (2.6).



In contrast to the symmetric approximation (2.19), §ES’G is in general not positive
definite, and therefore a certain stability condition is necessary for positive definiteness.
That condition can be satisfied with a proper choice of the basis functions ¢;r and 1y, e.g.
[23, 26]. The stability condition is not necessary when the coupling involves classical finite
element methods [22, 25]. In this paper, we simply conjecture that the stability condition
is also not necessary when the coupling involves DG finite element methods. In Section 5,
we present numerical examples supporting this conjecture.

The singular boundary integral equation also admits collocation discretizations. This
results in the approximate Steklov—Poincaré operator

1

Spre = WV:(QM}L — Ku), (3.6)
where
Vall k] = (Vi) (@7),  Mulli] = ugsi(ay),  Kallii] = (Konrg+i)(27)
fori=1,...,M — Mq, ¢{ = 1,..., Np are the entries of the collocation matrices, and z}

are collocation nodes.

3.2 Second Method: Symmetric Three—Field Approach

This method is based on coupling of the interior penalty DG finite element methods and
symmetric boundary element methods. In contrast to the first method, this method in-
volves both integral equations in (2.5). The advantage of this method is that its stability
can be proved, and the resulting system of linear algebraic equations is block skew symmet-
ric; this algebraic structure can be advantageously exploited. The drawback of the method
is that it does not admit collocation schemes. The method has the structure similar to
that of the three-field domain decomposition method of Brezzi and Marini [1].

Like in the first method, we combine the variational problem (2.12) with the Neumann
transmission condition t; = t.:

aDG(uLh,vh) — <te,vh>p = <f, Uh>g for all Vp € Vh.

In contrast to the first method, we insert the Dirichlet transmission condition u; = u,
into the first boundary integral equation in (2.5), but we do not use this equation to

eliminate wu,: .
U = Up = (§[—|—K)ue —Vt, onT.

To close the system of governing equations, we use the hypersingular boundary integral
equation

1
Du, + (51 + K')te =0 onT.

To proceed further, we need to address the fact that the hypersingular operator D and
the double layer operator %[ + K have non—trivial kernels. Therefore the exterior Dirichlet

9



trace u, is not uniquely determined by the two boundary integral equations. To this end
we recall that both kernels coincide:

uo(x) =1, (Dug)(z) = %uo(x) + (Kug)(z) =0 forxz el ae.
Accordingly, we introduce the scaling condition
(ue, L)r =0,
and the stabilized hypersingular operator Dy defined as [17]
(Dyu,v)p = (Du,v)p + (u, 1)p(v, Dr  for all u,v € HY*(I).
In addition to the trial space V}, we introduce an ansatz space
Q) = span{¢;})7% ¢ HY*(I) N ()

of continuous basis functions ¢;. As a result we arrive at the variational problem of finding
(Wi tens Uen) € Vi X Wy, X Qp such that

apc(Uin, vn) — (tep,vn)r = (f,vn)q for all v, € Vy, (3.7)
1
(ui,h, wh)p + <Vte7h,wh>[‘ — <(§[ —+ K)u&h,whﬁ = 0 fOI‘ all wp, € Wh, (38)
1
((51 + K'ten, qn)r + (Dsten, gn)yr = 0 forall g, € Q. (3.9)

This variational problem is equivalent to the system of linear algebraic equations

K5G KRS u;! f*
Kgi Kpe =M || 3.10)
M, Vi —1M, - K, te | | 0|’ '
M+ K, Ds U 0

where in addition to those block matrices already used in (3.3) we have

D nlj,i] = (Ds¢i, ¢5)r,  Mull,i] = (pi,e)r, Knll,i] = (Koi, tbe)r

fori,j7 =1,...,Mp, ¢ = 1,..., Nr. By eliminating u, and ¢, from (3.10) we obtain the
Schur complement system

Ko Krg ug? I?
KB? K?IG‘ + S;Lhree uF = fF ? (311>

with the symmetric three—field approximation of the exterior Steklov—Poincaré operator

- 1 1 -1
Simee — LT [Vh + (§Mh + Kh)D;,i(gM,;r + Kh)] M, (3.12)

10



3.3 Third Method: Dirichlet Based Coupling

In the first two methods, the coupling involves passing the exterior Neumann data t. to
the variational problem for the interior boundary value problem. In contrast, in the third
method, the coupling is based on the Dirichlet transmission condition w; = u.. This
approach is similar to the coupling of DG and mixed finite element methods proposed by
Girault, Sun, Wheeler, and Yotov [10].

