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Mass-lumping discretization and solvers

for distributed elliptic optimal control problems

Ulrich Langer∗, Richard Löscher†, Olaf Steinbach‡, Huidong Yang§

Abstract

The purpose of this paper is to investigate the effects of the use of mass-
lumping in the finite element discretization of the reduced first-order optimal-
ity system arising from a standard tracking-type, distributed elliptic optimal
control problem with L2 regularization. We show that mass-lumping will not
affect the L2 error between the desired state and the computed state, but will
lead to a Schur-complement system that allows for a fast matrix-by-vector
multiplication. We show that the use of the Schur-Complement Precondi-
tioned Conjugate Gradient method in a nested iteration setting leads to an
asymptotically optimal solver with respect to the complexity.

Keywords: Elliptic optimal control problems, L2 regularization, finite ele-
ment discretization, mass lumping, preconditioned conjugate gradient method,
nested iteration.

1 Introduction

We consider the following tracking-type, distributed elliptic optimal control problem
with standard L2 regularization: find the state y% ∈ Y = H1

0 (Ω) and the control
u% ∈ U = L2(Ω) minimizing the cost functional

J(y%, u%) :=
1

2
‖y% − yd‖2L2(Ω) +

%

2
‖u%‖2L2(Ω), (1)

subject to (s.t.) the elliptic boundary value model problem

−∆y% = u% in Ω, y% = 0 on ∂Ω, (2)

for some given desired state (target) yd ∈ L2(Ω), and some regularization parameter
% > 0, where Ω ⊂ Rd, d = 1, 2, 3, is a bounded Lipschitz domain with the boundary
∂Ω. We here use the standard notations for Lebesgue and Sobolev spaces. Since
the state equation (2) has a unique solution y% ∈ Y for every given control u% ∈ U ,
the optimal control problem (1)-(2) has a unique solution (y%, u%) ∈ Y ×U too; see,
e.g., [29], [19], or [41]. Moreover, the state y% obviously belongs to H∆(Ω) = {y ∈
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H1
0 (Ω) : ∆y ∈ L2(Ω)}, and the solution operator S mapping u% to y% (control-to-

state map) is an isomorphism between L2(Ω) and H∆(Ω).
The finite element (fe) discretization of the reduced (after elimination of the

control u%) optimality system, which defines the solution to the optimal control
problem (1)-(2), leads to the solution of a large-scale symmetric, but indefinite
linear system of algebraic equations for defining the fe nodal adjoint state vector
ph ∈ Rnh and the fe nodal state vector yh ∈ Rnh such that(

%−1Mh Kh

Kh −Mh

)(
ph
yh

)
=

(
0h
−ydh

)
, (3)

where the stiffness matrix Kh and the mass matrix Mh are symmetric and posi-
tive definite (spd), ydh ∈ Rnh is nothing but the fe load vector representing the
desired state yd, and h denotes a suitable discretization parameter. For fixed %,
discretization error estimates can be found, e.g., in [19]. There is a huge number of
publications on efficient preconditioned iterative solvers for symmetric, but indefi-
nite systems in general; see, e.g., the unified approach proposed in [42], the survey
paper [8], the review article [31], the books [15] and [6], the more recent papers
[1, 3, 4, 33], and the literature cited therein. Special iterative solvers for discrete
optimality systems such as (3) should be not only robust with respect to (wrt) the
mesh refinement quantified by the discretization parameter h but also wrt the reg-
ularization parameter % that can be quite small depending on the cost that we are
willing to pay. Such kind of h and % robust preconditioned iterative methods have
been proposed and investigated in [1, 5, 35, 37, 43]; see also [2, 14, 34, 36, 40], for
handling control and state constraints, and the references therein. Alternatively,
we can use all-at-once multigrid methods to solve saddle-point problems such as (3)
efficiently; see, e.g., [38] and the review paper [10].

In this paper, we are interested in the case % = h4 leading to asymptotically
optimal balanced estimates of the L2-error between the desired state yd and the
computed finite element state y%h that is related to yh by the fe isomorphism; see
[23]. Asymptotically optimal preconditioned iterative solvers for the saddle-point
system (3) were proposed in [23] and [22] for constant and variable L2 regulariza-
tions, respectively. More precisely, it turns out that very cheap preconditioners for
the MINRES and BP-CG can be constructed on the basis of simple diagonal approx-
imations of the mass matrix Mh. Of course, we can further reduce the saddle-point
system (3) to the Schur-Complement (SC) system

(%KhM
−1
h Kh +Mh)yh = ydh (4)

by eliminating the adjoint state ph. The system matrix is spd, and we would like
to solve this system by means of the Preconditioned Conjugate Gradient (PCG)
method. Although we can use very cheap diagonal matrices Dh such as diag(Mh) or
the lumped mass matrix lump(Mh) as preconditioners that are spectrally equivalent
to the Schur complement %KhM

−1
h Kh + Mh for % = h4 [22, 23], we cannot simply

replace the mass matrix M−1
h by the lumped mass matrix (lump(Mh))−1 in the

Schur complement without a precise analysis of the impact of this replacement to
the discretization error. In Section 2, we just provide this analysis, and show that,
in the case of continuous, piecewise linear (Courant’s) finite element spaces, the
discretization error is not affected at all. This theoretical result is supported by our
numerical results presented in Section 4. Now we have to solve the mass-lumped
SC system

(%Kh(lump(Mh))−1Kh +Mh)ŷh = ydh (5)

instead of the original SC system (4). Using the diagonal preconditioner Dh =
lump(Mh), we can now solve (5) in asymptotically optimal complexity for some
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fixed relative accuracy. In Section 3, we show how we can use this SC-PCG in a
nested iteration setting in order to compute a fe approximation to the desired state
yd, which differs from yd in the L2-norm in the order of the discretization error,
with asymptotically optimal complexity O(nh). These theoretical results are again
quantitatively illustrated by numerical experiments in Section 4.

2 Mass-Lumping and Error Analysis

The first-order optimality system, derived from (1)–(2), is given by the equations

−∆y% = u%, −∆p% = y% − yd, and p% + %u% = 0 in Ω, (6)

with the boundary conditions

y% = 0 and p% = 0 on ∂Ω. (7)

Eliminating the control u%, we arrive at the reduced first-order optimality system,
the variational form of which reads as follows: find (y%, p%) ∈ H1

0 (Ω)×H1
0 (Ω) such

that

1

%
〈p%, q〉L2(Ω) + 〈∇y%,∇q〉L2(Ω) = 0, ∀q ∈ H1

0 (Ω), (8)

−〈∇p%,∇v〉L2(Ω) + 〈y%, v〉L2(Ω) = 〈yd, v〉L2(Ω) , ∀v ∈ H
1
0 (Ω). (9)

Introducing the variable p̃% = 1√
%p%, we further derive the scaled system

1
√
%
〈p̃%, q〉L2(Ω) + 〈∇y%,∇q〉L2(Ω) = 0, ∀q ∈ H1

0 (Ω), (10)

−〈∇p̃%,∇v〉L2(Ω) +
1
√
%
〈y%, v〉L2(Ω) =

1
√
%
〈yd, v〉L2(Ω) , ∀v ∈ H

1
0 (Ω). (11)

For simplicity, we assume from now on that Ω ⊂ Rd is polygonally (d = 2) or
polyhedrally (d = 3) bounded. Let Th = {τe}Nhe=1 be an admissible, globally quasi-
uniform and shape-regular decomposition of Ω into simplicies τe, with the mesh-size
he = |τe|1/d, such that Ω =

⋃Nh
e=1 τe. Let S1

h(Th) = span{ϕhj }
nh
j=1 denote the space

of piecewise linear, globally continuous functions spanned by the Lagrange basis
functions ϕhj (hat functions), which fulfil the equations

nh∑
j=1

ϕhj (x) = 1 ∀x ∈ Ω, and ϕhj (xi) = δi,j for each node xi, i = 1, . . . , nh. (12)

Further, we define Vh := S1
h(Th)∩H1

0 (Ω) = span{ϕhj }
nh
j=1, where we assume that the

ordering of the basis functions is such that the indices j = 1, . . . , nh correspond to
vertices xj ∈ Ω and j = nh+ 1, . . . , nh corresponds to the vertices on the boundary,
xj ∈ ∂Ω. We refer to the books [11, 16, 39] for more details on standard finite
element discretizations of elliptic PDEs.

