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Abstract
In this work, we introduce a new space-time variational formulation of the second-

order wave equation, where integration by parts is also applied with respect to the time
variable, and a modified Hilbert transformation is used. For this resulting variational
setting, ansatz and test spaces are equal. Thus, conforming finite element discretiza-
tions lead to Galerkin–Bubnov schemes. We consider a conforming tensor-product
approach with piecewise polynomial, continuous basis functions, which results in an
unconditionally stable method, i.e., no CFL condition is required. We give numerical
examples for a one- and a two-dimensional spatial domain, where the unconditional
stability and optimal convergence rates in space-time norms are illustrated.

1 Introduction
As a model problem, we consider the Dirichlet boundary value problem for the wave equa-
tion,

∂ttu(x, t)−∆xu(x, t) = f(x, t) for (x, t) ∈ Q := Ω× (0, T ),

u(x, t) = 0 for (x, t) ∈ Σ := ∂Ω× [0, T ],

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ Ω,

 (1)
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where Ω ⊂ Rd, d = 1, 2, 3, is some bounded Lipschitz domain, T > 0 is a finite time
horizon, and f is some given source. For simplicity, we only consider homogeneous bound-
ary and initial conditions, but inhomogeneous data or other types of boundary conditions
can be handled as well. To compute an approximate solution of the wave equation (1),
different numerical methods are available. Classical approaches are time-stepping schemes
together with finite element methods in space, see [1] for an overview. An alternative is to
discretize the time-dependent problem without separating the temporal and spatial vari-
ables. However, on the one hand, most space-time approaches are based on discontinuous
Galerkin methods, see, e.g., [3, 6]. On the other hand, conforming tensor-product space-
time discretizations with piecewise polynomial, continuous ansatz and test functions are of
Petrov–Galerkin type, see, e.g., [7, 8, 12], where a stabilization is needed to avoid a CFL
condition, i.e., a relation between the time mesh size and the spatial mesh size.

In this work, we use a modified Hilbert transformation to introduce a new space-time
variational formulation of the wave equation (1), where ansatz and test spaces are equal.
Conforming discretizations of this new variational setting, using polynomial, globally con-
tinuous ansatz and test functions, lead to space-time Galerkin–Bubnov finite element meth-
ods, which are unconditionally stable and provide optimal convergence rates in ‖·‖L2(Q) and
| · |H1(Q), respectively. The rest of the paper is organized as follows: In Section 2, a modified
Hilbert transformation and its main properties are given. Section 3 states the space-time
variational setting for the wave equation and introduces the new space-time Galerkin–
Bubnov finite element method. Numerical examples for a one- and a two-dimensional
spatial domain are presented in Section 4. Finally, we draw some conclusions in Section 5.

2 A modified Hilbert transformation
In this section, we summarize the definition and some of the most important properties
of the modified Hilbert transformation HT as introduced in [8], see also [9, 11]. Since
the modified Hilbert transformation covers the dependency in time only, in this section,
we consider functions u(t) for t ∈ (0, T ), where a generalization to functions in (x, t) is
straightforward.

For u ∈ L2(0, T ), we consider the Fourier series expansion

u(t) =
∞∑
k=0

uk sin

((π
2

+ kπ
) t

T

)
, uk :=

2

T

∫ T

0

u(t) sin

((π
2

+ kπ
) t

T

)
dt,

and we define the modified Hilbert transformation HT as

(HTu)(t) =
∞∑
k=0

uk cos

((π
2

+ kπ
) t

T

)
, t ∈ (0, T ). (2)

By interpolation, we introduce Hs
0,(0, T ) := [H1

0,(0, T ), L2(0, T )]s for s ∈ [0, 1], where the
space H1

0,(0, T ) covers the initial condition u(0) = 0 for u ∈ H1(0, T ). Analogously,
we define Hs