The solution wu; of the model problem (2.1)—(2.3) coincides with the solution of the
Dirichlet boundary value problem

—Au;=f inQ, wu;=u, onl.

Following [10], the discrete variational problem corresponding to this boundary value prob-
lem is to find w;j € V) such that for all v, € V,

—~ Oe
Gpe (Ui n, v) = (e, Vor -n)p — - /UevhdS = (f, vn)e, (3.13)
ecgpxt 7€

where

apg(u,v) = apa(u,v) — (n - Vu,v)r +n{n- Vo, u)pr + Z % /uvdsx . (3.14)

ecExt
Here n € {—1,0,+1} is a formulation parameter, similar to the formulation parameter £
in (2.8).
Let us combine the Dirichlet to Neumann map (2.6) and the Neumann transmission
condition t, = t; = n - Vu;, so that we obtain

S*u, = —n-Vu; onl.

By adding a stabilization term to this equation [10] and approximating u. by a function
Uep € Qp, we obtain the variational problem of finding (u; p, uen) € Vi X Qp, such that

—~ Oe
apc(Uin, vn) — n{n - Vup, e p)r —Z 7 /ue,hvhdsm = (f,vn)r (3.15)

t
ec&r®

for all v, € Vy,, and

~ O¢
(Sten, an)r + (n - Vuip, qr)r +Z - /[Ue,h — Uip|gnds, =0 (3.16)

ecEpxt

for all ¢, € Qp, where Sis a boundary element approximation of the exterior Steklov—
Poincaré operator (2.6).

11



The variational problem (3.15)—(3.16) is equivalent to the system of linear algebraic
equations

KBS KPS ul! /e
Kge Kp¢ BT, O I L (3.17)
By, §h+Ch (S 0

where R
KP[j,1] = apa(pi,p;) fori,j=1,...,M

is the stiffness matrix of the modified discontinous Galerkin finite element method which
is obtained according to the splitting (2.11). Further,

. O-e
Buali = rn- Voaruss e — 3 7 [ oassoy ds,
eegext
fori=1,...,M — Mq,j=1,..., Mp, and
Chlj, 1] Z Ue/(bl(bjdsx fori,j=1,..., Mr.

eegext

The matrix gh can represent any of the following approximations of the exterior Steklov—
Poincaré operator (2.6), namely either the symmetric Galerkin approximation

SsymG Dh+(;Mh ~ KV, (;Mh—Kh) (3.18)
or the non—-symmetric Galerkin approximation
Sy = M)V, (1Mh — Ky), (3.19)
or the non—symmetric collocation approximation
S = M| Vhl(;Mh ~ K. (3.20)

The Schur complement form of (3.17) is

K% KPS £y [
KB? K?I_C‘; + §]]—?irichlet uF = fF ) (321)

with the discrete representation of the exterior Steklov—Poincaré operator
~ —1
Gpmowe — BT [Sh n Ch] Bin. (3.22)
As before, the matrix gh can be represented by either §Zym’c’, or ggs’c, or gzs’c.

12



4 Stability and Error Analysis

In this section, we establish unique solvability and error estimates for the governing equa-
tion (3.15)—(3.16) of the third method, with the provision that the approximation S of the
Steklov—Poincaré operator (2.6) is stable.

Let us associate the variational problem (3.15)—(3.16) with the bilinear form

Aug, ue;v,q) = ape(ui,v;) —n{n - Vo, u)r —Z % /uevdsgc (4.1)

ecEpxt
~ O'e
+(Sue, ¢)r + (n - Vui, ¢)r +Z . /[Ue — wilqds,.
ecgpxt ¢ Ve
Also we define the energy norm

O O
0, @)% =D IVulleem + > 11011z + >, v = allze) + el (42)

TET, cegint et

Theorem 4.1 Let S be a stable boundary element approximation of the exterior Steklov—
Poincaré operator (2.6),

<§Qh7 Qh>F Z CfHQhH?—[l/Q(F) fOT all qn € Qh7 (43)

andn € {—1,0,+1}. Then for sufficiently large stability parameters o., the bilinear form
(4.1) is elliptic,

Alvns qns v an) 2 3 [ (ns an) 1% for all (vn,qr) € Vi x Qp (4.4)
and the variational problem (3.15)—(3.16) has a unique solution.

