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A NON-SYMMETRIC COUPLING OF THE FINITE VOLUME
METHOD AND THE BOUNDARY ELEMENT METHOD

CHRISTOPH ERATH, GÜNTHER OF, AND FRANCISCO-JAVIER SAYAS

Abstract. As model problem we consider the prototype for flow and transport of a
concentration in porous media in an interior domain and couple it with a diffusion process
in the corresponding unbounded exterior domain. To solve the problem we develop a
new non-symmetric coupling between the vertex-centered finite volume and boundary
element method. This discretization provides naturally conservation of local fluxes and
with an upwind option also stability in the convection dominated case. We aim to
provide a first rigorous analysis of the system for different model parameters; stability,
convergence, and a priori estimates. This includes the use of an implicit stabilization,
known from the finite element and boundary element method coupling. Some numerical
experiments conclude the work and confirm the theoretical results.

Keywords. finite volume method, boundary element method, non-symmetric coupling,
convection dominated, existence and uniqueness, convergence, a priori estimate

Mathematics subject classification. 65N08, 65N38, 65N12, 65N15

1. Model problem and introduction

Throughout this work, let Ω ⊂ Rd, d = 2, 3, be a bounded domain with connected
polygonal Lipschitz boundary Γ and Ωe = Rd\Ω is the corresponding unbounded exterior
domain. We consider the same model problem as in [Era12, Era13a]: find u and ue such
that

div(−A∇u+ bu) + cu = f in Ω, (1a)

−∆ue = 0 in Ωe, (1b)

ue(x) = C∞ log |x|+O(1/|x|) for |x| → ∞, d = 2, (1c)

ue(x) = O(1/|x|) for |x| → ∞, d = 3, (1d)

u = ue + u0 on Γ, (1e)

(A∇u− bu) · n =
∂ue
∂n

+ t0 on Γin, (1f)

(A∇u) · n =
∂ue
∂n

+ t0 on Γout, (1g)

where A is a symmetric diffusion matrix, b is a possibly dominating velocity field,
c is a reaction function, f is a source term, and C∞ is an unknown constant. The
coefficients are allowed to be variable. The coupling boundary Γ = ∂Ω = ∂Ωe is
divided in an inflow and outflow part, namely Γin :=

{
x ∈ Γ

∣∣b(x) · n(x) < 0
}

and

Γout :=
{
x ∈ Γ

∣∣b(x) · n(x) ≥ 0
}

, respectively, where n is the normal vector on Γ point-
ing outward with respect to Ω. We allow prescribed jumps u0 and t0 on Γ. The radiation
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condition for the two dimensional case, which will be complemented with the additional
hypothesis that the diameter of Ω is less than one, guarantees that our problem has a
unique solution. Other radiation conditions are also possible, but some lead to restric-
tions on the data. Changing from one to the other is a relatively simple exercise adding
sources. See [McL00, CS85] for more information on radiation conditions.
The model problem in the interior domain Ω is the prototype for flow and transport
of a concentration in porous media. Usually, boundary values such as Dirichlet and/or
Neumann boundary conditions are needed to solve the problem. These problems are
often convection dominated and the conservation law, e.g., local conservation of fluxes,
should also be preserved for a numerical approximation of the solution. Therefore, a finite
volume method (FVM) is often the method of choice since they provide an easy option
to stabilize the convection term and they natural preserve conservation of numerical
fluxes due to their formulation. However, if the domain is unbounded one would have
to truncate the domain. The above formulation solves also another issue, i.e., if we do
not know any boundary conditions, we assume a diffusion process in the corresponding
(unbounded) exterior domain Ωe, which “replaces” the boundary values. The method of
choice for unbounded domains is the boundary element method (BEM) which reduces
the discretization to the boundary and therefore avoids the truncation of Ωe. Therefore,
we consider an FVM-BEM coupling as in [Era10, Era12, Era13a]. To the best of the
authors knowledge, these works are the first theoretical justifications of a FVM-BEM
coupling, where a three field coupling approach is used with either the vertex-centered
(finite volume element method, box method) FVM or the cell-centered FVM.
In this work we analyze and verify a non-symmetric FVM-BEM coupling with the vertex-
centered FVM, in the following only named FVM. The main motivation of using this is
to get an easier coupling formulation and a smaller system of linear equations, which
saves computational costs. The idea of a non-symmetric coupling approach goes back
to [JN80, BJ79]. This coupling formulation applied for a finite element method (FEM)-
BEM discretization is also known as Johnson-Nédélec coupling. However, the analysis in
this early works relied on specific choices of the discretization spaces or on the compactness
of a certain integral operator, which was in fact a restriction to a smooth boundary.
In particular, a rigorous mathematical analysis for Lipschitz domains was not known.
Recently, the work in [Say09] provided a first analysis, which overcame these restrictions.
Meanwhile, several extensions and simplifications are possible, such that a SIAM review
paper [Say13] was published. Among these extensions there are results on the non-
symmetric formulation for the potential equation with variable coefficients [OS13, Ste11],
non-linearities [AFF+13, FFKP15], for elasticity [FFKP15, Ste13], and for boundary
value problems [GHS12, OS14]. In addition, similar results have been reported on related
coupling formulations [AFF+13, GHS12] and the DG-BEM coupling [HS15]. We want to
mention that the counterpart to the non-symmetric coupling is the so called the symmetric
coupling first introduces in [Cos87]. However, symmetry is referred to a diffusion–diffusion
transmission problem, i.e., the whole system is symmetric. We stress that this would be
destroyed if one applies convection in the interior domain.
There exist a couple of papers, which analyze the vertex-centered FVM, e.g., [BR87,
Hac89] to mention only the very first works. It is well known that for pure diffu-
sion with piecewise constant diffusion coefficient on a primal mesh the standard FEM
and the FVM bilinear form are exactly the same. Thus the schemes differ basically
only on the right-hand side. However, for all other diffusion problems [Cai91] and a
possible convection field and a reaction term the systems are different. Contrary to
standard FEM, FVM still provides local flux conservation due to its formulation and
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provides an easy upwind stability option for convection dominated problems. The stan-
dard analysis approach makes use of a comparison between the FEM and FVM bilinear
form [BR87, Hac89, Cai91, ELL02, Cha02]. For our FVM-BEM coupling we may ap-
ply similar techniques for the FVM part. Note that contrary to a classical FEM-BEM
coupling we do not have a classical Galerkin orthogonality property due to the FVM
formulation based on the conservation law. Thus the analysis differs significantly to an
FEM-BEM analysis. However, we use the equivalent formulation of a stabilized contin-
uous coupling formulation, extended here for the convection-diffusion-reaction problem
in Ω, and compute an ellipticity constant. Based on the continuous stabilization we in-
troduce a stabilization for the FVM-BEM coupling. This is needed for pure diffusion
models and for convection-diffusion-reaction problems, where the energy norm reduced
to a semi-norm. We stress that the stabilization is only needed for theoretical purposes
since the formulation is equivalent to the standard system. We aim to provide a discrete
ellipticity estimate, convergence, and a priori estimates for the FVM-BEM coupling. Our
new analysis technique gives us a recipe for the coupling of BEM with a non-Galerkin
method like FVM. Furthermore, this work improves the results in [Era10, Era12] for a
three field FVM-BEM coupling, where we had to assume a little bit more regularity on the
unknown exterior conormal solution and some constraints on the convection and reaction
terms for some special model problem configurations. However, as for the non-symmetric
FEM-BEM coupling we have a theoretical constraint on the eigenvalues of A, which is
not needed in [Era10, Era12].
Throughout, we denote by Lm(·) and Hm(·), m > 0 the standard Lebesgue and Sobolev
spaces equipped with the usual norms ‖ · ‖L2(·) and ‖ · ‖Hm(·), respectively. For ω ⊂
Ω, (·, ·)ω is the L2 scalar product. The space Hm−1/2(Γ) is the space of all traces
of functions from Hm(Ω) and the duality between Hm(Γ) and H−m(Γ) is given by
the extended L2-scalar product 〈·, ·〉Γ. The space H1