A conforming discretization of (10)-(11) is then to find (y%h, p̃%h) ∈ Vh×Vh such
that

1
√
%
〈p̃%h, qh〉L2(Ω) + 〈∇y%h,∇qh〉L2(Ω) = 0, ∀qh ∈ Vh, (13)

−〈∇p̃%h,∇vh〉L2(Ω) +
1
√
%
〈y%h, vh〉L2(Ω) =

1
√
%
〈yd, vh〉L2(Ω) , ∀vh ∈ Vh.(14)

In [23], we were able to show the following result for the L2 error between the
desired state yd and the computed finite element state y%h.
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Theorem 1 ([23, Corollary 1]). Let (y%h, p̃%h) ∈ Vh × Vh be the unique solution of
the coupled finite element variational formulation (13)-(14). Let yd ∈ Hs

0(Ω) for
s ∈ [0, 1] or yd ∈ Hs(Ω) ∩H1

0 (Ω) for s ∈ (1, 2]. Then

‖y%h − yd‖L2(Ω) ≤ c hs ‖yd‖Hs(Ω),

provided that % = h4.

We recall that vh ∈ Vh can be represented in the form

vh(x) =

nh∑
i=1

viϕ
h
i (x), (15)

where vi = vh(xi). Thus, we can associate each finite element function with its
coefficient vector via the finite element isomorphism vh ↔ v, where v[i] = vi. With
this, the matrix system corresponding to the fe scheme (13)-(14) can be written in
the form: find (yh, p̃h) ∈ Rnh × Rnh such that(

1√
%Mh Kh

−K>h 1√
%Mh

)(
p̃h
yh

)
=

(
0

1√
%ydh

)
, (16)

where Mh and Kh denote the mass resp. stiffness matrix with the entries

Mh[i, j] =

∫
Ω

ϕhj (x)ϕhi (x) dx and Kh[i, j] =

∫
Ω

∇ϕhj (x) · ∇ϕhi (x) dx,

and the load vector

ydh[i] =

∫
Ω

yd(x)ϕhi (x) dx.

We note that the system (16) is equivalent to (4). Moreover, when eliminating p̃h
resp. ph, we arrive at the same Schur-complement system (4).

As already mentioned in the introductionary Section 1, we would like to replace
the inverse of the mass matrix Mh in the spd Schur complement %KhM

−1
h Kh +Mh

by the inverse of the lumped mass matrix lump(Mh) that is diagonal. The entries
of the lumped mass matrix lump(Mh) are given as

lump(Mh)[i, j] = δi,j

nh∑
k=1

M̃h[i, k], i, j = 1, . . . , nh, (17)

where M̃h ∈ Rnh × Rnh denotes the mass matrix on S1
h(Th) with entries

M̃h[i, j] :=

∫
Ω

ϕhj (x)ϕhi (x) dx, i, j = 1, . . . , nh.

The Schur complement system is then given by (5) with the Schur complement
Sh = %Kh(lump(Mh))−1Kh + Mh as system matrix. Unique solvability of the
discrete system follows immediately, since Mh = M>h > 0 is symmetric and positive
definite (spd) and Kh(lump(Mh))−1Kh > 0 is spd, as lump(Mh) and Kh are spd.

Now the aim is to show an equivalent result to Theorem 1, when using the
lumped mass matrix. We will exploit ideas from [7]. The discrete variational for-
mulation for the lumped case reads as follows: find (ŷ%h, p̂%h) ∈ Vh × Vh such that

1
√
%
〈p̂%h, qh〉h + 〈∇ŷ%h,∇qh〉L2(Ω) = 0, ∀qh ∈ Vh, (18)

−〈∇p̂%h,∇vh〉L2(Ω) +
1
√
%
〈ŷ%h, vh〉L2(Ω) =

1
√
%
〈yd, vh〉L2(Ω) , ∀vh ∈ Vh,(19)

where 〈ph, qh〉h = q>h lump(Mh)ph denotes the underintegrated inner product on
L2(Ω) that is nothing but the realization of the mass lumping.
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Lemma 1. For ph, qh ∈ Vh the realization of the lumped mass matrix admits the
representation

〈ph, qh〉h =

∫
Ω

I1
h(phqh) dx,

where I1
h : C(Ω)→ Vh denotes the interpolation operator, given as

I1
hv(x) =

ni∑
i=1

viϕ
h
i (x), x ∈ Ω,

where vi = v(xi), v ∈ C(Ω). Furthermore, it holds that

1

d+ 2
‖ph‖2h ≤ ‖ph‖2L2(Ω) ≤ ‖ph‖

2
h := 〈ph, ph〉h for all ph ∈ Vh. (20)

Proof. With the representation (15), we have the coefficient vectors ph ↔ ph and
qh ↔ qh. Then we compute with (17), using (12),

〈ph, qh〉h = q>h lump(Mh)ph =

nh∑
i=1

nh∑
j=1

piqjδi,j

nh∑
k=1

M̃h[i, k]

=

nh∑
i=1

piqi

nh∑
k=1

M̃h[i, k] =

nh∑
i=1

piqi

nh∑
k=1

∫
Ω

ϕhi (x)ϕhk(x) dx

=

∫
Ω

nh∑
i=1

piqiϕ
h
i (x)︸ ︷︷ ︸

I1h(phqh)

nh∑
k=1

ϕhk(x)︸ ︷︷ ︸
=1

dx.

The estimate (20) follows from, e.g., [39, Lemma 9.4],

|τe|
(d+ 1)(d+ 2)

∑
xi∈τe

p2
i ≤ ‖ph‖2L2(τe)

≤ |τe|
d+ 1

∑
xi∈τe

p2
i ,

and ∫
τe

I1
h(p2

h)(x) dx =
∑
xi∈τe

p2
i

∫
τe

ϕhi (x) dx =
|τe|
d+ 1

∑
xi∈τe

p2
i ,

when summing up over all elements τe.

With this representation, we can compute the consistency error.

Lemma 2. Let h = maxe=1,...,Nh he. Then, for ph, qh ∈ Vh, it holds∣∣∣〈ph, qh〉L2(Ω) − 〈ph, qh〉h
∣∣∣ =

∣∣∣∣∫
Ω

[
ph(x)qh(x)− I1

h(phqh)(x)
]
dx

∣∣∣∣
≤ c h2

(
ε2 ‖∇ph‖2L2(Ω) +

1

ε2
‖∇qh‖2L2(Ω)

)
,

for any ε > 0.

Proof. The first representation follows from Lemma 1. Let τe be a simplicial finite
element with the nodes xei , i = 1, . . . , d + 1. The associated nodal values of a
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piecewise linear finite element function ph are the coefficients pei , i = 1, . . . , d + 1.
In particular, for d = 1 and x ∈ τe, we then compute∫

τe

[
ph(x)qh(x)− I1

h(phqh)(x)
]
dx

=

∫ xe2

xe1

([
pe1 +

x− xe1
he

(pe2 − pe1)
][
qe1 +

x− xe1
he

(qe2 − qe1)
]

−
[
pe1qe1 +

x− xe1
he

(pe2qe2 − pe1qe1)
])

dx

=
1

6
he (pe2 − pe1) (qe2 − qe1) =

1

6
h2
e

∫ xe2

xe1

pe2 − pe1
he

qe2 − qe1
he

dx

=
1

6
h2
e

∫ xe2

xe1

p′h(x) q′h(x) dx ≤ 1

6
h2
e ‖∇xph‖L2(τe)‖∇xqh‖L2(τe) .