Proof. For sufficiently large o., the bilinear form apg(-,-) defined in (2.8) is elliptic
[19]. That is, there exists a constant ¢f! > 0 independent of h such that

aDG(vh,vh) > 6114 thH2DG’ for all vy, € Vh, (45)

where

oe
lalle = Y IVonlliay + Y h—e!\[[vh]]!\iz<e)-

TeT, ecgint
By inserting (3.14) in (4.1) and using (4.3) and (4.5), we obtain the inequality
Avn, @i vn, @) = apc(vn,vn) + (Sau, @u)r
Oe
~(= )0 Voo - e+ 3 5 / [on — quJ2ds,

eeExt

v

et llonllbe + eF lanll ey

Te
—(1=n)[(n - Vup, v — qu)r| + Z o /[vh — qn)?ds, .

ecEpt
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One can show (see Remark 3.1 in [10]) that

o= a7 Vondrl < 5 3 IVunlliary + 5 30 7 lloe — anlliey

TGTh eef)e"t e

which implies the estimate

L—n
Avmaima) = (= 250) | S 190l + X Ml

Te’Th eegmt
1-— n O¢
(1 150) 3 el = e + Sty
ecEsxt ¢

, 1- 1- s
> min{ (1= 257 (o = 5 ) o o

Thus A(vn, qn; vn, qn) is elliptic for n € {—1,0, 1}, if we choose o, sufficiently large to ensure

1—n
A
—— > 0.

Remark 4.1 ]f§ corresponds to the symmetric Galerkin approximation (3.18), then the
stability estimate (4.3) holds for any pair of boundary element spaces Qp and Wiy, e.q.
[23].  For the non—symmetric approximations (3.19) and (3.20), an additional stability
condition becomes necessary. That condition requires properly chosen boundary element
spaces Qp and Wy,. In particular, this can be achieved by constructing Wy, on a finer mesh
in comparison to that used for constructing Qp, e.g. [26].

Lemma 4.2 Let (u;, u.) be the weak solution of the model boundary value problem (2.1)—

(2.3) such that u; € H*(Q) with s > % and (uw;p, uep) be a solution of the variational

problem (3.15) and (3.16). Then the perturbed Galerkin orthogonality condition takes the
form

A(w; — Wi gy Ue — Ue p; Vn, Qn) = (S — S“Yue, qnyr  for allVy, x Qy,. (4.6)

Proof. Theorem 3.2 in [10] implies

apa(ui,v) —n{n - Vo, ue)r —Z % /uevdsgc = (f,v)r forallveV.

e Je
ext
e€&y

The solution (u;, u.) satisfies

(SUe, )1 + (n - Vug, ¢)r + Z ae/ uilqds, =0 for all ¢ € HY?(T).

eegext
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Hence we conclude that
Aui e v,0) + (5™ = Ste, g, )r = (fv)e for all (v,g) €V x HY*(D).
The solution (u;p, ue ) satisfies
AU py Ue s Vny qr) = (fyon)a  for all (vn, qn) € Vi X Q.

For a conforming approach, V;, x Q; C V x HY%(T), the last two equations imply (4.6). ®

Theorem 4.3 Let (u;, ue) be the weak solution of the model boundary value problem (2.1)—

(2.3) such that u; € H*(Q) with s > 3. Let (Wi, Uepn) be the unique solution of the

variational problem (3.15) and (3.16), and let S satisfy the approximation property
1(S = 5V uell g-172ry < s w;lelﬁvh [te — wallg-1r2qry  with te = S“u,. (4.7)
Then there exists a constant C > 0 such that the quasi—optimal error estimate

(s — i py e — en)||4

< O |llue = alln ey + lui = vnllbe + Y hell V(w5 —vn) - 72

ecEpt

1+ o0, .
# 30 S o) = = e s B e = ey
ec&r”

holds for all (vp, qn) € Vi X Q.

