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Abstract

The Boundary Element Tearing and Interconnecting (BETI) methods have recently been
introduced as boundary element counterparts of the well–established Finite Element Tearing
and Interconnecting (FETI) methods. In this paper we present inexact data–sparse versions
of the BETI methods which avoid the elimination of the primal unknowns and dense matrices.
However, instead of symmetric and positive definite systems, we finally have to solve two–fold
saddle point problems. The proposed iterative solvers and preconditioners result in almost
optimal solvers the complexity of which is proportional to the number of unknowns on the
skeleton up to some polylogarithmical factor. Moreover, the solvers are robust with respect
to large coefficient jumps.

1 Introduction

The Finite Element Tearing and Interconnecting (FETI) methods were introduced by Farhat
and Roux [16] in 1991 as some kind of a dual version of the classical iterative substructuring
methods (see also the survey paper [17] by the same authors). Meanwhile the classical FETI
methods and, in particular, the more recently developed dual–primal FETI (FETI–DP) methods
are well established as powerful and robust parallel solvers for large–scale finite element equations
in different fields of applications, see, e.g., [13, 14, 15, 18, 50, 52]. The practical success of
the FETI and FETI–DP methods in real–life applications is supported by a rigorous theoretical
analysis [7, 34, 35, 40, 41]. In particular, for second–order self–adjoint elliptic problems such as the
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of the Austrian Academy of Sciences, the Austrian Science Fund ‘Fonds zur Förderung der wissenschaftlichen
Forschung (FWF)’ under grant P14953, and the German Research Foundation ‘Deutsche Forschungsgemeinschaft
(DFG)’ under the grant SFB 404 ‘Multifield Problems in Continuum Mechanics’.
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potential equation or the linear elasticity problem, the iteration numbers of the conjugate gradient
solver preconditioned by a properly scaled FETI preconditioner grow only like O(1 + log(H/h)),
where H and h denote the usual scaling of the subdomains and the finite elements, respectively.
Furthermore, the iteration process is insensitive to large jumps in the coefficients of the partial
differential equations. The latter property is very important for many practical applications, e.g.
in electromagnetics, where we frequently have to solve interface problems with large jumps in the
material coefficients. We refer the reader to the recently published monograph [58] by Toselli and
Widlund for more informations about the analysis of FETI methods.

Recently, the Boundary Element Tearing and Interconnecting (BETI) methods [38] and the cou-
pled BETI/FETI methods [39] were introduced. It is widely recognized that Boundary Element
Methods (BEM) have some advantages over the Finite Element Methods (FEM) in the treatment
of unbounded regions. But we can also benefit from the BEM in some other situations like in
the case of large air subdomains without sources in electromagnetics or in the case of moving
parts or interfaces in magnetomechanics [32]. The coupling of BEM and FEM within a domain
decomposition framework seems to be very attractive (see e.g. [23] and [54]). The symmetric
FEM–BEM coupling technique was originally proposed by Costabel [10]. The symmetric coupling
technique was then used by Hsiao and Wendland to construct a (primal) boundary element (BE)
substructuring method [31], see also [30]. Similar to the finite element substructuring method
they eliminate the interior subdomain unknowns, which are the fluxes (tractions) in the BEM,
and arrive at the symmetric and positive definite boundary element Schur complement system
that can be solved by a direct or an iterative method. For large–scale problems, a preconditioned
conjugate gradient method should be used for efficiency reasons. However, in every iteration step,
the interior boundary element subdomain unknowns must be eliminated, i.e. a discrete single layer
potential must be inverted to compute the solution of a Dirichlet boundary value problem in every
subdomain. To avoid the expensive elimination of these interior boundary element unknowns,
an inexact boundary element substructuring method was introduced in [36] which requires the
solution of a saddle point problem. The saddle point problem was solved by the preconditioned
conjugate gradient method proposed by Bramble and Pasciak for solving system of algebraic equa-
tions with symmetric, but indefinite system matrices [5]. The availability of good preconditioners
is very essential for the efficiency of the solver. In the inexact BE substructuring case precon-
ditioners for the local (subdomain) discrete single layer potential operators and for the global
(skeleton) boundary element Schur complement are needed. The latter usually provides the global
information exchange. In [9] such preconditioners are proposed and analyzed. Inexact finite ele-
ment substructuring solvers were proposed and investigated in [4, 24, 25, 26]. The first inexact
FETI solver was introduced and analyzed by Klawonn and Widlund in [33]. Let us mention that
inexact versions are usually more efficient than Schur complement techniques, especially in the
case of sufficiently large local problems. This is typical for really large scale problems. On PC
clusters, also mid–size problems can benefit from inexact solution techniques.

In this paper we introduce inexact BETI methods which lead to three–fold saddle point problems
in the first instance. However, applying an appropriate projection, we can reduce the three–fold
saddle point problem to a two–fold saddle point problem. Following the approach given in [61]
we present preconditioned Krylov subspace solution methods for two–fold saddle point problems
and give sharp convergence rate estimates. Similar questions arise when considering the coupling
of symmetric boundary element with mixed finite element methods [20]. The standard bound-
ary element discretization of boundary integral operators with nonlocal kernel functions would
lead to fully populated matrices. This is totally unacceptable for 3D boundary value problems.
Indeed, already the matrix–by–vector multiplication costs O(N 2