`oc(Ω) := {v : Ω → R : v|K ∈
H1(K), for all K ⊂ Ω open and bounded} collects functions with local H1 behavior.
Furthermore, the Sobolev space W 1,∞ contains exactly the Lipschitz continuous func-
tions. If it is clear from the context, we do not use a notational difference for func-
tions in a domain and its traces. To simplify the presentation we equip the space
H := H1(Ω)×H−1/2(Γ) with the norm

‖v‖2
H := ‖v‖2

H1(Ω) + ‖ψ‖2
H−1/2(Γ)

for v = (v, ψ) ∈ H.
With this notation we can specify the model data as: the diffusion matrix A : Ω→ Rd×d

has entries in W 1,∞(Ω), is bounded, symmetric and uniformly positive definite, i.e., there
exist positive constants CA,1 and CA,2 with CA,1|v|2 ≤ vTA(x)v ≤ CA,2|v|2 for all v ∈ Rd

and almost every x ∈ Ω. We will also admit coefficients A that are T -piecewise constant,
where T denotes the triangulation of Ω introduced in subsection 3.1, satisfying identical
symmetry and uniform positive definiteness assumptions. Note that the best constant
CA,1 equals the infimum over x ∈ Ω of the minimum eigenvalue of A(x), which we will
denote λmin(A). Furthermore, b ∈ W 1,∞(Ω)d and c ∈ L∞(Ω) satisfy

γ(x) :=
1

2
div b(x) + c(x), γ(x) ≥ 0 for almost every x ∈ Ω (2)

with the function γ ∈ L∞(Ω). We stress that our analysis holds for constant b and
c = 0 as well. Finally, we choose the right-hand side f ∈ L2(Ω), u0 ∈ H1/2(Γ), and
t0 ∈ H−1/2(Γ). In the two dimensional case we additionally assume diam(Ω) < 1 to
ensure H−1/2(Γ) ellipticity of the single layer operator defined below.

3



Then our model problem reads in a weak sense: find u ∈ H1(Ω) and ue ∈ H1
`oc(Ωe) such

that (1a)–(1g) hold.
The model problem (1) admits a unique solution for both, the two and three dimensional
case [Era12].

Remark 1. To replace the radiation condition (1c) by ue(x) = O(1/|x|) for |x| → ∞ in
two dimensions one would have to assume the the scaling condition

〈∂ue/∂n, 1〉Γ = 0

to guarantee solvability. As opposed for the purely diffusive case, this condition cannot be
easily transformed into a condition on the data.

The content of this paper is organized as follows. Section 2 gives a short summary on
integral equations and the weak formulation of our model problem based on the non-
symmetric approach. We show an ellipticity estimate through an equivalent stabilized
weak formulation and state the ellipticity constant explicitly. In section 3 we introduce
the non-symmetric FVM-BEM coupling to solve our model problem. Section 4 proves
stability, convergence, and an a priori result for our coupling. Numerical experiments,
found in section 5, confirm the theoretical results. Some conclusions complete to work.

2. Integral equation and weak coupling formulation

The representation formula for the exterior Laplace equation (1b) with the radiation
condition (1c)-(1d) and φ(x) = ∂

∂n
ue(x)|Γ, x ∈ R reads

ue(x) = −
∫

Γ

G(x− y)φ(y) dsy +

∫
Γ

∂

∂ny
G(x− y)ue(y)|Γ dsy (3)

with the fundamental solution for the Laplace operator

G(z) :=


− 1

2π
log |z| for z ∈ R2\{0},

1

4π

1

|z|
for z ∈ R3\{0}.

From (3) we obtain (taking traces) the boundary integral equation on Γ

ue|Γ = (1/2 +K)ue|Γ − Vφ. (4)

The single layer operator V and the double layer operator K are given, for smooth enough
input, by

(Vψ)(x) =

∫
Γ

ψ(y)G(x− y) dsy (Kθ)(x) =

∫
Γ

θ(y)
∂

∂ny
G(x− y) dsy x ∈ Γ,

where ny is a normal vector with respect to y. The integral equation (4) holds on Γ
except on corners and edges. We recall [Cos88, Theorem 1] that these operators can be
extended to bounded operators

V ∈ L
(
Hs−1/2(Γ);Hs+1/2(Γ)

)
, K ∈ L

(
Hs+1/2(Γ);Hs+1/2(Γ)

)
, s ∈ [−1

2
, 1

2
].

It is also well-known that V is symmetric and H−1/2(Γ) elliptic, since we additionally
assume diam(Ω) < 1 in the two dimensional case, which can always be achieved by
scaling. The expressions

‖ · ‖2
V := 〈V·, ·〉Γ, ‖ · ‖2

V−1 := 〈·,V−1·〉Γ
define norms in H−1/2(Γ) and H1/2(Γ), respectively. These norms are equivalent to the
usual ones.
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We consider a weak form of the model problem (1) in terms of boundary integral op-
erators. For that we use the non-symmetric approach, i.e, calculate the weak formula-
tion of the interior problem and replace the interior conormal derivative by the exterior
φ := ∂ue/∂n|Γ and the corresponding jump relations t0, (1f)–(1g). Second, we take the
weak form of (4) and replace the exterior trace ue|Γ by the interior trace u|Γ and the

jump u0, (1e). Then the coupling reads: find u ∈ H1(Ω), φ ∈ H−1/2(Γ) such that

A(u, v)− 〈φ, v〉Γ = (f, v)Ω + 〈t0, v〉Γ, (5a)

〈ψ, (1/2−K)u〉Γ + 〈ψ,Vφ〉Γ = 〈ψ, (1/2−K)u0〉Γ (5b)

for all v ∈ H1(Ω), ψ ∈ H−1/2(Γ). The bilinear form in (5a) is given by

A(u, v) := (A∇u− bu,∇v)Ω + (cu, v)Ω + 〈b · nu, v〉Γout .

Lemma 2. The bilinear form A is coercive and continuous on H1(Ω)×H1(Ω), i.e., for
all v, w ∈ H1(Ω) and γ(x) from assumption (2) there holds

A(v, v) ≥


CA,1‖v‖2

H1(Ω) for γ(x) > 0 almost everywhere in Ω,

C?
A,1‖v‖2

H1(Ω) for γ(x) > 0 on ω ( Ω, |ω| > 0, γ(x) = 0 elsewhere,

C ′A,1‖∇v‖2
L2(Ω) for γ(x) = 0 almost everywhere in Ω,

(6)

|A(w, v)| ≤ CA,2‖w‖H1(Ω)‖v‖H1(Ω). (7)

Here, the constants CA,1 = min{λmin(A), infx∈Ω γ(x)} > 0, C ′A,1 = λmin(A) > 0 and
CA,2 > 0, depend on A, b and c. The constant C?

A,1 = min{λmin(A), C(γ(x), ω,Ω)} > 0
depends additionally on the constant C(γ(x), ω,Ω) > 0, which is not known but depends
on γ(x) > 0 in ω, ω, and Ω.

Proof. There holds∫
Γout

b · n v2 ds ≥ 1

2

∫
Γ

b · n v2 ds =
1

2

∫
Ω

div(bv2) dx =
1

2
((div b)v, v)Ω + (bv,∇v)Ω.