Proof. See Appendix. [ |

Remark 4.2 The approximation property (4.7) holds unconditionally for the Galerkin ap-
proximations (3.18) and (3.19) [23, 24]. In contrast, for the collocation approzimation
(3.20), (4.7) holds if the approximation is stable. At present, stability of the approzimation
under general conditions is an open problem.

Corollary 4.4 Let all assumptions of Theorem 4.3 hold, and in addition 3/2 < s < 2. If
Vy, is the space of discontinuous linear finite element functions, Qp is the space of piece-
wise continuous linear boundary element basis functions, and W, is the space of piecewise
constant boundary element basis functions, then there exists a constant C' such that

HS*S/Q(F)] . (48)

Remark 4.3 Of course if u; € H*(Q), the error estimate implies linear convergence rate.
This result is straightforward to generalize to approximations based on higher order poly-
nomial basis functions. Such approximations are meaningful for sufficiently large s only.

[(wi = i, e — te,)]|a < CR []ug]

me@) + |t
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Remark 4.4 The Schur complement systems (2.18), (3.4), (3.11) and of (3.21) allow for
a unified treatment of the coupling methods. In particular, this unified structure allows
one to exploit standard results pertaining to stability and error analysis. However, stability
analysis of the non—symmetric formulation (3.1)~(3.2) requires additional considerations.
While it 1s likely that a successful treatment of the non—symmetric formulation is possible
along the lines proposed in [22, 25], it is not pursued in this paper. Here, we limit our study
of this issue to presenting numerical results confirming expected theoretical results.

5 Numerical Examples

In this section, we present numerical results confirming the theoretical results established
for the third method and suggesting that the first two methods are stable and exhibit
expected rates of convergence in the energy and Ly—norms.

In all examples, €2 is a unit sphere, and

f(z) = f(r,¢,0) = 4(cos ¢ + sin ¢) sin b ,

where r, ¢, 6 are the spherical coordinates whose origin is at the sphere center. The exact
solution for this problem is

~ 1 (4—=3r)r forr<1,
u(z) =u(r,¢,0) = g(cos¢ + sin ¢) sin 4 - { )

r- forr > 1.

This function is piecewise analytic, and therefore the numerical solutions are expected to
have the optimal rates of convergence.

Numerical solutions were obtained using piecewise linear discontinuous finite element
basis functions for V,, piecewise linear continuous basis functions for Qj, and piecewise
constant basis functions for W,. The interface I' was approximated using piecewise linear
continuous basis functions; errors associated with this approximation can be estimated and
controlled by using standard techniques, e.g. [5, 15]. The collocation and Galerkin bound-
ary element methods were accelerated using the fast multipole method; again the errors
associated with the use of multipole and local expansions were estimated and controlled
following [18]. The DG formulation parameters were chosen to be £ = n = 1, and the DG
stabilisation parameters were chosen to be o, = 5.

In presenting results, we denote the number of finite elements 7" in §2 by Ng, the number
of elements on I' by Nr, and the number of nodes on I" by Mr.

First, let us present numerical results for the third method (3.15)—(3.16) in which the ex-
terior Steklov-Poincaré operator is discretized using either the symmetric Galerkin scheme
(3.18), or the non-symmetric Galerkin scheme (3.19), or the non-symmetric collocation
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scheme (3.20). In all cases, the error norm was computed as the modified energy norm

Coc(MP = Y IV (i = uin) e + Z H[[uz uin]Z2 )

TETh eeglnt

+ —|| —uip) = (te = ten) || T2 + Z e el L

ecEpxt hre et fre

where the H'/2(T')-norm in (4.2) was replaced by a weighted Lo(I')-norm, e.g. [4]. The
estimated order of convergence was computed as
o epa(he)
eoc := log, <€DG(h£+1)) ,
where /¢ refers to the refinement level, and hy = 2hy, ;.
Table 1 contains numerical results for six meshes (five refinement levels) for all three
schemes. Clearly the results support the notion that the asymptotic order of convergence
is linear. Table 2 mimics Table 1 except it is based on the Ly—norm

ex(h) = [Jui — winllLo0)

rather than the energy norm. As expected, the asymptotic order of convergence is quadratic.