,0(0, T ) for s ∈ [0, 1]. With these notations, the mapping HT : Hs
0,(0, T ) →
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Hs
,0(0, T ) is an isomorphism for s ∈ [0, 1], where the inverse is the L2(0, T ) adjoint, i.e.,
〈HTu,w〉L2(0,T ) = 〈u,H−1

T w〉L2(0,T ) for all u,w ∈ L2(0, T ). In addition, the relations

〈v,HTv〉L2(0,T ) > 0 for 0 6= v ∈ Hs
0,(0, T ), 0 < s ≤ 1,

〈∂tHTu, v〉L2(0,T ) = −〈H−1
T ∂tu, v〉L2(0,T ) for u ∈ H1

0,(0, T ), v ∈ L2(0, T )

hold true. For the proofs of these aforementioned properties, we refer to [8, 9, 11]. Further-
more, the modified Hilbert transformation (2) allows a closed representation [8, Lemma
2.8] as Cauchy principal value integral, i.e., for u ∈ L2(0, T ),

(HTu)(t) = v.p.

∫ T

0

1

2T

(
1

sin π(s+t)
2T

+
1

sin π(s−t)
2T

)
u(s) ds, t ∈ (0, T ).

This representation can be used for an efficient realization, also using low-rank approxi-
mations of related discrete matrix representations, see [9] for a more detailed discussion.

3 Space-time variational formulations
A possible space-time variational formulation for the Dirichlet boundary value problem (1)
is to find u ∈ H1,1

0;0,(Q) := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;L2(Ω)) such that

−〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q) = 〈f, v〉L2(Q) (3)

is satisfied for all v ∈ H1,1
0;,0(Q) := L2(0, T ;H1

0 (Ω)) ∩H1
,0(0, T ;L2(Ω)). Note that the space

H1
0,(0, T ;L2(Ω)) covers zero initial conditions, while the space H1

,0(0, T ;L2(Ω)) involves
zero terminal conditions at t = T . For f ∈ L2(Q), there exists a unique solution u of (3),
satisfying the stability estimate

‖u‖H1,1
0;0,(Q) := |u|H1(Q) :=

√
‖∂tu‖2

L2(Q) + ‖∇xu‖2
L2(Q) ≤

1√
2
T ‖f‖L2(Q),

see [4, 8, 12]. Note that the solution operator L : L2(Q) → H1,1
0;0, (Q), Lf := u, is not an

isomorphism, i.e., L is not surjective, see [10] for more details.
A direct numerical discretization of the variational formulation (3) would result in a

Galerkin–Petrov scheme with different ansatz and test spaces, being zero at the initial and
the terminal time, respectively. Hence, introducing some bijective operator A : H1,1

0;0,(Q)→
H1,1

0;,0(Q), we can express the test function v in (3) as v = Aw for w ∈ H1,1
0;0,(Q) to end up with

a Galerkin–Bubnov scheme. While the time reversal map κTw(x, t) := w(x, T − t) as used,
e.g., in [2], is rather of theoretical interest, in the case of a tensor-product space-time finite
element discretization, one may use the transformation Awh(x, t) := wh(x, T ) − wh(x, t),
see [8]. However, the resulting numerical scheme is only stable when a CFL condition is
satisfied, e.g., ht < hx/

√
d when using piecewise linear basis functions and a tensor-product

structure also in space. Although it is possible to derive an unconditionally stable scheme
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by using some stabilization approach, see [7, 12], our particular interest is in using an
appropriate transformation A to conclude an unconditionally stable scheme without any
further stabilization. A possible choice is the use of the modified Hilbert transformation
HT as introduced in Section 2. So, with the properties of HT , given in Section 2, we
conclude that

−〈∂tu, ∂tHTw〉L2(Q) = 〈∂tu,HT
−1∂tw〉L2(Q) = 〈HT∂tu, ∂tw〉L2(Q)

for all u,w ∈ H1,1
0;0,(Q), which leads to the variational formulation to find u ∈ H1,1

0;0,(Q) such
that

〈HT∂tu, ∂tw〉L2(Q) + 〈∇xu,∇xHTw〉L2(Q) = 〈f,HTw〉L2(Q) (4)

is satisfied for all w ∈ H1,1
0;0,(Q). Since the mapping HT : H1,1

0;0,(Q)→ H1,1
0;,0(Q) is an isomor-

phism, unique solvability of the new variational formulation (4) follows from the unique
solvability of the variational formulation (3).