If 1
2

div b(x) + c(x) ≥ γ(x) > 0 of assumption (2) is positive almost everywhere in Ω, it
follows that

A(v, v) ≥ (A∇v,∇v)Ω +
1

2
((div b)v, v)Ω + (cv, v)Ω ≥ CA,1‖v‖2

H1(Ω).

If γ(x) > 0 holds on a set ω ( Ω of positive measure but γ(x) = 0 on Ω\ω, we can use a
compactness argument (or the Deny-Lions theorem) to prove coercivity of A in H1(Ω).
Then the coercivity constant C?

A,1 is not known. When γ(x) = 0 almost everywhere in Ω,

we only obtain coercivity of A with respect to the H1 seminorm and the constant C ′A,1.
Using simple arguments, the continuity bound (7) can be easily proved with

CA,2 = 2 max{‖A‖L∞(Ω)d×d , ‖b‖L∞(Ω), ‖c‖L∞(Ω)}+ C2
Γ‖b · n‖L∞(Γout),

where CΓ is the norm of the the trace operator H1(Ω)→ L2(Γout). �

For convenience the system (5a)-(5b) can be written in the product space H = H1(Ω)×
H−1/2(Γ) as follows: we introduce the bilinear form B : H×H → R

B((u, φ); (v, ψ)) := A(u, v)− 〈φ, v〉Γ + 〈ψ, (1/2−K)u〉Γ + 〈ψ,Vφ〉Γ, (8)

and the linear functional

F ((v, ψ)) := (f, v)Ω + 〈t0, v〉Γ + 〈ψ, (1/2−K)u0〉Γ. (9)
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Then (5a)-(5b) is equivalent to: find u ∈ H such that

B(u; v) = F (v) for all v ∈ H. (10)

With integration by parts we calculate

B(v; v) = (A∇v,∇v)Ω + (
(

1
2

div b + c
)
v, v)Ω − 〈b · n v, v〉Γin + 〈b · n v, v〉Γout

− 〈ψ, v〉Γ + 〈ψ, (1/2−K)v〉Γ + 〈ψ,Vψ〉Γ,

and thus we see

B((1, 0); (1, 0)) =

∫
Ω

(
1
2

div b + c
)

+

∫
Γ

|b · n|.

Thus if 1
2

div b + c = 0 in Ω and b · n = 0 on Γ (in particular, when b = (0, 0)T and
c = 0), it follows that B((1, 0); (1, 0)) = 0. This lack of coercivity will be remedied using
an equivalent variational problem for the sake of analysis.
Therefore, we define the linear operator

P ((v, ψ)) := 〈1, (1/2−K)v + Vψ〉Γ =

∫
Γ

((1/2−K)v + Vψ)

and introduce a parameter β depending on γ(x) of assumption (2);

β :=

{
1 if γ(x) = 0 almost everywhere in Ω,

0 else.
(11)

Then the β-dependent perturbations of the bilinear form B(u,v) is

B̃ (u; v) := B(u,v) + βP (u)P (v), (12)

and of the linear map F (v)

F̃ (v) := F (v) + β〈1, (1/2−K)u0〉ΓP (v). (13)

Thus a stabilized variational formulation is given by: find u ∈ H such that

B̃ (u; v) = F̃ (v) for all v ∈ H. (14)

Note that this type of stabilization has also been considered in [OS13] and [AFF+13].
We emphasize that this formulation is introduced purely for theoretical purposes, and
the discretization will be applied directly on (5a)-(5b).

Lemma 3. The variational formulation (10) and the stabilized version in (14) are equiv-
alent.

Proof. The equivalence of formulations was stated in [AFF+13, Theorem 14] for a pure
diffusion problem. The convection and reaction terms in the bilinear form A(·, ·) do not
affect the proof. We note that we will see a similar result for the FVM-BEM discretization
in Lemma 12. �

The next theorem on the coercivity of the bilinear form B̃ is an extended and improved
version of the one stated in [OS13, Theorem 3.1] and [AFF+13, Theorem 15] for a purely
diffusive problem. We extend it by the convection and reaction terms in the bilinear form
and present an improved ellipticity constant compared to [OS13, Theorem 3.1]. This is
possible due to some modification of the proof inspired by [OS14]. Before we state the
theorem, we recall an important contractivity result for the double layer operator [OS13,
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Lemma 2.1] with the contraction constant CK from [SW01]: there exists CK ∈ [1/2, 1)
such that

‖(1/2 +K)v‖2
V−1 ≤ CK〈V−1(1/2 +K)v, v〉Γ. (15)

Furthermore, we define for β = 0

Cbc :=

{
inf
x∈Ω

γ(x) for γ(x) > 0 almost everywhere in Ω,

C(γ(x), ω,Ω) for γ(x) > 0 on ω ( Ω, |ω| > 0, γ(x) = 0 elsewhere
(16)

with γ(x) from assumption (2) and the unknown constant C(γ(x), ω,Ω) > 0 introduced
in Lemma 2.

Theorem 4. If λmin(A) > CK/4, then B̃ is H-elliptic. More precisely, for all v =
(v, ψ) ∈ H holds

B̃ (v; v) ≥ Cstab

[
‖∇v‖2

L2(Ω) + (1− β)‖v‖2
L2(Ω) + βP (v)2 + ‖ψ‖2

V
]
. (17)

The stability constant Cstab reads

Cstab =


min

{
Cbc,

1
2

[
λmin(A) + 1−

√
(λmin(A)− 1)2 + CK

]}
for β = 0,

min
{

1, 1
2

[
λmin(A) + 1−

√
(λmin(A)− 1)2 + CK

]}
for β = 1

and depends on the model data A, b, c, and the contraction constant CK.

Remark 5. The right-hand side in (17) defines an equivalent norm in H. While this is
obvious for β = 0, a simple compactness argument (see [AFF+13, Lemma 10 and (65)]
for a similar argument) shows the equivalence for β = 1. Note that we only do not know
the constant Cstab explicitly in the second case of (16).

Proof. The proof is in the spirit of previous publications [OS13, OS14, AFF+13] on the
non-symmetric FEM-BEM coupling, but extended here for the different interior model
problem. Therefore, we only present the key points.
An element v ∈ H1(Ω) can be decomposed as a sum v = vΓ + v0, where vΓ is harmonic
and v0 ∈ H1

0 (Ω). Thus (∇vΓ,∇w)Ω = 0 for all w ∈ H1
0 (Ω), which implies that

‖∇v‖2
L2(Ω) = ‖∇v0‖2

L2(Ω) + ‖∇vΓ‖2
L2(Ω) = ‖∇v0‖2

L2(Ω) + 〈Sintv, v〉Γ, (18)

where Sint := V−1(1/2 + K) denotes the Steklov–Poincaré operator, i.e., the Dirichlet
to Neumann map of the interior Laplace problem. The term 〈Sintv, v〉Γ will help to
compensate possible negative contributions of the non-symmetric coupling to the total
energy of the system. Let us first recall our choice of β depending on γ(x) in (11) and
the definition of Cbc in (16). This allows us to write the coercivity estimate of Lemma 2
as

A(v, v) ≥ λmin(A)‖∇v‖2
L2(Ω) + (1− β)Cbc‖v‖2

L2(Ω) for all v ∈ H1(Ω).