For d = 2 and x ∈ τe, we introduce the representation x = xe1 + Jeη with respect
to the reference element τ = {η ∈ R2 : η1 ∈ (0, 1), η2 ∈ (0, 1 − η1)} and we write
ph(x) = ph(xe1 +Jeη) = p̃h(η), η ∈ τ . Similar as in the case d = 1 we then compute,
using det Je = 2 |τe|,∫

τe

[
ph(x)qh(x)− I1

h(phqh)(x)
]
dx =

∫
τ

[
p̃h(η)q̃h(η)− I1

h(p̃hq̃h)(η)
]

detJe dη

=
|τe|
12

[
(p0 − p2)(q2 − q0) + (p1 − p0)(q0 − q1) + (p1 − p2)(q2 − q1)

]
≤ |τe|

12

[
(p0 − p2)2 + (p1 − p0)2 + (p1 − p2)2

]1/2
·
[
(q2 − q0)2 + (q0 − q1)2 + (q2 − q1)2

]1/2
.

With
(p1 − p2)2 = (p1 − p0 + p0 − p2)2 ≤ 2 (p1 − p0)2 + 2 (p0 − p2)2,

we further have, e.g., [39, Lemma 9.1],∫
τe

[
ph(x)qh(x)− I1

h(phqh)(x)
]
dx

≤ |τe|
4

[
(p0 − p2)2 + (p1 − p0)2

]1/2[
(q2 − q0)2 + (q0 − q1)2

]1/2
=
|τe|
4

[
2

∫
τ

|∇ηp̃h|2dη
]1/2 [

2

∫
τ

|∇η q̃h|2dη
]1/2

=
|τe|
2
‖∇ηp̃h‖L2(τ)‖∇η q̃h‖L2(τ) ≤ c h2

e ‖∇xph‖L2(τe)‖∇xqh‖L2(τe) .

For d = 3, we proceed in the same way. Now the reference element is given by
τ = {η ∈ R3 : η1 ∈ (0, 1), η2 ∈ (0, 1− η1), η3 ∈ (0, 1− η1 − η2)}, and det Je = 6 |τe|.
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Then,∫
τe

[
ph(x)qh(x)− I1

h(phqh)(x)
]
dx

= 6 |τe|
∫ 1

0

∫ 1−η1

0

∫ 1−η1−η2

0

[
p̃h(η)q̃h(η)− I1

h(p̃hq̃h)(η)
]
dη3dη2dη1

=
|τe|
20

[
(p0 − p1)(q1 − q0) + (p0 − p2)(q2 − q0) + (p0 − p3)(q3 − q0)

+(p1 − p2)(q2 − q1) + (p1 − p3)(q3 − q1) + (p2 − p3)(q3 − q2)
]

≤ |τe|
20

[
(p0 − p1)2 + (p0 − p2)2 + (p0 − p3)2 + (p1 − p2)2 + (p1 − p3)2 + (p2 − p3)2

]1/2
·
[
(q1 − q0)2 + (q2 − q0)2 + (q3 − q0)2 + (q2 − q1)2 + (q3 − q1)2 + (q3 − q2)2

]1/2
≤ |τe|

4

[
(p0 − p1)2 + (p0 − p2)2 + (p0 − p3)2

]1/2[
(q1 − q0)2 + (q2 − q0)2 + (q3 − q0)2

]1/2
=
|τe|
4

[
6

∫
τ

|∇ηp̃h|2dη
]1/2 [

6

∫
τ

|∇η|q̃h|2dη
]1/2

=
3

2
|τe| ‖∇ηp̃h‖L2(τ)‖∇η q̃h‖L2(τ) ≤ c h2

e ‖∇xph‖L2(τe)‖∇xqh‖L2(τe) .

Hence, using Young’s inequality,

‖∇xph‖L2(τe)‖∇xqh‖L2(τe) ≤
1

2

(
ε2 ‖∇xph‖2L2(τe)

+
1

ε2
‖∇xqh‖2L2(τe)

)
,

and summing up over all elements τe, this gives the desired estimate.

We need one more preliminary result, before we can state the main theorem.

Lemma 3. Let (y%, p̃%) ∈ H1
0 (Ω) × H1

0 (Ω) be the unique solution of the reduced
optimality system (10) and (11). Then there holds the regularization error estimate

‖y% − yd‖H−1(Ω) ≤ c
√
% |yd|H1(Ω) for yd ∈ H1

0 (Ω).

Additionally, for yd ∈ H∆(Ω) ∩H1
0 (Ω), there holds

‖y% − yd‖L2(Ω) ≤
√
% ‖∆yd‖L2(Ω) and ‖∆y%‖L2(Ω) ≤ ‖∆yd‖L2(Ω).

Proof. The first estimate is given in [32, Theorem 4.1, (4.7)]. The second and third
estimate can be found in [23, Lemma 1, (2.5)] and in the proof of this lemma. But
for clarity, we will recall the proof. We note that, by the optimality system, we
have the equations −∆y% = u%, and p% = −%u%. First, assuming the regularity
y%, yd ∈ H∆(Ω) ∩H1

0 (Ω), using (8) and (9), and integration by parts, we obtain

‖y% − yd‖2L2(Ω) = 〈y% − yd, y% − yd〉L2(Ω) = 〈∇p%,∇(y% − yd)〉L2(Ω)

= 〈p%,−∆y%〉L2(Ω) + 〈p%,∆yd〉L2(Ω)

= −% 〈u%,−∆y%〉L2(Ω) − % 〈u%,∆yd〉L2(Ω)

= −% ‖∆y%‖2L2(Ω) + % 〈∆y%,∆yd〉L2(Ω) .

From this we conclude

‖y% − yd‖2L2(Ω) + % ‖∆y%‖2L2(Ω) ≤ % ‖∆y%‖L2(Ω)‖∆yd‖L2(Ω),
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and further

‖∆y%‖L2(Ω) ≤ ‖∆yd‖L2(Ω) and ‖y% − yd‖L2(Ω) ≤
√
% ‖∆yd‖L2(Ω).

From the first estimate we conclude that yd ∈ H∆(Ω)∩H1
0 (Ω) implies y% ∈ H∆(Ω)∩

H1
0 (Ω). This confirms that it is sufficient to require the regularity on yd only.

The main statement of this paper is formulated in the following theorem.

Theorem 2. Let (ŷ%h, p̂%h) ∈ Vh × Vh be the unique solution of the variational
formulation (18) and (19). Assume that Th is globally quasi-uniform such that a
global inverse inequality holds true. Further, choose % = h4. Then,

‖ŷ%h − yd‖L2(Ω) ≤

{
c h ‖yd‖H1

0 (Ω), if yd ∈ H1
0 (Ω),

c h2 ‖yd‖H2(Ω), if yd ∈ H2(Ω) ∩H1
0 (Ω) and Ω is convex.

Proof. Let (y%h, p̃%h) ∈ Vh × Vh be the unique solution of (13) and (14). By the
triangle inequality, we get that

‖ŷ%h − yd‖L2(Ω) ≤ ‖ŷ%h − y%h‖L2(Ω) + ‖y%h − yd‖L2(Ω).