Let Vh = span{φi}Mi=1 ⊂ H1,1
0;0,(Q) be some conforming space-time finite element space.

The Galerkin–Bubnov formulation of the variational formulation (4) is to find uh ∈ Vh
such that

〈HT∂tuh, ∂twh〉L2(Q) + 〈∇xuh,∇xHTwh〉L2(Q) = 〈f,HTwh〉L2(Q) (5)

is satisfied for all wh ∈ Vh. The discrete variational formulation (5) corresponds to the
linear system Khu = f with the stiffness matrix Kh = Ah +Bh, and

Ah[i, j] =

∫ T

0

∫
Ω

HT∂tφj(x, t) ∂tφi(x, t) dx dt,

Bh[i, j] =

∫ T

0

∫
Ω

∇xφj(x, t) · ∇xHTφi(x, t) dx dt

for i, j = 1, . . . ,M . Since the realization of the modified Hilbert transformation HT is
much easier for solely time-dependent functions, see [9, 11], here we choose as a special
case a tensor-product ansatz. For this purpose, let the bounded Lipschitz domain Ω ⊂ Rd

be an interval Ω = (0, L) for d = 1, polygonal for d = 2, or polyhedral for d = 3. We
consider admissible decompositions

Q = Ω× [0, T ] =
Nx⋃
i=1

ωi ×
Nt⋃
`=1

[t`−1, t`]

with N := Nx ·Nt space-time elements, where the time intervals (t`−1, t`) with mesh sizes
ht,` = t` − t`−1 are defined via the decomposition

0 = t0 < t1 < t2 < · · · < tNt−1 < tNt = T

of the time interval (0, T ). The maximal and the minimal time mesh sizes are denoted by
ht := ht,max := max` ht,`, and ht,min := min` ht,`, respectively. For the spatial domain Ω, we
consider a shape-regular sequence (Tν)ν∈N of admissible decompositions

Tν := {ωi ⊂ Rd : i = 1, . . . , Nx}
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of Ω into finite elements ωi ⊂ Rd with mesh sizes hx,i and the maximal mesh size hx :=
maxi hx,i. The spatial elements ωi are intervals for d = 1, triangles for d = 2, and tetrahedra
for d = 3. Next, we introduce the finite element space

Q1
h,0(Q) := S1

hx,0(Ω)⊗ S1
ht,0,(0, T )

of piecewise multilinear, continuous functions, i.e.,

S1
hx,0(Ω) :=S1

hx(Ω) ∩H1
0 (Ω) = span{ψ1

j}Mx
j=1,

S1
ht,0,(0, T ) :=S1

ht(0, T ) ∩H1
0,(0, T ) = span{ϕ1

`}Nt
`=1,

where ψ1
j , j = 1, . . . ,Mx, are the spatial nodal basis functions, and ϕ1

` , ` = 1, . . . , Nt,
are the temporal nodal basis functions. In fact, S1

ht
(0, T ) is the space of piecewise linear,

continuous functions on intervals, and S1
hx

(Ω) is the space of piecewise linear, continuous
functions on intervals (d = 1), triangles (d = 2), and tetrahedra (d = 3).