Following [OS13] and using (15), we can easily estimate

〈ψ, (1/2 +K)v〉Γ = 〈Vψ,V−1(1/2 +K)v〉Γ
≤ ‖V−1(1/2 +K)v‖V‖ψ‖V = ‖(1/2 +K)v‖V−1‖ψ‖V
≤ C

1/2
K 〈S

intv, v〉1/2Γ ‖ψ‖V
7



for all (v, ψ) ∈ H. Therefore, for all v = (v, ψ) ∈ H, we can estimate

B̃ (v; v) =A(v, v) + 〈ψ,Vψ〉Γ − 〈ψ, (1/2 +K)u〉Γ + βP (v)2

≥λmin(A)‖∇v‖2
L2(Ω) + (1− β)Cbc‖v‖2

L2(Ω) + βP (v)2 + ‖ψ‖2
V

− C1/2
K 〈S

intv, v〉1/2Γ ‖ψ‖V
≥λmin(A)‖∇v0‖2

L2(Ω) + (1− β)Cbc‖v‖2
L2(Ω) + βP (v)2

+

(
〈Sintv, v〉1/2Γ

‖ψ‖V

)>(
λmin(A) −1

2

√
CK

−1
2

√
CK 1

)(
〈Sintv, v〉1/2Γ

‖ψ‖V

)
,

where in the last inequality we have used the harmonic splitting (18). Since λmin(A) > 0,
the quadratic form in the right-hand side of the above estimate is positive definite if and
only if ∣∣∣∣λmin(A) −1

2

√
CK

−1
2

√
CK 1

∣∣∣∣ = λmin(A)− 1

4
CK > 0.

Calculating the smallest eigenvalue of the matrix above, we can bound

B̃ (v; v) ≥ Cstab

(
‖∇v0‖2

L2(Ω) + 〈Sintv, v〉Γ + (1− β)‖v‖2
L2(Ω)

+ βP (v)2 + ‖ψ‖2
V

)
,

which, using (18), is the estimate of the statement of the theorem. �

Remark 6. Note that this result also improves the estimate of [OS13, Theorem 3.1] for
a pure diffusion problem in Ω. The smallest eigenvalue in Cstab in the case β = 1 is
observed to be sharp in the numerical experiments of [OS13], contrary to the constant
reported therein.

Using the boundedness of A in (7) and mapping properties of the integral operators, it is

easy to conclude that the bilinear form B̃ defined in (12) and the linear form F̃ in (13) are
bounded. Thus we can conclude the unique solvability of (14). Due to the equivalence of
the formulations in Lemma 3, the original variational formulation (5a)-(5b) is uniquely
solvable.

Remark 7. Note that the equivalence of (14) and (10) shown in Lemma 3 and the
ellipticity estimate (17) also hold true on the discrete level, if the constants are in the
discretization space of H−1/2(Γ). In other words, a possible FEM-BEM coupling solution,
as shown in Remark 11, exists and is unique and the Céa Lemma applies.

3. A non-symmetric FVM-BEM coupling

In this section we develop a FVM-BEM coupling discretization in the sense of a non-
symmetric coupling approach. From now on we assume t0 ∈ L2(Γ). First, let us introduce
the notation for the triangulation and some discrete function spaces.

3.1. Triangulation. Throughout, T denotes a triangulation or primal mesh of Ω, and
N and E are the corresponding set of nodes and edges/faces, respectively. The elements
T ∈ T are non-degenerate triangles (2-D case) or tetrahedra (3-D case), and considered
to be closed. For the Euclidean diameter of T ∈ T we write hT := supx,y∈T |x − y|.
Moreover, hE denotes the length of an edge or Euclidean diameter of E ∈ E . The
triangulation is regular in the sense of Ciarlet [Cia78], i.e., the ratio of the diameter
hT of any element T ∈ T to the diameter of its largest inscribed ball is bounded by a
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(b) Edges for upwinding.

Figure 1. The construction of the dual mesh T ∗ from the primal mesh
T in two dimensions with the center of gravity point in the interior of the
elements in Figure (a); the dashed lines (gray boxes) are the new control
volumes Vi of T ∗ and are associated with ai ∈ N . In Figure (b) we see an
example intersection τ17 = V1∩V7 6= ∅ of two neighboring cells V1, V7 ∈ T ∗,
where τ17 is the union of two straight segments. For a3, a4 ∈ N , where
both a3 and a4 lie on Γ, τ34 = V3 ∩ V4 6= ∅ is only a single segment.

constant independent of hT , the so called shape-regularity constant. Additionally, we
assume that the triangulation T is aligned with the discontinuities of the coefficients
A, b, and c of the differential equation (if any), the data f , u0, and t0. Throughout,
if n appears in a boundary integral, it denotes the unit normal vector to the boundary
pointing outward the domain. We denote by ET ⊂ E the set of all edges/faces of T , i.e.,
ET :=

{
E ∈ E

∣∣E ⊂ ∂T
}

and by EΓ :=
{
E ∈ E

∣∣E ⊂ Γ
}

the set of all edges/faces on the
boundary Γ.

Dual mesh. We construct the dual mesh T ∗ from the primal mesh T as follows. In two
dimensions we connect the center of gravity of an element T ∈ T with the midpoint of the
edges E ∈ ET ; see Figure 1(a), where the dashed lines are the new boxes, called control
volumes. In three dimensions we connect the center of gravity of an element T ∈ T with
the centers of gravity of the four faces E ∈ ET . Furthermore, each center of gravity of a
face E ∈ ET is connected by straight lines to the midpoints of its edges. The elements
of this dual mesh T ∗ are taken to be closed. Note that they are non-degenerate domains
because of the non-degeneracy of the elements of the primal mesh. Given a vertex ai ∈ N
from the primal mesh T (i = 1 . . .#N ), there exists a unique box containing ai. We thus
number the elements of the dual mesh Vi ∈ T ∗, following the numbering of vertices.

Remark 8. In two dimensions, instead of starting the construction of the boxes in the
center of gravity, we can use the center of the circle circumscribed to the element. Con-
necting these points with the midpoints of the edges we form the so called Voronoi or
perpendicular bisector meshes, since the connection between to neighbor’s circumscribed
circle points is perpendicular to the shared edge. Our analysis works with such meshes as
well.
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Discrete function spaces. We define with S1(T ) :=
{
v ∈ C(Ω)

∣∣ v|T affine for all T ∈ T
}

the piecewise affine and globally continuous function space on T . The space P0(EΓ) is
the EΓ-piecewise constant function space. On the dual mesh T ∗ we provide P0(T ∗) :={
v ∈ L2(Ω)

∣∣ v|V constant V ∈ T ∗
}

. With the aid of the characteristic function χ∗i over
the volume Vi we write for v∗h ∈ P0(T ∗)

v∗h =
∑
xi∈N

v∗i χ
∗
i ,

with real coefficients vi. Furthermore, we define the T ∗-piecewise constant interpolation
operator

I∗h : C(Ω)→ P0(T ∗), I∗hv :=
∑
ai∈N

v(ai)χ
∗
i (x). (19)

Because of the construction of the dual mesh from the primal mesh and the definition of
I∗h there hold the well known results:

Lemma 9. Let T ∈ T and E ∈ ET . For vh ∈ S1(T ) there holds∫
E

(vh − I∗hvh) ds = 0, (20)

‖vh − I∗hvh‖L2(T ) ≤ hT‖∇vh‖L2(T ), (21)

‖vh − I∗hvh‖L2(E) ≤ Ch
1/2
E ‖∇vh‖L2(T ), (22)

where the constants C > 0 depend only on the shape regularity constant.