By Theorem 1, the second term fulfils the estimate. Thus, it is sufficient to bound
the first term. Therefore, subtracting the variational formulation (13) and (14) from
(18) and (19) with vh = ŷ%h − y%h and qh = p̂%h − p̃%h, we obtain the equalities

1
√
%
‖ŷ%h−y%h‖2L2(Ω) =

1
√
%
〈ŷ%h − y%h, ŷ%h − y%h〉L2(Ω)

= 〈∇(p̂%h − p̃%h),∇(ŷ%h − y%h)〉L2(Ω)

=
1
√
%

(
〈p̃%h, p̂%h − p̃%h〉L2(Ω) − 〈p̂%h, p̂%h − p̃%h〉h

)
=

1
√
%

(
〈p̃%h, p̂%h − p̃%h〉L2(Ω) − ‖p̂%h − p̃%h‖

2
h − 〈p̃%h, p̂%h − p̃%h〉h

)
.

Multiplying by
√
% and using Lemma 1, we further get

‖ŷ%h − y%h‖2L2(Ω) + ‖p̂%h − p̃%h‖2L2(Ω) ≤ ‖ŷ%h − y%h‖
2
L2(Ω) + ‖p̂%h − p̃%h‖2h

= 〈p̃%h, p̂%h − p̃%h〉L2(Ω) − 〈p̃%h, p̂%h − p̃%h〉h

=

∫
Ω

[
p̃%h(x)(p̂%h(x)− p̃%h(x))− I1

h(p̃%h(p̂%h − p̃%h)(x)
]
dx.

With Lemma 2, choosing ph = p̃%h and qh = p̂%h− p̃%h, we estimate, for some ε > 0
to be specified,

‖ŷ%h − y%h‖2L2(Ω) + ‖p̂%h − p̃%h‖2L2(Ω)

≤ c h2

(
ε2 ‖∇p̃%h‖2L2(Ω) +

1

ε2
‖∇(p̂%h − p̃%h)‖2L2(Ω)

)
.

Using an inverse inequality, we estimate the second term by

ch2

ε2
‖∇(p̂%h − p̃%h)‖2L2(Ω) ≤

ccI
ε2
‖p̂%h − p̃%h‖2L2(Ω) = ‖p̂%h − p̃%h‖2L2(Ω),

when choosing ε =
√
ccI . Thus, it holds

‖ŷ%h − y%h‖2L2(Ω) ≤ c̃ h
2 ‖∇p̃%h‖2L2(Ω). (21)
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Now it is sufficient to bound ‖∇p̃%h‖L2(Ω) suitably. Let (y%, p̃%) ∈ H1
0 (Ω) ×H1

0 (Ω)
be the unique solution of the coupled variational formulation (8) and (9). Using the
triangle inequality and the trivial inequality (a+ b)2 ≤ 2(a2 + b2), we get

‖∇p̃%h‖2L2(Ω) ≤ 2
(
‖∇p̃%‖2L2(Ω) + ‖∇(p̃%h − p̃%)‖2L2(Ω)

)
. (22)

For (y%, p̃%) ∈ H1
0 (Ω)×H1

0 (Ω) and (y%h, p̃%h) ∈ Vh × Vh as solutions of (8)-(9) and
(13)-(14), respectively, we can show, as in the proof of [23, Theorem 1], using an
inverse inequality and % = h4, that Cea’s Lemma

h−2 ‖y% − y%h‖2L2(Ω) + ‖∇(y% − y%h)‖2L2(Ω)

+h−2 ‖p̃% − p̃%h‖2L2(Ω) + ‖∇(p̃% − p̃%h)‖2L2(Ω)

≤ c
[
h−2 ‖y% − vh‖2L2(Ω) + ‖∇(y% − vh)‖2L2(Ω)

+h−2 ‖p̃% − qh‖2L2(Ω) + ‖∇(p̃% − qh)‖2L2(Ω)

]
holds true for all (vh, qh) ∈ Vh × Vh. Further, using best approximation results, we
get, for yd ∈ H1

0 (Ω), that

h−2 ‖y% − y%h‖2L2(Ω) + ‖∇(y% − y%h)‖2L2(Ω)

+h−2 ‖p̃% − p̃%h‖2L2(Ω) + ‖∇(p̃% − p̃%h)‖2L2(Ω) ≤ c |yd|2H1(Ω),

and, for yd ∈ H1
0 (Ω) ∩H2(Ω), that

h−2 ‖y% − y%h‖2L2(Ω) + ‖∇(y% − y%h)‖2L2(Ω)

+h−2 ‖p̃% − p̃%h‖2L2(Ω) + ‖∇(p̃% − p̃%h)‖2L2(Ω) ≤ c h2 |yd|2H2(Ω).

From this we immediately conclude that

‖∇(p̃%h − p̃%)‖2L2(Ω) ≤

{
c |yd|2H1(Ω), for yd ∈ H1

0 (Ω),

c h2 |yd|2H2(Ω), for yd ∈ H1
0 (Ω) ∩H2(Ω).

(23)

For the first term, we use the first inequality of Lemma 3 for yd ∈ H1
0 (Ω) to estimate

‖∇p̃%‖2L2(Ω) = 〈∇p̃%,∇p̃%〉L2(Ω) =
1
√
%
〈y% − yd, p̃%〉L2(Ω)

≤ 1
√
%
‖y% − yd‖H−1(Ω)‖∇p̃%‖L2(Ω) ≤ c |yd|H1(Ω)‖∇p̃%‖L2(Ω),

from which we conclude

‖∇p̃%‖L2(Ω) ≤ c |yd|H1(Ω). (24)

For a convex domain Ω, we have H∆(Ω) = H2(Ω). Thus yd ∈ H2(Ω)∩H1
0 (Ω), and

we get with the same reasoning, using the second inequality of Lemma 3,

‖∇p̃%‖2L2(Ω) =
1
√
%
〈y% − yd, p̃%〉L2(Ω)

≤ 1
√
%
‖y% − yd‖L2(Ω)‖p̃%‖L2(Ω) ≤ |yd|H2(Ω)‖p̃%‖L2(Ω).

Now, we recall that, from the optimality system (6)-(9), we have

p̃% =
1
√
%
p% = −√% u% =

√
%∆y% in Ω,
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and thus, with Lemma 3, we obtain

‖p̃%‖L2(Ω) =
√
% ‖∆y%‖L2(Ω) ≤

√
% ‖∆yd‖L2(Ω) ≤

√
% |yd|H2(Ω).

Thus, for % = h4 and yd ∈ H2(Ω) ∩H1
0 (Ω), we arrive at the estimate

‖∇p̃%‖L2(Ω) ≤ h |yd|H2(Ω). (25)

Now, combining (21) with (22), (23),(24), and (25), this gives

‖ŷ%h − y%h‖L2(Ω) ≤ h ‖∇p̃%h‖L2(Ω) ≤

{
c h |yd|H1(Ω), for yd ∈ H1

0 (Ω),

c h2 |yd|H2(Ω), for yd ∈ H2(Ω) ∩H1
0 (Ω).

Lemma 4. Let (ŷ%h, p̂%h) ∈ Vh×Vh be the unique solution of the coupled variational
formulation (18) and (19). Then, for yd ∈ L2(Ω), we get the error estimate

‖ŷ%h − yd‖L2(Ω) ≤ ‖yd‖L2(Ω).

Proof. Choosing qh = p̂%h and vh = ŷ%h in (18) and (19), summing up the equations,
and multiplying with

√
%, this gives

〈p̂%h, p̂%〉h + 〈ŷ%h, ŷ%h〉L2(Ω) = 〈yd, ŷ%h〉L2(Ω) .

Rewriting this equality gives

〈p̂%h, p̂%h〉h + 〈ŷ%h − yd, ŷ%h − yd〉L2(Ω) = 〈yd − ŷ%h, yd〉L2(Ω) ,

which yields the desired estimate.