Choosing Vh = Q1
h,0(Q) in (5) leads to the space-time Galerkin–Bubnov variational

formulation to find uh ∈ Q1
h,0(Q) such that

〈HT∂tuh, ∂twh〉L2(Q) + 〈∇xuh,∇xHTwh〉L2(Q) = 〈Q0
hf,HTwh〉L2(Q) (6)

for all wh ∈ Q1
h,0(Q). Here, for an easier implementation, we approximate the right-hand

side f ∈ L2(Q) by
f ≈ Q0

hf ∈ S0
hx(Ω)⊗ S0

ht(0, T ), (7)

where Q0
h : L2(Q) → S0

hx
(Ω) ⊗ S0

ht
(0, T ) is the L2(Q) projection on the space S0

hx
(Ω) ⊗

S0
ht

(0, T ) of piecewise constant functions. The discrete variational formulation (6) is equiv-
alent to the global linear system

Khu = f̃ (8)

with the system matrix

Kh = AHT
ht
⊗Mhx +MHT

ht
⊗ Ahx ∈ RNt·Mx×Nt·Mx ,

where Mhx ∈ RMx×Mx and Ahx ∈ RMx×Mx denote spatial mass and stiffness matrices given
by

Mhx [i, j] = 〈ψ1
j , ψ

1
i 〉L2(Ω), Ahx [i, j] = 〈∇xψ

1
j ,∇xψ

1
i 〉L2(Ω), i, j = 1, . . . ,Mx,

and MHT
ht
∈ RNt×Nt and AHT

ht
∈ RNt×Nt are defined by

MHT
ht

[`, k] := 〈ϕ1
k,HTϕ

1
`〉L2(0,T ), AHT

ht
[`, k] := 〈HT∂tϕ

1
k, ∂tϕ

1
`〉L2(0,T )

for `, k = 1, . . . , Nt. The matrices MHT
ht

, AHT
ht

are nonsymmetric, but positive definite,
which follows from the properties of HT , given in Section 2. Additionally, the matrices
Mhx , Ahx are positive definite. Thus, standard properties of the Kronecker product yield
that the system matrix Kh is also positive definite. Hence, the global linear system (8) is
uniquely solvable. Further details on the numerical analysis of these new Galerkin–Bubnov
variational formulations (5), (6) are far beyond the scope of this contribution, we refer to
[5].
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Table 1: Numerical results of the Galerkin–Bubnov finite element discretization (6) for the
space-time cylinder (9) for the function u1 in (10) for a uniform refinement strategy.

dof hx,max hx,min ht,max ht,min ‖u1 − u1,h‖L2(Q) eoc |u1 − u1,h|H1(Q) eoc

3 0.7500 0.2500 7.5000 1.2500 5.0e+02 - 3.2e+03 -
18 0.3750 0.1250 3.7500 0.6250 4.2e+02 0.3 2.7e+03 0.2
84 0.1875 0.0625 1.8750 0.3125 3.2e+02 0.4 2.5e+03 0.1
360 0.0938 0.0312 0.9375 0.1562 8.4e+01 1.9 2.1e+03 0.2
1488 0.0469 0.0156 0.4688 0.0781 2.6e+01 1.7 1.0e+03 1.0
6048 0.0234 0.0078 0.2344 0.0391 7.2e+00 1.9 5.0e+02 1.1
24384 0.0117 0.0039 0.1172 0.0195 1.8e+00 2.0 2.5e+02 1.0
97920 0.0059 0.0020 0.0586 0.0098 4.7e-01 2.0 1.2e+02 1.0
392448 0.0029 0.0010 0.0293 0.0049 1.2e-01 2.0 6.2e+01 1.0
1571328 0.0015 0.0005 0.0146 0.0024 2.9e-02 2.0 3.1e+01 1.0

4 Numerical results

In this section, numerical examples for the Galerkin–Bubnov finite element method (6) for
a one- and a two-dimensional spatial domain are given. For both cases, the number of
degrees of freedom is given by dof = Nt ·Mx. The assembling of the matrices AHT

ht
, MHT

ht
is

done as proposed in [11, Subsection 2.2]. The integrals for computing the projection Q0
hf

in (7) are calculated by using high-order quadrature rules. The global linear system (8) is
solved by a direct solver.