Proof. The proofs are standard. Note that for (20) we need the fact, that the dual mesh
T ∗ is constructed through the midpoint of an edge E ∈ E in the two dimensional case
and the center of gravity point if E is a face in the three dimensional case. A proof
of (21) can be found in [Era10], and (22) follows from (21) through the standard trace
inequality. Note that the above statements are independent of the choice of the interior
point in T ∈ T for the T ∗ construction. �

3.2. The discrete system. A classical finite volume discretization describes numerically
a conservation law of the model problem, i.e., a quantity in a volume can only change
due to the inflow and outflow flux balance through its boundary. More precisely, for our
model problem we integrate (1a) over each dual control volume V ∈ T ∗ and apply the
divergence theorem. If we use the transmission condition (1f)–(1g) we thus get a balance
equation for the interior problem∫

∂V \Γ
(−A∇uh + buh) · n ds+

∫
V

cuh dx

+

∫
∂V ∩Γout

b · nuh ds−
∫
∂V ∩Γ

φh ds =

∫
V

f dx+

∫
∂V ∩Γ

t0 ds

(23)

for all V ∈ T ∗. Note that the discretization in the interior domain follows along the dual
mesh T ∗. Here, uh ∈ S1(T ) and φh ∈ P0(EΓ) approximate u and φ, respectively. We can
rewrite (23) in terms of a variational formulation;

AV (uh, vh)− 〈φh, I∗hvh〉Γ = (f, I∗hvh)Ω + 〈t0, I∗hvh〉Γ
10



with the finite volume bilinear form AV : S1(T )× S1(T )→ R given by

AV (uh, vh) :=
∑
ai∈N

vh(ai)

(∫
∂Vi\Γ

(−A∇uh + buh) · n ds

+

∫
Vi

cuh dx+

∫
∂Vi∩Γout

b · nuh ds
)
.

(24)

Remark 10. Note that the trial and test spaces are different in practice. The test func-
tions in the finite volume part are in P0(T ∗), which is realized by taking nodal values
vh(ai) in (24) and by interpolation I∗hvh ∈ P0(T ∗) for vh ∈ S1(T ). We have chosen the
above definition to simplify the notation below.

To complete the coupling formulation we choose as in the classical non-symmetric FEM-
BEM formulation the BEM equation (4) and replace the continuous ansatz and test
spaces by discrete subspaces. Finally, the discrete system reads: find uh ∈ S1(T ) and
φh ∈ P0(EΓ) such that

AV (uh, vh)− 〈φh, I∗hvh〉Γ = (f, I∗hvh)Ω + 〈t0, I∗hvh〉Γ, (25a)

〈ψh, (1/2−K)uh〉Γ + 〈ψh,Vφh〉Γ = 〈ψh, (1/2−K)u0〉Γ (25b)

for all vh ∈ S1(T ), ψh ∈ P0(EΓ).
As in the continuous case we write the system in a more compact way. We consider the
product space Hh := S1(T )× P0(EΓ), the bilinear form BV : Hh ×Hh → R

BV ((wh, φh); (vh, ψh)) :=AV (wh, vh)− 〈φh, I∗hvh〉Γ
+ 〈ψh, (1/2−K)wh〉Γ + 〈ψh,Vφh〉Γ,

and the linear functional FV : Hh → R

FV ((vh, ψh)) := (f, I∗hvh)Ω + 〈t0, I∗hvh〉Γ + 〈ψh, (1/2−K)u0〉Γ. (26)

The (25a)-(25b) is equivalent to: find uh ∈ Hh such that

BV (uh; vh) = FV (vh) for all vh ∈ Hh. (27)

3.3. Upwind scheme. In general it is a non trivial task to get a stable discrete solution
for convection dominated problems. Finite volume schemes, however, allow an easy
upwind stabilization [RST96]. If we want to apply an upwind scheme for the finite volume
scheme, we replace buh on the interior dual edges/faces Vi\Γ in AV (24) by an upwinded
approximation. Given Vi ∈ T ∗, we consider the intersections with the neighboring cells
τij = Vi ∩ Vj 6= ∅ for Vj ∈ T ∗. Note that in two dimensions τij is the union of two
straight segments or (when the associated vertices ai, aj ∈ N lie on Γ) a single segment;
see Figure 1(b). In three dimensions τij consists of one or two polygonal surfaces. We
then compute the averages

βij :=
1

|τij|

∫
τij

b · ni ds, Aij :=
1

|τij|

∫
τij

A ds,

where ni points outward with respect to Vi, and the parameter

λij := Φ(βij|τij|/‖Aij‖∞),

for a weight function Φ : R→ [0, 1], which is being applied to the Péclet number. Then
we consider the value

uh,ij := λijuh(ai) + (1− λij)uh(aj)
11



instead of uh when restricted to τij ⊂ ∂Vi \ Γ. In this work we choose the upwind value
defined by the classical (full) upwind scheme by

Φ(t) := (sign(t) + 1)/2, (28)

i.e. λij = 1 for βij ≥ 0 and λij = 0 otherwise. A second choice will be

Φ(t) :=

{
min

{
2|t|−1, 1

}
/2 for t < 0,

1−min
{

2|t|−1, 1
}
/2 for t ≥ 0,

(29)

where we can steer the amount of upwinding to reduce the excessive numerical diffusion.
Whenever we apply an upwind scheme for the convection part, we replace the finite
volume bilinear form AV in the system (25a)–(25b) by

AupV (uh, vh) :=
∑
ai∈N

vh(ai)

(∫
∂Vi\Γ

−A∇uh · n ds+

∫
Vi

cuh dx

+
∑
j∈Ni

∫
τij

b · nuh,ij ds+

∫
∂Vi∩Γout

b · nuh ds
)
,

(30)

where Ni denotes the index set of nodes in T of all neighbors of ai ∈ N .

4. Stability and convergence

In this section we want to introduce a stabilized FVM-BEM coupling version of (27)
for analysis purposes only. As in (14) we use the “implicit theoretical” stabilization
of [AFF+13].

Similar as above we define B̃V : Hh ×Hh → R and F̃V : Hh → R by

B̃V (uh; vh) := BV (uh; vh) + βP (uh)P (vh), (31)

F̃V (vh) := FV (vh) + β〈1, (1/2−K)u0〉ΓP (vh). (32)

Then the stabilized FVM-BEM coupling reads: find uh ∈ Hh, such that

B̃V (uh; vh) = F̃V (vh) for all vh ∈ Hh. (33)

Remark 11. The discretized version of the stabilized FEM-BEM coupling reads with the
stabilized weak form (14): find uh,FEM ∈ Hh such that

B̃ (uh,FEM ; vh) = F̃ (vh) for all vh ∈ Hh.

See also Remark 7.

In the spirit of Lemma 3 and [AFF+13, Theorem 14] we can state the equivalence of the
two presented FVM-BEM formulations.

Lemma 12. The FVM-BEM coupling (27) and its stabilization (33) are equivalent. The
statement is also true if we replace AV by AupV in the corresponding bilinear forms.

Proof. In case of β = 0 the two formulations are obviously the same. Thus we only have
to consider β = 1. If uh = (uh, φh) is a solution of (27), testing with vh = (0, 1) it follows
that

P (uh) = 〈1, (1/2−K)uh + Vφh〉Γ = 〈1, (1/2−K)u0〉Γ, (34)

which means that we can add the stabilization term to (27) to get the stabilized ver-
sion (33). Reciprocally, testing (33) with vh = (0, 1), it follows that

P (uh)(1 + 〈1,V1〉Γ) = 〈1, (1/2−K)u0〉Γ(1 + 〈1,V1〉Γ).

12



Since the single layer operator is coercive, (34) follows and we can eliminate the β-
dependent term in (33) to get (27). Note that the proof is independent of the particular
choice of the finite volume bilinear form, and it therefore holds for AupV as well. �

The idea of our analysis is to estimate the difference of the stabilized FEM-BEM coupling
and the stabilized FVM-BEM coupling. For that we need the following two estimates,
which are standard in the context of FVM [ELL02, Cha02] with the above constructed
dual mesh, but here extended to the coupling problem.