Theorem 3. Let (ŷ%h, p̂%h) ∈ Vh × Vh be the unique solution of the coupled varia-
tional formulation (18)-(19). For yd ∈ Hs

0(Ω), s ∈ [0, 1], and yd ∈ Hs(Ω) ∩H1
0 (Ω),

s ∈ (1, 2], there holds the error estimate

‖ŷ%h − yd‖L2(Ω) ≤ c hs ‖yd‖Hs(Ω). (26)

Proof. This is a direct consequence of Theorem 2 and Lemma 4, together with a
space interpolation argument.

3 Nested PCG Iteration

Finally, we have to solve the spd mass-lumped Schur-complement system (5) that
we now write in the compact from: find yh ∈ Rnh such that

Shyh = ydh, (27)

where Sh = %KhD
−1
h Kh +Mh, and Dh is the lumped mass matrix lump(Mh). For

simplicity, we omit the hat over yh in (27) and throughout this section. The fast
solution of the symmetric and indefinite system (3) with the original mass matrix
Mh instead of Dh was studied in [23]. Since the matrix Dh is diagonal, the matrix-
by-vector multiplication Sh∗yh can now be performed efficiently. Therefore, we can
use the PCG method for solving (27). Moreover, it turns out that Dh can also serve
as preconditioner in the case % = h4 that leads to the optimally balanced estimate
of ‖ŷ%h − yd‖L2(Ω) as was shown in Section 2; see Theorem 2 and Theorem 3. First
of all, we can easily show that Dh is spectrally equivalent to Mh, i.e., there exist
positive, h-independent constants cMD and cMD such that
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c
MD
Dh ≤Mh ≤ cMDDh, (28)

where c
MD

= λmin = λmin(D−1
τ Mτ ) = 1/(d+2) and cMD = λmax = λmax(D

−1
τ Mτ ) = 1

are the minimal eigenvalue and maximal eigenvalue of the small generalized eigen-
value problem Mτvτ = λDτvτ in Rd+1, respectively. Mτ and Dτ denote resp. the
mass matrix and the lumped mass matrix corresponding to the reference element
(unit simplex) τ to which every element τe from Th is mapped by an affine-linear
mapping x = xe1 + Jeη. We note that the spectral equivalence inequalities (28) are
nothing but the algebraic version of the inequalities (20) where the constants were
already explicitly computed.

In order to estimate the Schur complement Sh = %KhD
−1
h Kh +Mh by the mass

matrix Mh from below and above in the spectral sense, it is obviously enough to
estimate %KhD

−1
h Kh from above by Mh. Using the spectral equivalence inequalities

(28), Cauchy’s inequality, local inverse inequalities, and % = h4, we get

(%KhD
−1
h Khvh,vh) = % (D−1

h Khvh,Khvh) ≤ cMD % (M−1
h Khvh,Khvh)

= cMD(Kh(%−1Mh)−1Khvh,vh)

= cMD sup
qh∈Rnh

(Khvh,qh)2

(%−1Mhqh,qh)

= cMD sup
qh∈Vh

[∫
Ω

%1/4∇vh · %−1/4∇qhdx
]2

∫
Ω

%−1[qh(x)]2dx

≤ cMD sup
qh∈Vh

‖%1/4∇vh‖2L2(Ω)‖%
−1/4∇qh‖2L2(Ω)∫

Ω

%−1[qh(x)]2dx

= cMD ‖%1/4∇vh‖2L2(Ω) sup
qh∈Vh

∑
τe∈Th

h−2

∫
τe

|∇qh|2dx∫
Ω

%−1[qh(x)]2dx

≤ cMD ‖%1/4∇vh‖2L2(Ω) sup
qh∈Vh

∑
τe∈Th

h−4 c2inv

∫
τe

(qh)2 dx

∑
τe∈Th

h−4

∫
τe

(qh)2dx

= c2inv cMD ‖%1/4∇vh‖2L2(Ω)

= c2inv cMD

∑
τe∈Th

h2

∫
τe

|∇vh|2dx

≤ c4inv cMD

∑
τe∈Th

∫
τe

(vh)2dx

= c4inv cMD (Mhvh,vh), ∀vh ∈ Vh, (29)

where cinv is the universal positive constant in the local inverse inequalities

‖∇wh‖L2(τe) ≤ cinv h
−1
e ‖wh‖L2(τe) ∀wh ∈ Vh, ∀τe ∈ Th. (30)

Here the local mesh size he can be replaced by the global mesh size h since we
assumed quasi-uniform and shape-regular mesh Th. The local inverse inequalities
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(30) can again be proved by mapping τe to the unit simplex τ . In this way the
constant cinv can even be computed explicitly in dependence of the mesh charac-
teristics [12]. Therefore, we have just proved the spectral equivalence theorem that
is fundamental for the efficient solution of the spd mass-lumped Schur-complement
system (27) by means of PCG iteration.

Theorem 4. Let us assume that the mesh Th is globally quasi-uniform with the
global mesh-size h, and % = h4. Then the spectral equivalence inequalities

cSDDh ≤ cSMMh ≤ Sh = %KhD
−1
h Kh +Mh ≤ cSMMh ≤ cSDDh, (31)

hold with the spectral equivalence constants

cSM = 1, cSM = c4invcMD + 1, cSD = cMD = λmin = λmin(D
−1
T MT ) =

1

d+ 2
,

and cSD = c2MDc
4
inv + cMD, where cMD = λmax = λmax(D

−1
T MT ) = 1.

Proof. The spectral equivalence inequalities (31) immediately follow from the in-
equalities (28), and (29).

Remark 1. The spectral estimate (29) can also be proved by Fourier analysis when
one expands the vectors vh into the orthonormal eigenvector basis corresponding to
the eigenvalue problem Kheh = λDheh as it was done in [23] for Dh = Mh. In
[22], we provide a rigorous analysis of the variable L2 regularization with a tech-
nique that is different from the technique used for proving (29). We note that the
latter technique can be used to analyse the case of constant and variable energy reg-
ularizations for state equations leading to non-symmetric fe stiffness matrices Kh

such as convection-diffusion problems as well as parabolic and hyperbolic problems
when using space-time finite element discretizations; see [27, 30].

Now we can efficiently solve the mass-lumped Schur-complement system (5) re-
spectively (27) by means of the PCG methods because, thanks to mass lumping,
the matrix-vector multiplication Sh ∗ ykh can be performed in asymptotically op-
timal complexity O(nh), and, at the same time, the lumped mass matrix Dh =
lump(Mh) is a perfect preconditioner. More precisely, let ykh ∈ Rnh be the kth
PCG iterate. Due to the spectral equivalence inequalities (28) and (31), and the
well-known convergence rate estimate for the PCG method (see, e.g., [39, Chap-
ter 13]), we can estimate the L2 error ‖ŷ%h − yk%h‖L2(Ω) between the fe functions

ŷ%h(x) =
∑nh
i=1 yiϕ

h
i (x) ∈ Vh and yk%h(x) =

∑nh
i=1 y

k
i ϕ

h
i (x) ∈ Vh corresponding to

the solution yh = (yi)i=1,...,nh ∈ Rnh of the Schur complement system (27) and the
k-th PCG iterate ykh = (yki )i=1,...,nh ∈ Rnh , respectively, as follows:

‖ŷ%h − yk%h‖L2(Ω) = ‖yh − ykh‖Mh
:= (Mh(yh − ykh),yh − ykh)1/2

≤ (Sh(yh − ykh),yh − ykh)1/2

= ‖yh − ykh‖Sh ≤ 2 qk ‖yh − y0
h‖Sh

≤ 2 c
1/2
SM qk ‖yh − y0

h‖Mh
= 2 c

1/2
SM qk ‖ŷ%h − y0

%h‖L2(Ω), (32)

where q = (
√

cond2(D−1
h Sh)−1)/(

√
cond2(D−1

h Sh)+1) < 1, and cond2(D−1
h Sh) =

λmax(D−1
h Sh)/λmin(D−1

h Sh) denotes the spectral condition number of D−1
h Sh that

can be bounded by the constant

cSD
cSD

=
c2MDc

4
inv + cMD

cMD

=
λmax(D

−1
T MT )2c4inv + λmax(D

−1
T MT )