Galerkin (3.18) | Galerkin (3.19) | Collocation (3.20)
Nq Nt My e eoc epa eoc epc eoc
181 122 63 0.97194 0.97367 0.97142
1448 488 246 | 0.54862 0.83 | 0.54885  0.83 | 0.54836 0.82
11584 1952 978 | 0.30130 0.86 | 0.30133  0.87 | 0.30122 0.86
92672 7808 3906 | 0.15793 0.93 | 0.15794  0.93 | 0.15792 0.93
741376 | 31232 | 15618 | 0.08048  0.97 | 0.08049  0.97 | 0.08049 0.97
5931008 | 124928 | 62466 | 0.04051 0.99 | 0.04053  0.99 | 0.04053 0.99

Table 1: Errors and rates of convergence for the third method measured using the energy
norm.

Numerical results for the three-field formulation (3.7)—(3.9) are given in Table 3, where
we use the DG energy norm

€DG(h) = Huz - uz’,hHDG

and the Lo—norm. Again we observe the expected linear and quadratic orders of conver-
gence, respectively.

Finally, Table 4 contains numerical results for the non-symmetric approach (3.1)—(3.2)
for the Galerkin (3.5) and collocation (3.6) schemes.

Numerical results indicate that all versions of the three methods performed similarly to
each other. In particular, all of them exhibit linear order of convergence in the pertinent
energy norm and quadratic order of convergence in the Lo(2)-norm. Furthermore, the
differences in the absolute values of the corresponding errors appear to be minimal.
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Galerkin (3.18) | Galerkin (3.19) | Collocation (3.20)

Nq Nr Mr ey eoc ey  eoc €9 eoc
181 122 63 0.130635 0.131305 0.130192
1448 488 246 | 0.043916 1.57 | 0.044012 1.58 | 0.043716 1.57
11584 1952 978 | 0.014988 1.55 | 0.015001 1.55 | 0.014937 1.55
92672 7808 3906 | 0.004495 1.74 | 0.004501 1.74 | 0.004487 1.74
741376 | 31232 | 15618 | 0.001224 1.88 | 0.001231 1.87 | 0.001228 1.87

5931008 | 124928 | 62466 | 0.000319 1.98 | 0.000319 1.95 | 0.000319 1.95

Table 2: Errors and rates of convergence for the third method measured using the Ly—norm.

Galerkin (3.10)

Ng Nr Mr epa  €oc es  eoc

181 122 63 0.88015 0.152248

1448 488 246 | 0.51954 0.76 | 0.051223 1.57
11584 | 1952 978 | 0.29298 0.83 | 0.016932 1.60
92672 | 7808 | 3906 | 0.15569 0.91 | 0.004979 1.77
741376 | 31232 | 15618 | 0.07990 0.96 | 0.001345 1.89

Table 3: Errors and rates of convergence for the second method measured using the energy
norm and Lo—norms.

Galerkin (3.5) Collocation (3.6)
Nq Nr Mr epa  €eoc es  €eoc epa  €eoc ey €eoc
181 122 63 0.87850 0.15124 0.87541 0.14699

1448 488 246 | 0.51920 0.76 | 0.05100 1.56 | 0.51871 0.76 | 0.04980 1.56
11584 | 1952 978 10.29293 0.83 | 0.01689 1.59 | 0.29288 0.82 | 0.01662 1.58
92672 | 7808 | 3906 | 0.15568 0.91 | 0.00497 1.76 | 0.15568 0.91 | 0.00491 1.76
741376 | 31232 | 15618 | 0.07990 0.96 | 0.00135 1.88 | 0.07990 0.96 | 0.00133 1.88

Table 4: Errors and rates of convergence for the first method measured using the energy
norm and Lo—norms.