Lemma 13. For the difference of the right-hand side of (14) and (33), there holds

|F (vh)− FV (vh)| ≤ C
(∑
T∈T

hT‖f‖L2(T )‖∇vh‖L2(T )

+
∑
E∈EΓ

h
1/2
E ‖t0 − t0‖L2(E)‖∇vh‖L2(TE)

) (35)

for all vh = (vh, ψh) ∈ Hh with a constant C > 0, which depends only on the shape
regularity constant. Here, t0 is the EΓ-piecewise integral mean of t0 and TE is the element
associated with E.

Proof. It is easy to see that from (9) and (26) we get

|F (vh)− FV (vh)| = (f, vh − I∗hvh)Ω + 〈t0, vh − I∗hvh〉Γ.

The Cauchy-Schwarz inequality and (20)–(22) lead to the assertion. �

The next lemma gives us an estimate between the weak and the finite volume bilinear
form for a function vh ∈ S1(T ).

Lemma 14. Let us assume that b ·n is piecewise constant on Γin, i.e. b ·n|Γin ∈ P0(E inΓ ).
For all vh, wh ∈ S1(T ) there hold

|A(wh, vh)−AV (wh, vh)| ≤ C1

∑
T∈T

(
hT‖wh‖H1(T )‖vh‖H1(T )

)
, (36)

|A(wh, vh)−AupV (wh, vh)| ≤ C2

∑
T∈T

(
hT‖wh‖H1(T )‖vh‖H1(T )

)
, (37)

with constants C1, C2 > 0, depending only on the model data A, b, c, and on the shape
regularity constant.

Proof. Let us define v∗h := I∗hvh ∈ P0(T ∗). Using integration by parts for A(wh, vh) and
AV (wh, vh) the lines in the proof of [Era12, Lemma 5.2] show with (20)

A(wh, vh)−AV (wh, vh)

=
∑
T∈T

(
(−(div A)∇wh + (div b)wh + b · ∇wh + cwh, vh − v∗h)T

+
∑
E∈ET

((A−A)∇wh · n, vh − v∗h)E

−
∑

E∈ET∩Γin

(b · n(wh − wh), vh − v∗h)E
)
.

(38)

Here, div A is the divergence operator applied to the columns of A, A|E ∈ Rd×d is the
average of A over E, and wh ∈ P0(EΓ) is the best L2(Γ) approximation of wh. With a
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standard approximation argument we prove

|A(wh, vh)−AV (wh, vh)|

≤
∑
T∈T

CT

(
‖wh‖H1(T )‖vh − v∗h‖L2(T ) +

∑
E∈ET

hE‖∇wh‖L2(E)‖vh − v∗h‖L2(E)

+
∑

E∈ET∩EinΓ

‖wh − wh‖L2(E)‖vh − v∗h‖L2(E)

)
with a constant CT > 0, which depends only on the shape regularity constant, and the

model data A, b, and c. The standard scaling inequalities ‖∇wh‖L2(E) ≤ Ch
−1/2
E ‖∇wh‖L2(T )

and ‖wh − wh‖L2(E) ≤ Ch
1/2
T ‖∇wh‖L2(T ), together with and (21)-(22), prove (36). To

prove (37) we write

|A(wh, vh)−AupV (wh, vh)| ≤ |A(wh, vh)−AV (wh, vh)|+ |AV (wh, vh)−AupV (wh, vh)|.

Note that we can directly apply (36) for the first and [Era12, Lemma 6.1] for the second
difference to show (37). �

Remark 15. If A is T -piecewise constant, all parts with A vanish in (38) because of
div A = 0 and (20) since ∇wh is constant. This is well-known and if b = (0, 0)T

and c = 0 there even holds A(wh, vh) = AV (wh, v
∗
h), see e.g. [BR87, Hac89]. Thus the

following analysis also holds if A is T -piecewise constant.

Collecting all the results together we prove:

Lemma 16. Let us assume that b ·n is piecewise constant on Γin, i.e. b ·n|Γin ∈ P0(E inΓ ).
For all wh = (wh, ξh) ∈ Hh and vh = (vh, ψh) ∈ Hh there holds

|B̃ (wh; vh)− B̃V (wh; vh) | ≤ C
∑
T∈T

(
hT‖wh‖H1(T )‖vh‖H1(T )

)
(39)

with a constant C > 0, which depends only on the model data A, b, c, and the shape reg-
ularity constant. The statement is also true if we replace AV by AupV in the corresponding
bilinear forms.

Proof. We estimate

|B̃ (wh; vh)− B̃V (wh; vh) | = |A(wh, vh)−AV (wh, vh)− 〈ξh, vh − I∗hvh〉Γ|

≤ C
∑
T∈T

(
hT‖wh‖H1(T )‖vh‖H1(T )

)
,

where we used (36) and (20) since ξh ∈ P0(EΓ). Using (37), the proof with AupV follows
from this bound. �

Theorem 17 (Stability). There exists H > 0 such that the following statement is valid
provided that T is sufficiently fine, i.e., h := maxT∈T hT < H: Let λmin(A) > CK/4 with
the contraction constant CK ∈ [1/2, 1) of the double layer potential. Furthermore, let
b · n be piecewise constant on Γin, i.e. b · n|Γin ∈ P0(E inΓ ). Then, there exists a constant
CVstab > 0 such that

B̃V (vh; vh) ≥ CVstab‖vh‖2
H for all vh ∈ Hh. (40)

The constant CVstab > 0 depends only on the model data A, b, c, the contraction constant
CK, and the shape regularity constant. The statement also holds if we replace AV by AupV
in the corresponding bilinear forms.
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Proof. From (39) we see with C ′ > 0

B̃V (vh; vh) ≥ B̃ (vh; vh)− C ′h‖vh‖2
H1(Ω).

The stability estimate (17) provides B̃ (vh; vh) ≥ C ′stab‖vh‖2
H with C ′stab > 0, which proves

the coercivity estimate for h small enough. The proof with AupV is the same. �

Theorem 18 (A priori convergence estimate). There exists H > 0 such that the following
statement is valid provided that T is sufficiently fine, i.e., h := maxT∈T hT < H: Let
λmin(A) > CK/4 with the contraction constant CK ∈ [1/2, 1) of the double layer potential
K. Furthermore, let b · n be piecewise constant on Γin, i.e. b · n|Γin ∈ P0(E inΓ ). For the
solution u = (u, φ) ∈ H = H1(Ω)×H−1/2(Γ) of our model problem (14) and the discrete
solution uh = (uh, φh) ∈ Hh = S1(T ) × P0(EΓ)) of our FVM-BEM coupling (33) there
holds

‖u− uh‖H ≤ Cest

(
h‖f‖L2(Ω) + h1/2‖t0 − t0‖L2(Γ) + (1 + h) inf

vh∈Hh

‖u− vh‖H + h‖u‖H
)
,

where t0 is the EΓ-piecewise integral mean of t0. The constant Cest > 0 depends only on
the model data A, b, c, the contraction constant CK, and the shape regularity constant.
In particular, if u ∈ H2(Ω), φ ∈ H1/2(EΓ), and t0 ∈ H1/2(EΓ), where

H1/2(EΓ) :=
{
v ∈ L2(Γ)

∣∣ v|E ∈ H1/2(E) for all E ∈ EΓ

}
,

we have first order convergence

‖u− uh‖H = O(h).