λmin(D−1
T MT )

= (d+ 2)(c4inv + 1)
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that is independent of h. Using the triangle inequality, the L2-norm discretization
error estimate (26) from Theorem 3, the L2-norm iteration error estimate (32), the
inequality

‖ŷ%h‖L2(Ω) ≤ ‖yd‖L2(Ω) (33)

that follow from (18)-(19) when we choose the test functions qh = p̂%h and vh = ŷ%h,
we finally arrive at L2-norm estimate between desired state yd and the kth PCG
iterate yk%h computed by the PCG method:

‖yd − yk%h‖L2(Ω) ≤ ‖yd − ŷ%h‖L2(Ω) + ‖ŷ%h − yk%h‖L2(Ω)

≤ c hs ‖yd‖Hs(Ω) + 2 c
1/2
SM qk ‖ŷ%h − y0

%h‖L2(Ω)

≤ hs
(
c ‖yd‖Hs(Ω) + 2 c

1/2
SM ‖ŷ%h − y0

%h‖L2(Ω)

)
≤ hs

(
c ‖yd‖Hs(Ω) + 2 c

1/2
SM ‖yd‖L2(Ω)

)
= hsc(yd) (34)

provided that qk ≤ hs and that the initial guess y0
%h is chosen to be zero. There-

fore, k ≥ lnh−s/ ln q−1 ensures that the PCG computes an approximation yk%h
to the desired state yd that differs from yd in the same order O(hs) as the dis-
cretization error ‖yd − ŷ%h‖L2(Ω) in the L2 norm. Moreover, this can be done with

O(nh lnh−1) = O(h−d lnh−1) arithmetical operations, i.e. the complexity is asymp-
totically optimal up to the logarithmical factor lnh−1.

This logarithmical factor can be avoided in a nested iteration setting on a se-
quence of refined (nested) meshes. Indeed, let us consider a sequence of uniformly
refined meshes T` = Th` with the mesh size h` and the optimally balanced regular-
ization parameter %` = h4

` , ` = 1, . . . , L, where h` = h`−1/2, ` = 2, . . . , L. Thus,
the coarsest mesh corresponds to the subindex 1, whereas the finest mesh is related
to L. On every mesh T`, ` = 1, . . . , L, we have to solve the mass-lumped Schur-
complement system (27) that we now write in form: find y` = yh` ∈ Rn` = Rnh`
such that

S`y` = yd` (35)

where S` = %`K`D
−1
` K` + M`, K` = Kh` . D` = Dh` , M` = Mh` , yd` = ydh` , and

%` = h4
` .

Now the nested iteration algorithm works as follows. First we solve the coarse-
mesh problem (35), ` = 1, sufficiently accurate. More precisely, we compute an
iterate yk11 ∈ Rn1 corresponding to the fe function yk11 = yk1%1h1

∈ V1 = Vh1
(short:

yk11 ↔ yk11 ) such that
‖yd − yk11 ‖L2(Ω) ≤ hs1c(yd). (36)

Due to (34), this can be done with k1 ≥ lnh−s1 / ln q−1 PCG iterations starting
with y0

1 = 0. Now, let us assume that, on level ` − 1 ∈ {1, . . . , L − 1}, the iterate

y
k`−1

`−1 ∈ V`−1 fulfills the estimate

‖yd − y
k`−1

`−1 ‖L2(Ω) ≤ hs`−1c(yd). (37)

Let y0
` = I``−1y

k`−1

`−1 be the affine-linear interpolate of y
k`−1

`−1 . We note that y0
` =

I``−1y
k`−1

`−1 = y
k`−1

`−1 ∈ V`−1 ⊂ V` since the meshes are nested. Then we get the
estimate

‖yd − yk`` ‖L2(Ω) ≤ ‖yd − ŷ`‖L2(Ω) + ‖ŷ` − yk`` ‖L2(Ω)

≤ chs`‖yd‖Hs(Ω) + 2 c
1/2
SM qk` ‖ŷ` − y0

`‖L2(Ω), (38)

where ŷ` = ŷ%`h` ∈ V` is the exact state solution of the finite element scheme (18)-
(19) corresponding to the solution y` ∈ Rn` of the mass-lumped Schur-complement
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system (35). Now using y0
` = I``−1y

k`−1

`−1 , the triangle inequality, Theorem 3, and
estimate (37), we can continue to estimate the last term in (38) as follows:

‖ŷ` − y0
`‖L2(Ω) ≤ ‖ŷ` − yd‖L2(Ω) + ‖yd − I``−1y

kl−1

`−1 ‖L2(Ω)

≤ ‖ŷ` − yd‖L2(Ω) + ‖yd − y
kl−1

`−1 ‖L2(Ω)

≤ chs`‖yd‖Hs(Ω) + hs`−1c(yd)

≤ hs`(c‖yd‖Hs(Ω) + 2sc(yd)) (39)

Inserting (39) into (38), we get

‖yd − yk`` ‖L2(Ω) ≤ hs`

[
c‖yd‖Hs(Ω) + 2 c

1/2
SM qk`(c‖yd‖Hs(Ω) + 2sc(yd))

]
≤ hs`c(yd) (40)

provided that qk`(c‖yd‖Hs(Ω) + 2sc(yd)) ≤ ‖yd‖L2(Ω). The latter inequality is en-
sured if we performed not more than

k` = k∗ ≥ ln(q(yd)
−1)/ ln q−1 (41)

nested iterations, where q(yd) = ‖yd‖L2(Ω)/((1+2s)c‖yd‖Hs(Ω)+21+s‖yd‖L2(Ω)) < 1.
Here we exclude the trivial case that yd = 0. Therefore, we have proved the following
nested iteration theorem by induction.

Theorem 5. If the coarse mesh problem on level l = 1 is solved by k1 PCG iter-
ations with the initial guess y0

1 = 01 such that (38) holds, and if k∗ nested PCG
iterations are used on all nested levels ` = 2, . . . , L, i.e. k2 = . . . = kL = k∗ defined
by (41), then the last iterate ykLL ↔ ykLL on the finest level ` = L differs from given
desired state yd in the order of the discretization error O(hsL) with respect to the
L2(Ω) norm. More precisely, we get the estimate

‖yd − ykLL ‖L2(Ω) ≤ hsLc(yd). (42)

The computation of ykLL ↔ ykLL requires not more than O(nL) = O(h−dL ) arithmeti-
cal operations and memory, i.e. the nested iteration procedure proposed is asymp-
totically optimal.

Proof. The proof of estimate (42) follows from above by induction. The complexity
analysis is based on simple use of the geometric series.

We stop the nested iteration process as soon as we arrive at some desired relative
accuracy ε ∈ (0, 1) such that

‖yd − ykLL ‖L2(Ω) ≤ ε ‖yd‖L2(Ω). (43)

The apriori estimate (42) immediately yields that estimate (43) is guaranteed when
chsL‖yd‖Hs(Ω) ≤ ε ‖yd‖L2(Ω), but in practice we directly check (43) because all
quantities are computable.

We will also stop the nested iteration if the cost for the control uk`` becomes too

large, where uk`` ↔ uk`` is computed from the fe state equation

uk`` = −%−1
` pk`` = D−1

` K`y
k`
`

More precisely, let cu > 0 be a given threshold for the control cost that we are
willing to pay. Then we stop the nested iteration if

‖uk`` ‖L2(Ω) = (M`u
k`
` ,u

k`
` ) ≤ cMD(D`u

k`
` ,u

k`
` ) = cMD(K`y

k`
` ,y

k`
` ) ≤ cu,
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but ‖uk`+1

`+1 ‖L2(Ω) > cu, where cMD = 1. Then we set L = `.
Now we may proceed with cascadic nested iteration freezing the cost (regular-

ization) parameter %L = h4
L and refining the mesh only , i.e.