For the first numerical example, we consider the one-dimensional spatial domain Ω :=
(0, 1) with the terminal time T = 10, i.e., the rectangular space-time domain

Q := Ω× (0, T ) := (0, 1)× (0, 10). (9)

As an exact solution, we choose

u1(x, t) = t2 sin(10πx) sin(t x), (x, t) ∈ Q. (10)

The spatial domain Ω = (0, 1) is decomposed into nonuniform elements with the vertices

x0 = 0, x1 = 1/4, x2 = 1, (11)

whereas the temporal domain (0, T ) = (0, 10) is decomposed into nonuniform elements
with the vertices

t0 = 0, t1 = T/8, t2 = T/4, t3 = T, (12)

see Figure 1 for the resulting space-time mesh. We apply a uniform refinement strategy for
the meshes (11), (12). The numerical results for the smooth solution u1 in (10) are given
in Table 1, where we observe unconditional stability, quadratic convergence in ‖ · ‖L2(Q),
and linear convergence in | · |H1(Q).
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Figure 1: Starting meshes for the one-dimensional spatial domain (left) and the two-
dimensional spatial domain (right).

For the second numerical example, the two-dimensional spatial L-shaped domain

Ω := (−1, 1)2 \ ([0, 1]× [−1, 0]) ⊂ R2 (13)

and the terminal time T = 2 are considered for the solution

u2(x1, x2, t) = sin(πx1) sin(πx2) sin(tx1x2)2, (x1, x2, t) ∈ Q = Ω× (0, T ). (14)

The spatial domain Ω is decomposed into uniform triangles with uniform mesh size hx as
given in Figure 1 for the first level. The temporal domain (0, 2) = (0, T ) is decomposed
into nonuniform elements with the vertices

t0 = 0, t1 = 1/8, t2 = 1/4, t3 = 1/2, t4 = 2 = T. (15)

When a uniform refinement strategy is applied for the temporal mesh (15) and for the
spatial mesh, the numerical results for the smooth solution u2 are given in Table 2, where
unconditional stability is observed and the convergence rates in ‖ · ‖L2(Q) and | · |H1(Q) are
optimal.

5 Conclusions
In this work, we introduced new conforming space-time Galerkin–Bubnov methods for the
wave equation. These methods are based on a space-time variational formulation, where
ansatz and test spaces are equal, using also integration by parts with respect to the time
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Table 2: Numerical results of the Galerkin–Bubnov finite element discretization (6) for the
L-shape (13) and T = 2 for the function u2 in (14) for a uniform refinement strategy.

dof hx ht,max ht,min ‖u2 − u2,h‖L2(Q) eoc |u2 − u2,h|H1(Q) eoc

20 0.3536 1.5000 0.1250 1.756e-01 - 1.331e+00 -
264 0.1768 0.7500 0.0625 6.370e-02 1.5 6.882e-01 1.0
2576 0.0884 0.3750 0.0312 1.903e-02 1.7 3.439e-01 1.0
22560 0.0442 0.1875 0.0156 5.206e-03 1.9 1.730e-01 1.0
188480 0.0221 0.0938 0.0078 1.306e-03 2.0 8.555e-02 1.0
1540224 0.0110 0.0469 0.0039 3.284e-04 2.0 4.268e-02 1.0

variable and the modified Hilbert transformation HT . As discretizations of this variational
setting, we considered a conforming tensor-product approach with piecewise polynomial,
continuous basis functions. We gave numerical examples, where the unconditional stability,
i.e., no CFL condition is required, and optimal convergence rates in space-time norms
were illustrated. For a more detailed stability and error analysis, we refer to our ongoing
work [5]. Other topics include the realization for arbitrary space-time meshes, a posteriori
error estimates and adaptivity, and the parallel solution including domain decomposition
methods.
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