The statement is also true if we replace AV by AupV in the corresponding bilinear forms.

In the following proof of Theorem 18, we write the symbol ., if an estimate holds up to
a multiplicative constant, which depends only on the model data A, b, c, the contraction
constant CK, and the shape regularity constant.

Proof. For arbitrary vh = (vh, ψh) ∈ Hh we define wh = (wh, ϕh) := uh−vh ∈ Hh. Then
we get with (40)

‖uh − vh‖2
Hh
. B̃V (uh; wh)− B̃V (vh; wh)

= F̃V (wh)− F̃ (wh) + B̃ (u; wh)− B̃V (vh; wh) ,

where we used the finite volume discrete system (33) and the FEM-BEM bilinear from (14)

with discrete test functions wh ∈ Hh. Since F̃V (wh) − F̃ (wh) = FV (wh) − F (wh) we
apply (35) and insert vh to estimate

‖uh − vh‖2
H . h‖f‖L2(Ω)‖∇wh‖L2(Ω) + h

1/2
EΓ ‖t0 − t0‖L2(Γ)‖∇wh‖L2(Ω)

+ B̃ (u− vh; wh) + B̃ (vh; wh)− B̃V (vh; wh) ,

where hEΓ := maxE∈EΓ hE. For the second term on the right-hand side we apply the

boundedness of B̃ and we estimate the last two terms with (39). Thus we obtain

‖uh − vh‖2
H . h‖f‖L2(Ω)‖∇wh‖L2(Ω) + h

1/2
EΓ ‖t0 − t0‖L2(Γ)‖∇wh‖L2(Ω)

+ ‖u− vh‖H‖wh‖H + h‖vh‖H1(Ω)‖wh‖H1(Ω).

Finally with ‖wh‖H1(Ω) ≤ ‖wh‖H = ‖uh − vh‖H we get

‖uh − vh‖H . h‖f‖L2(Ω) + h
1/2
EΓ ‖t0 − t0‖L2(Γ) + ‖u− vh‖H + h‖vh‖H1(Ω).
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With ‖vh‖H1(Ω) ≤ ‖u− vh‖H + ‖u‖H and

‖u− uh‖H ≤ ‖u− vh‖H + ‖uh − vh‖H
we get the assertion with hEΓ ≥ h. The proof with AupV is the same. �

Remark 19. In [Era12, see Remark 5.1], where we consider a FVM-BEM coupling with
a three field coupling approach, we have the constraint φ ∈ L2(Γ) in the case γ(x) = 0
from assumption (2) to get convergence and an error estimate. Note that this regularity
is not needed therein to prove existence and uniqueness, see [Era12, see Remark 5.2].
Furthermore, there is also an additional assumption necessary in the case γ(x) = 0,
namely div b + c = 0 in Ω and b · n = 0 on Γin. Thus Theorem 17, which essentially
shows existence and uniqueness of a discrete solution, and Theorem 18 for our non-
symmetric FVM-BEM coupling are much stronger than what is available for the three
field FVM-BEM coupling. However, the constraint λmin(A) > CK/4 on the eigenvalues
of A is not needed for the three field FVM-BEM coupling.

5. Numerical results

In this section we verify our new coupling with three examples. We stress that in all ex-
periments we consider the discrete FVM-BEM system (25a)–(25b) and (27), respectively,
where we replace AV defined in (24) by the upwind form AupV defined in (30) if we use
an upwind scheme for the convection part. We mention once again, that the equivalent
stabilized FVM-BEM system (33) is only needed for theoretical reasons.
All the numerical experiments are done in Matlab on a standard laptop with a dual core
2.8 GHz processor and 16 GB memory. Only the implementation of the matrices resulting
from the V and K expressions is done in C using the mex -interface of Matlab [Era12,
Era13a]. As introduced earlier, we use the equivalence of norms ‖φ − φh‖2

H−1/2(Γ)
∼

‖φ − φh‖2
V := 〈V(φ − φh), φ − φh〉Γ, to calculate the conormal error φ − φh. Then ‖φ −

φh‖V leads to an approximation of a double integral by quadrature. The details can be
found in [Era10, Era12, Era13a]. In all experiments and in each iteration, T consists
of triangles, which are up to rotation congruent. In this work we only consider uniform
mesh refinement, i.e., we divide all triangles by four triangles.

5.1. Mexican hat problem. We consider the square Ω = (−1/4, 1/4)2. We take the

exact solution to be u(x1, x2) = (1− 100x2
1− 100x2

2)e−50(x2
1+x2

2) in the interior domain and

ue(x1, x2) = log
√
x2

1 + x2
2 in the exterior. The diffusion matrix is

A =

(
10 + cos x1 160x1x2

160x1x2 10 + sin x2

)
, (41)

and we take b = (0, 0)T and c = 0. Note that in Ω we have λmin(A) = 0.342278 and
λmax(A) = 10.247271. The right-hand side f and the jumps u0 and t0 are calculated
appropriately. We stress that u and ue are smooth in Ω and Ωe, respectively. There-
fore, we expect a convergence order O(h1) for a first order numerical scheme in the
H1-norm, where h := maxT∈T hT denotes the uniform mesh-size. This corresponds to
order O(N−1/2) with respect to the number of elements N of T . The initial mesh T (0)

consists of 16 triangles. Figure 2 shows the curves of the interior error u− uh in the H1-
semi-norm and L2-norm, respectively, and the conormal error of φ − φh in the V-norm.
Both axes are scaled logarithmically; i.e., a straight line g with slope −p corresponds to
a dependence g = O(N−p) = O(h2p). The interior H1-semi-norm error leads to a conver-
gence order O(N−1/2), whereas the corresponding L2-norm error decreases with O(N−1).
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Figure 2. The error ‖∇(u − uh)‖L2(Ω) in the H1-semi-norm, the error
‖u − uh‖L2(Ω) in the L2-norm, and the conormal error ‖φ − φh‖V in the
V-norm in the example in subsection 5.1 for uniform mesh-refinement.

Figure 3. Interior and exterior solution on an uniformly generated mesh
with 4096 elements in the example in subsection 5.1.
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Figure 4. The error ‖∇(u − uh)‖L2(Ω) in the H1 semi-norm, the error
‖u− uh‖L2(Ω) in the L2 norm, and the conormal error ‖φ− φh‖V in the V
norm in the example in subsection 5.2 for uniform mesh-refinement.

Thus, the error in H1-norm behaves like O(N−1/2). The convergence of the BEM conor-
mal quantity is optimal in the sense of O(N−3/4) due to the smooth solution. Altogether
we see ‖u − uh‖H = O(N−1/2) = O(h) with u = (u, φ) and uh = (uh, φh) ∈ Hh, which
was shown in Theorem 18 for smooth solutions.
Figure 3 shows the solution in Ω and parts of Ωe. We observe the jump on the coupling
boundary Γ and remark that the BEM solution is generated pointwise with the aid of
the exterior representation formula (3) on a uniform grid. For points on the boundary
Γ coming from the exterior domain, we use the exterior trace of (3). Note that instead
of (4) this approximated trace reads

ue,h|Γ(x) = −(Vφh)(x) +
((
K +

ϕ

2π

)
(uh − u0)

)
(x) (42)

for a point evaluation x ∈ Γ, where ϕ is the interior angle of the intersection of the two
tangential vectors in x.