%`+1 = %L = h4
L = const. and h`+1 = h`/2 for ` = L, . . . , L+ J − 1, (44)

in order to improve the approximation of the control. We note that this further mesh
refinement will not improve the approximation to the desired state yd since this error
is defined by the frozen cost parameter %L. Since we only use a few additional levels
for the improvement of the control, we can proceed with the PCG preconditioned
by D` as before as nested iteration, but replacing cSD by cSD,` = cSD24(`−L) for
` = L + 1, . . . , L + J . If we want to add many levels, i.e. J >> 1, then we may
use some cascadic full multigrid Schur complement iteration using level L as coarse
mesh and y0

L+1 = IL+1
L ykLL = ykLL ∈ VL ⊂ VL+1 as initial guess; see [18, 11] for L2

convergent multigrid methods.

4 Numerical Results

In our numerical experiments, we consider the discontinuous desired state

yd =

{
1 in (0.25, 0.75)3,

0 in Ω \ (0.25, 0.75)3,

in the computational domain Ω = (0, 1)3 ⊂ Rd=3. This discontinuous desired state
yd does not belong to Y = H1

0 (Ω), and has a rather low Sobolev regularity. More
precisely, yd ∈ H1/2−ε(Ω) for any ε > 0. This discontinuous target has been utilized
in the work [23, 26, 32] in both the cases of L2 and energy (H−1) regularization
for distributed elliptic optimal control problems. So, we can easily compare the
numerical results presented below for the mass-lumping discretization of the control
term in the reduced optimality system with those of the L2 regularization without
mass lumping and the H−1 regularization.

We decompose the domain Ω = (0, 1)3 into uniformly refined tetrahedral ele-
ments τe, and start with an initial mesh that contains 384 tetrahedral elements and
125 vertices, leading to the mesh size h = 2−2. From such a mesh, we make suc-
cessive refinements on the levels ` = 1, ..., 8. On the finest level ` = L = 8, we have
135, 005, 697 vertices, h = 2−9 = 1.9531e−3, and % = h4 = 2−36 = 1.4552e−11.
Further, we run tests on the adaptively refined meshes, in which we have employed
the standard red-green refinement of tetrahedral elements, and we have chosen the
locally varying regularization parameter %τ = h4

e on each tetrahedral element τe.
The adaptive procedure is simply based on the localization of the error ‖yd−ỹ`‖L2(Ω)

that is explicitly computable for any known fe approximation ỹ` to the given desired
state yd; see [21] for a detailed description.

As described in Section 3, thanks to the replacement of the mass matrix Mh

by its diagonal approximation Dh = lump(Mh), we can efficiently solve the spd
mass-lumped Schur-complement system (27) by means of the PCG preconditioned
by Dh. We first use the initial guess y0

` = 0, and terminate the iteration as soon
as the preconditioned residual is reduced by a factor 106. The number of PCG
iterations (Its)and the computational time (Time) in seconds (s) are provided in
Table 1 for both uniform and adaptive refinements.

Therein, we observe the robustness of our proposed preconditioner for (27) with
respect to both the mesh size and local adaptivity under the choice of %τ = h4

e. We
only see slightly more iterations for the adaptive refinements in comparison to the
uniform refinements.
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`
Adaptive Uniform

#Dofs error Its (Time) #Dofs error Its (Time)

1 125 3.26e−1 10 (6.3e−4) 125 3.26e−1 10 (6.4e−4)
2 223 2.35e−1 62 (6.5e−3) 729 2.25e−1 55 (1.8e−2)
3 1, 044 1.86e−1 106 (5.5e−2) 4, 913 1.59e−1 79 (1.9e−1)
4 4, 548 1.32e−1 123 (2.8e−1) 35, 937 1.12e−1 85 (1.7e−0)
5 10, 524 1.05e−1 116 (6.3e−1) 274, 625 7.96e−2 81 (2.3e+1)
6 25, 807 8.35e−2 113 (1.6e−0) 2, 146, 689 5.62e−2 74 (1.8e+2)
7 91, 520 6.03e−2 100 (5.7e−0) 16, 974, 593 3.97e−2 68 (1.4e+3)
8 118, 334 5.62e−2 102 (7.7e−0) 135, 005, 697 2.81e−2 66 (1.3e+4)
9 432, 195 4.08e−2 93 (3.5e+1)
10 473, 638 3.97e−2 95 (6.3e+1)
11 1, 843, 740 2.84e−2 91 (2.5e+2)
12 1, 937, 983 2.79e−2 92 (3.2e+2)
13 7, 681, 306 1.99e−2 91 (6.3e+2)
14 7, 922, 574 1.96e−2 93 (1.0e+3)
15 31, 496, 575 1.39e−2 83 (3.6e+3)
16 32, 000, 845 1.38e−2 84 (5.4e+3)
17 127, 607, 911 9.84e−3 68 (1.6e+4)

Table 1: Comparison of the PCG iterations (Its) and computational time (Time)
in seconds (indicated in the parentheses) for solving (27) for both adaptive and
uniform refinements using the non-nested iterations, where error = ‖yd−yk`` ‖L2(Ω).

Figure 1: Comparison of the convergence history obtained from non-nested itera-
tions for uniform and adaptive refinements, where ‖e‖ = ‖yd − yk`` ‖L2(Ω).

As shown in the theoretical part, solving the Schur complement equation with
the lumped mass does not deteriorate the convergence of our finite element ap-
proximation. This is confirmed in our numerical experiments. The comparison of
convergence on both uniform and adaptive refinements is given in Figure 1. We
observe the convergence rate h0.5 for the uniform refinement as predicted by Theo-
rem3, and a much better convergence rate h0.75 for the adaptive refinements; see [21]
for the case of variable energy regularization. There one can also find an explanation
of the convergence rate that can be achieved via this adaptive procedure.

In order to further reduce the computational cost, we utilize nested PCG itera-
tions as described in Section 3. Here, on the coarsest level ` = 1, we run the PCG
iterations until the relative preconditioned residual reaches 10−6. On the refined
levels ` = 2, 3, ..., we have utilized an adaptive tolerance

α [n`/n`−1]
− β3 , ` = 2, 3, . . . , (45)

for the relative preconditioned residual, with α being a scaling factor, β = 0.5 and
0.75 for the uniform and adaptive refinement, respectively, and n` the number of
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Figure 2: Comparison of the convergence history obtained from nested iterations
for uniform and adaptive refinements, where ‖e‖ = ‖yd − yk`` ‖L2(Ω).

degrees of freedom (#Dofs) on the mesh level ` = 1, 2, . . . . The solution on the level
`− 1 is used as an initial guess for the PCG iteration on the next finer level `. The
reduced number of nested iterations (Its) on both uniform and adaptive refinements
is given in Table 2, where we have chosen α = 0.5 and α = 1 for the adaptive and
uniform refinement, respectively. From this, we easily see much fewer iteration
numbers and significantly less computational time in seconds in comparison with
the case of non-nested iterations as shown in Table 1, without loss of accuracy of
the numerical approximations; see Figure 2 for a comparison of convergence history
for both uniform and adaptive refinements using the nested iterations.