6 Summary

This paper introduces three new coupling methods for the interior penalty DG finite el-
ement methods and boundary element methods. The key advantage of the new meth-
ods is that they allow one to use discontinuous basis functions on the interface, which is
particularly important for coupling methods involving DG finite element methods. The
new coupling methods have six variations associated with different approximations of the
Steklov—Poincaré operator of the underlying boundary integral equations. We presented
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theoretical results pertaining to stability and error analysis for some of the versions of the
methods, whereas establishing such results for other versions can be done in a similar way.
Numerical results suggest that all versions perform very similar to each other, and exhibit
expected rates of convergence in both energy and Ls—norms.
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A Appendix

In this appendix we prove the error estimate given in Theorem 4.3. For arbitrary (vy, qn) €
V), X Oy, the triangle inequality implies

”(uz — Uj,h,y Ue — ue,h)HA < H(Uz — Uh, Ue — Qh)HA + ”(Uzh — Uh, Ue,n — Qh)”A-

The first term can be further estimated by using standard techniques, hence it remains to
bound the second term. We use the ellipticity estimate (4.4) and the perturbed Galerkin
orthogonality (4.6) to obtain

M (wip — vnyten — a)laA < Altin — Vn, Ueh — Qhs Wi — Vny ey — Gh)
= A(ui,h — Uy Ue,h, — Ue; Ui p, — Uh, Ueh — C]h) + A(Ui — Uh, Ue — 4h; Uj,h — Up, Uep — Qh)

= ((S™ = S)ue, e, — qn)r + A(Ui — Vny Ue = i Ui — Vhy Ueh — G)-
By combining this equation with (4.1) we obtain

Cf‘”(uz‘,h — Uh, Ue,n — %)Hix
< (5 — §)ue, Ue ., — qn)r + AU — Upy Ue — G Wiy — Up, Uey — Gn)

= <(Sm - S)Ue, Ue,h — C.Ih)F + (S(Ue - C_Ih), Ue,h — C.Ih)r + aDG(ui — Uh, Uj,h — Uh)
—(n - V(ug —vn), (wip — vn) = (e — qn))r +n(n - V(up —vn), (u; — vn) — (Ue — qn))r

+ Z Z_: /e[(u@- — vn) = (e = @n)][(tip — va) = (e — qn)ldss

ecEyxt
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< (5™ = S)ue||H—1/2(F) [te,n — QhHHl/?(F) + c§||ue - QhHHl/?(F)HUe,h - qh||H1/2(F)

+Cé4||ui — vl pallwin — vnllpe

+ Z 7+ V (us — v || 20y | (wih — vn) — (Ue,n — qn) || L2(e)

GGEZXt

+ Z [+ V(uin —vn)ll 2@l (Wi — vn) — (ue — qn)llL2(e)
eegxt

+ Z —vp) = (e — qn) |l 2(e) | (Wi, — V1) — (Uen — an)ll22(e)-
eeExt e

By applying the weighted Holder inequality we obtain
(i — vny e — an)|% <

¢ (65 = B)ueld vy + llte = @ulpaqey + 1 = wnlid

1+ o,
+ D helln - V(s — o) |[Fa + Y (i = on) = (we — an

ecEPt ecEPt ¢

1/2

Niae)

en = anll3psoy + lwin = vallbe + Y helln - V(uin —vn)ll72

ecEst
1/2

1+ae
+ ) [ (tin = vn) = (e — qn)l|72(0)

eegext

Let T, € T, be a finite element containing a face e € £;**. Then for a finite element function

vy, € V5, we obtain
In - Vonllreey < chg 2V opllzn),

and

Y bl V(uin = o)l < ¢ DIV (uin = on)lia) -

ecExt TETh

Hence we obtain

luen = @ull 3y + tin = vallhe + D helln- V(uin —va)l7a
ecEpxt
1/2

1 + cre
+ > (i —vn) = (en — an)lliaey | < cll(uin

eegext

22

— Vp, ue,h - Qh)HA,



and so
Al _ <
G ||(Uz7h Uh,, Ue,h w)lla <

<c [H(Sm — S)uelF1o @y + e = aull3/2y + s — vallbe

1/2
1+ o0,

(i = vn) = (ue = qn)ll(e)

3 bl V= o) + Y

et ecEpxt

This inequality implies the error estimate given in Theorem 4.3.
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