Remark 20. For this example γ(x) = 0 from assumption (2). Thus the analysis needs the
stabilized bilinear form (31) with β = 1 from (11). In particular, we have the condition
λmin(A) > CK/4, where CK ∈ [1/2, 1) is the contraction constant of the double layer
potential K. Note that our A with λmin(A) = 0.342278 fulfills this constraint. If one
replace both values of 160 by 165 we get λmin(A) = 0.003033 which contradicts the bound.
However, the experiences (not plotted here) show the right convergence behavior. This
confirms similar observations for FEM-BEM couplings, e.g. [AFF+13]. In particular, the
bound seems to be a theoretical bound also for our FVM-BEM coupling approach.

5.2. Convection-diffusion problem. We consider the model problem on the square
domain Ω = (0, 1/2) × (0, 1/2). We choose a fixed diffusion matrix of A = 0.5 I, a
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Figure 5. Interior and exterior solution with a weighted upwinding stabi-
lization on an uniformly generated mesh with 4096 elements in the example
in subsection 5.2.

convection field b = (1000x1, 0)T and a reaction coefficient c = 0. Note that for this
problem we do not have an inflow boundary Γin and thus (1f) is not needed. For all
calculations we use the upwind discrete coupling with the weighting function Φ defined
in (29). We prescribe an analytical solution

u(x1, x2) = 0.5

(
1− tanh

(0.25− x1

0.02

))
for the interior domain Ω and

ue(x1, x2) = log
√

(x1 − 0.25)2 + (x2 − 0.25)2

for the exterior domain Ωe. We calculate the right-hand side f and the jumps u0 and
t0 appropriately. Note that λmin(A) = 0.5 and that the problem is highly convection
dominated.
The initial mesh T (0) consists of 16 triangles. In Figure 4 we plot the convergence rate
for uniform mesh-refinement with respect to the number of elements in T . Since the
interior and exterior solution are smooth as in the previous example in subsection 5.1,
we observe a similar convergence behavior, in particular, ‖u−uh‖H = O(N−1/2) = O(h)
with u = (u, φ) and uh = (uh, φh) ∈ Hh, which also confirms Theorem 18. However,
due to the strong convection, we have a preasymptotic phase. We want to mention, that
without any upwind stabilization, it is not possible to get a stable solution even for more
than 4 million elements, which is the last mesh in our calculation. In Figure 5 we plot the
interior and exterior solution. To resolve the shock at x1 = 0.25 better and thus to reduce
the effects to the exterior domain, one can use adaptive mesh refinement as in [Era13b].
However, this is beyond this work.
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5.3. A more practical example. Our last example is a more practical problem. The
model can describe the stationary concentration of a chemical dissolved and distributed
in different fluids, where we have a convection dominated problem in Ω and a diffusion
distribution in Ωe. Note that the interior is a classical model problem and as described
above, the coupling with the exterior problem can ‘replace’ the boundary condition, which
might be difficult to find. Our interior domain Ω = (−1/4, 1/4)2\

(
[0, 1/4]× [−1/4, 0]

)
is

the classical L-shape. The diffusion matrix A = α I in Ω is piecewise constant and reads

α : R× R→ R : (x1, x2) 7→


10−7 for x2 ≤ 0,

10−6 for x1 > 0,

5 · 10−7 else.

Additionally, we choose b = (15, 10)T and c = 10−2. The source is in the lower square,
i.e. f = 5 for −0.2 ≤ x1 ≤ −0.1, −0.2 ≤ x2 ≤ −0.05, and f = 0 elsewhere. We prescribe
the jumps u0 = 0 and t0 = 0. Instead of a logarithmic radiation condition, we impose
that u = a∞+O(1/|x|) and |x| → ∞ for an unknown a∞ ∈ R. An exterior solution of the
Laplace equation satisfying this type of asymptotic behavior at infinity must have zero
average of the normal derivative on Γ, see [CS85]. We must add a∞ to the representation
formulas for the exterior solution (3) and (42), respectively, and (4) becomes

ue|Γ = (1/2 +K)ue|Γ − Vφ+ a∞.

Thus we have an additional term 〈ψh, a∞〉Γ on the left-hand side of (25b) and an addi-
tional equation, which ensures 〈1, φh〉Γ = 0 as the counterpart. We use the full upwind
scheme, i.e. (28), for the approximation of the convection term and start with a mesh
of 12 triangles. This example is similar to the one in [Era12, Subsection 7.2] but with a
smaller diffusion. Note that the problem is highly convection dominated and the analyt-
ical solution is unknown.

(a) Interior numerical solution without stabi-
lization.

(b) Contour lines with full upwind.

Figure 6. A convection approximation without upwinding or any other
stabilization leads to strong oscillations in (a) in the example in subsec-
tion 5.3. In (b) we see the transmission effects of the interior and exterior
problem through a contour line plot.
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Figure 7. Interior and exterior solution with full upwinding stabilization
on an uniformly generated mesh with 3072 elements in the example in
subsection 5.3.

An interior solution without any stabilization is plotted in Figure 6(a) and shows strong
oscillations. In Figure 6(b) we see the contour lines based on a solution generated on
a mesh T with 49152 elements. The transport is mainly from the source f 6= 0 in the
left lower square in the direction of the convection b. We also can see the interaction
with the exterior domain, hence, the contour lines are circular. In general, the solution
of such a problem may have local phenomena such as injection wells. As seen in Figure 7
this leads to step layers on the boundary (0, 0) to (0,−1/4), due to the convection in
this direction and the different diffusion coefficient of the interior and exterior problem.
Since we consider here a domain with a reentrant corner and model data with jumps,
it is well known that uniform mesh refinement can not guarantee optimal convergence
rates, i.e. u 6∈ H2(Ω). An adaptive mesh refinement steered through a robust a posteriori
estimator could lead to a more accurate solution as one can find in a similar example for
the FVM-BEM three field coupling approach in [Era13b].

6. Conclusions

We presented a new FVM-BEM coupling method based on the non-symmetric approach
to solve a transmission problem, i.e., a convection diffusion reaction problem in an interior
domain coupled with a diffusion process in an unbounded exterior domain. The resulting
scheme maintains local flux conservation, also in the case when an upwind scheme for
convection dominated problems is used. We showed ellipticity of the continuous and dis-
crete system or for some model configurations the ellipticity of their equivalent stabilized
system. Additionally, we could improve the theoretical elliptic constant from previous
works. Note that the stabilized FVM-BEM system was only used for theoretical pur-
poses. This allowed us to show existence and uniqueness, convergence, and an a priori
estimate. We stress that for some critical model configurations the assumptions on the
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data and regularity of the unknown solution are weaker than for the comparable three
field FVM-BEM coupling. Moreover, the non-symmetric approach has less discrete un-
knowns and thus is computational cheaper. Our work gives us a recipe for the coupling
of BEM with a non-Galerkin method like FVM. Our theoretical results were confirmed
by three numerical examples, which illustrate the strength of the chosen method in terms
of local flux conservation and convection dominated problems.
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[JN80] Claes Johnson and Jean-Claude Nédélec. On the coupling of boundary integral and finite

element methods. Math. Comp., 35(152):1063–1079, 1980.
[McL00] William McLean. Strongly elliptic systems and boundary integral equations. Cambridge Uni-

versity Press, Cambridge, 2000.
[OS13] Günther Of and Olaf Steinbach. Is the one-equation coupling of finite and boundary element

methods always stable? Z. Angew. Math. und Mech., 93(6-7):476–484, 2013.
22



[OS14] Günther Of and Olaf Steinbach. On the ellipticity of coupled finite element and one-equation
boundary element methods for boundary value problems. Numer. Math., 127(3):567–593,
2014.

[RST96] Hans-Görg Roos, Martin Stynes, and Lutz Tobiska. Numerical methods for singularly per-
turbed differential equations, volume 24. Springer, Berlin, 1996.

[Say09] Francisco-Javier Sayas. The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal
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