`
Adaptive Uniform

#Dofs error Its (Time) #Dofs error Its (Time)

1 125 3.26e−1 10 (6.3e−4) 125 3.26e−1 10 (6.3e−4)
2 223 3.30e−1 1 (2.6e−4) 729 2.27e−1 8 (2.9e−3)
3 1, 067 1.84e−1 19 (1.1e−2) 4, 913 2.25e−1 1 (4.6e−3)
4 4, 705 1, 28e−1 13 (3.3e−2) 35, 937 1.08e−1 9 (1.9e−1)
5 15, 368 1.00e−1 17 (1.4e−1) 274, 625 8.22e−2 8 (1.5e−0)
6 30, 996 8.45e−2 17 (4.0e−1) 2, 146, 689 5.60e−2 9 (1.4e+1)
7 94, 176 6.30e−2 19 (1.3e−0) 16, 974, 593 3.98e−2 9 (2.1e+2)
8 129, 760 5.68e−2 18 (1.7e−0) 135, 005, 697 2.81e−2 9 (2.2e+3)
9 440, 572 4.18e−2 17 (1.2e+1)
10 488, 124 4.03e−2 17 (1.3e+1)
11 1, 860, 339 2.90e−2 18 (6.1e+1)
12 1, 958, 388 2.85e−2 16 (5.9e+1)
13 7, 254, 384 2.06e−2 18 (2.6e+2)
14 7, 408, 106 2.04e−2 16 (2.1e+2)
15 29, 094, 073 1.47e−2 17 (6.9e+2)
16 29, 682, 531 1.44e−2 16 (7.6e+2)
17 116, 229, 104 1.04e−2 16 (3.7e+3)

Table 2: Comparison of the PCG iterations (Its) and computational time (Time) in
seconds (indicated in the parentheses) for solving (27) for both adaptive (α = 0.5,
β = 0.75) and uniform (α = 1, β = 0.5) refinements using the nested iteration
approach, where error = ‖yd − yk`` ‖L2(Ω)

Another approach to reduce the computational time, especially, in the case of
uniform refinement is the parallelization of the PCG solver. The parallelization of
the conjugate gradient algorithm is now a standard procedure [13]. The crucial
point is always the preconditioner. It is clear that the parallelization of a diagonal
preconditioner is much easier than the parallelization of a multigrid preconditioner.
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`
#Cores

16 32 64 128 256 512

4 85 (4.0e−2) - - - - -
5 84 (3.4e−1) 84 (1.6e−1) 84 (6.4e−2) - - -
6 82 (2.9e−0) 82 (1.4e−0) 82 (7.3e−1) 82 (3.7e−1) 82 (1.8e−1) 82 (8.0e−2)
7 80 (2.5e+1) 80 (1.2e+1) 80 (6.3e−0) 80 (3.0e−0) 80 (1.5e−0) 80 (8.3e−1)
8 - - 77 (5.1e+1) 77 (2.5e+1) 77 (1.3e+1) 77 (6.4e−0)

Table 3: Parallel performance on a distributed computer system for uniform refine-
ment and non-nested iterations.

`
#Cores

16 32 64 128 256 512

4 9 (5.8e−3) - - - - -
5 9 (5.0e−2) 9 (2.7e−2) 9 (1.1e−2) - - -
6 8 (3.5e−1) 8 (1.8e−1) 8 (9.4e−2) 8 (5.2e−2) 8 (2.8e−2) 8 (1.2e−2)
7 9 (3.1e−0) 9 (1.6e−0) 9 (8.1e−1) 9 (4.2e−1) 9 (2.2e−1) 9 (1.2e−1)
8 - - 11 (7.9e−0) 11 (4.0e−0) 11 (2.0e−0) 11 (1.0e−0)

Table 4: Parallel performance on a distributed computer system for uniform refine-
ment and nested iterations.

More precisely, the parallelization of a diagonal preconditioner such as Dh is trivial.
For parallel performance studies, we have utilized the open source MFEM1. We
observe from the diagonals of Table 3, e.g. from level 7 with 16 cores to level 8 with
512 cores (always factor 8), almost constant time, i.e. a good weak scaling behavior,
whereas the horizontal lines show an almost perfect strong scaling. The latter one
is also illustrated in Figure 3 for ` = 7 and ` = 8 corresponding to 16, 974, 593 and
135, 005, 697 Dofs, respectively. The largest problem with 135, 005, 697 Dofs can be
solved in 6.4 seconds using 512 cores. Similar scaling behaviors are also observed
for the nested iterations approach; see Table 4 and Figure 4. The computational
time in seconds (s) using nested iterations is further reduced by a factor of about 7
in comparison with the non-nested iterations. Using 512 cores, the largest problem
with 135, 005, 697 Dofs is solved in 1 second. Finally, we made some performance
tests for the adaptive refinement using the nested iteration setting. The results are
given in Table 5. We observe relatively good scaling in this case as well. Here, we
have used the non-conforming simplicial complex and load balance from the open
source MFEM.

We note that we used different computers and different codes for the single-
core and parallel computations. More precisely, we used the shared-memory com-
puter MACH22, that provides a big memory, and the distributed-memory computer
RADON13 for the single-core and parallel computations, respectively.

1https://mfem.org/
2https://www3.risc.jku.at/projects/mach2/
3https://www.oeaw.ac.at/ricam/hpc

#Dofs
#Cores

16 32 64 128 256

2.76154e+6 16 (1.0e−0) 16 (5.3e−1) 16 (2.8e−1) 16 (1.6e−1) 16 (1.0e−1)

1.06728e+7 - 17 (2.3e−0) 17 (1.2e−0) 16 (6.2e−1) 17 (3.3e−1)

Table 5: Parallel performance on a distributed computer system for adaptive re-
finement and nested iterations.
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Figure 3: Strong scalability and computational time in seconds (s) with respect to
the number of cores for uniform refinement and non-nested iterations

Figure 4: Strong scalability and computational time in seconds (s) with respect to
the number of cores for uniform refinement and nested iterations
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5 Conclusions and Outlook

We provide a rigorous analysis of the discretization error ‖yd − ŷ%h‖L2(Ω) when re-
placing the mass matrix Mh arising from the regularization term in the reduced
optimality system by its lumped version Dh = lump(Mh). It turns out that the
asymptotic behavior of the error is not affected by mass lumping when using affine-
linear finite elements. More precisely, we again get the upper bound chs‖yd‖Hs(Ω),
s ∈ [0, 2], for the choice % = h4 that provides the optimal balance between the reg-
ularization parameter % and the mesh-size h. Moreover, this replacement of Mh by
Dh opens the way to reduce the discrete reduced optimal optimality system further
to a spd Schur complement problem that can efficiently be solved by PCG since
now the matrix-by-vector multiplication is cheap and, surprisingly, Dh is a diago-
nal preconditioner that is spectrally equivalent to the Schur complement Sh. This
PCG can efficiently be parallelized as the numerical results show. These findings
provide the perfect ingredients for a nested PCG iteration producing iterates yk``
that differ from the desired state yd in the order O(hs`) of the discretization error
in asymptotically optimal complexity O(h−d` ). The nested iteration process will be
stopped when some relative accuracy ε ∈ (0, 1) of the error is reached, or the cost
we are willing to pay in terms of the control energy density ‖uL‖2L2(Ω) becomes too

large. In this case, we can freeze the regularization (cost) parameter %L = h4
L, and

continue the nested iteration process with mesh refinement only in order to improve
to the approximation of the control.

We provide not only numerical results for the case of uniform refinement that
nicely demonstrated the theoretical predictions but also for adaptive refinement
when using variable regularization. The numerical results show that this adaptive
approach works well, but a rigorous numerical analysis is still missing. Further inves-
tigation comprises this analysis, and the generalization to larger classes of PDEs like
elliptic diffusion-convection-reaction, parabolic and hyperbolic state equations. We
refer to [25, 24, 27] and [30] when using space-time fe discretization for parabolic and
hyperbolic initial-boundary value problems, respectively. Another future research
topic are the consideration of control and state (box) constraints in the framework
discussed here; see [17] for first results. Finally, we mention that singular-perturbed
problems as discussed here also appear in fluid mechanics where they are known
as (discrete) differential filter that provide approximate deconvolution models of
turbulence [9, 28, 20].
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