h) arithmetical operations in the
case of dense matrices. Here Nh denotes the number of boundary unknowns which is of the order
O(h−(d−1)), where h denotes the usual mesh size parameter and d is the spatial dimension (d = 2,
or d = 3). The same complexity is required for the storage demand. Data–sparse approxima-
tions of the system matrix, such as multipole techniques [8, 51], panel clustering methods [28],
H–matrix approaches [27] and Adaptive Cross Approximation (ACA) methods [1, 2, 3], can reduce
the complexity to almost O(Nh), up to polylogarithmic perturbations, for both the arithmetical
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expenses and the memory demand. Here we use the Fast Multipole Method, developed in [46], in
order to approximate the single layer potential, the double layer potential and the hypersingular
boundary integral operators which appear in the symmetric boundary integral domain decomposi-
tion formulation. Our preconditioned Krylov subspace solvers for two–fold saddle point problems
require appropriately scaled preconditioners for the local discrete single layer potential operators,
for the local boundary element Schur complements and for the BETI matrix in their data–sparse
(fast multipole) representations. We propose data–sparse preconditioners which result in an al-
most optimal solver requiring O((H/h)(d−1)(1 + log(H/h))s log ε−1) arithmetical operations in a
parallel regime and O((H/h)(d−1)(1 + log(H/h))2) storage units per processor, where s ∈ {3, 4, 5}
depending on the quality of the preconditioners for the local problems, and ε ∈ (0, 1) is the rel-
ative accuracy of the iteration error in a suitable norm. H and h denote the usual scalings of
the subdomains and the boundary elements, respectively. Moreover, our solvers are insensitive
to large jumps in the coefficients of the potential equation that is considered as model problem
throughout the paper.

The rest of the paper is organized as follows: In Section 2, we introduce the data–sparse symmet-
ric boundary element domain decomposition method. Section 3 is devoted to the inexact BETI
approach that results in a two–fold saddle–point problem after a suitable subspace projection. In
Section 4, we present and analyze iterative methods for solving two–fold saddle–point problems.
Optimal data–sparse boundary element preconditioners required by the solvers presented in Sec-
tion 4 are given in Section 5. This completes the solution procedure. Finally, we discuss some
numerical results in Section 6 and draw some conclusions in Section 7.

2 Data–Sparse Boundary Element Domain

Decomposition Methods

As a model problem we consider the Dirichlet boundary value problem for the potential equation

−div[α(x)∇û(x)] = 0 for x ∈ Ω ⊂ IR3, û(x) = g(x) for x ∈ Γ = ∂Ω, (2.1)

where Ω is a bounded Lipschitz domain that is assumed to be decomposed into p non–overlapping
subdomains Ωi with Lipschitz boundaries Γi = ∂Ωi. We further assume that the coefficient
function α(·) in the potential equation (2.1) is piecewise constant such that α(x) = αi > 0 for
x ∈ Ωi, i = 1, . . . , p. The variational formulation of the boundary value problem (2.1) is to find
û ∈ H1(Ω) with û|Γ = g such that the variational equation

p∑

i=1

αi

∫

Ωi

∇û(x)∇v(x)dx = 0 (2.2)

is satisfied for all test functions v ∈ H1
0 (Ω), where g is a given function from H1/2(Γ). Applying

Green’s first formula with respect to the local subdomains Ωi gives

p∑

i=1

αi

∫

Γi

∂

∂ni
û(x)v(x)dsx = 0 for all v ∈ H1

0 (Ω) (2.3)

due to −∆û(x) = 0 for x ∈ Ωi, where ni denotes the exterior normal vector of Γi. For x ∈ Ωi the
solution of the local Laplace equation is given by the local representation formula

û(x) =

∫

Γi

U∗(x, y)
∂

∂ni
û(x)dsx −

∫

Γi

∂

∂ni
U∗(x, y)û(y)dsy , (2.4)

where

U∗(x, y) =
1

4π

1

|x− y|
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is the fundamental solution of the Laplace operator, see, e.g., [55]. Taking the trace and the
normal derivative of the local representation formula (2.4) we obtain the Calderon system

(
ui

ti

)
=

(
1
2I −Ki Vi

Di
1
2 I +K ′

i

) (
ui

ti

)
(2.5)

of local boundary integral equations on Γi for the Cauchy data ui = û|Γi
∈ H1/2(Γi) and ti =

ni ·∇û|Γi
∈ H−1/2(Γi), where the local single layer potential operator Vi : H−1/2(Γi) → H1/2(Γi),

the local double layer potential operator Ki : H1/2(Γi) → H1/2(Γi), its adjoint K ′
i : H−1/2(Γi) →

H−1/2(Γi), and the local hypersingular boundary integral operator Di : H1/2(Γi) → H−1/2(Γi)
are defined by

(Viti)(x) =

∫

Γi

U∗(x, y)ti(y)dsy,

(Kiui)(x) =

∫

Γi

∂

∂ni,y
U∗(x, y)ui(y)dsy,

(K ′
iti)(x) =

∫

Γi

∂

∂ni,x
U∗(x, y)ti(y)dsy,

(Diui)(x) = −
∂

∂ni,x

∫

Γi

∂

∂ni,y
U∗(x, y)ui(y)dsy,

respectively. The mapping properties of these boundary integral operators are now well known,
see, e.g., [11, 42, 55]. In particular, the local single layer potential operators Vi are self–adjoint
and H−1/2(Γi)–elliptic. The local hypersingular operators Di are self–adjoint as well, but only
positive semi–definite. Indeed, the kernel ker Di of the hypersingular operator Di is spanned by
all constant functions, i.e. ker Di = span{1}.
Let us denote the skeleton of the domain decomposition by ΓS = ∪p

i=1Γi and the skeleton trace
space by H1/2(ΓS) = {v|ΓS

: v ∈ H1(Ω)}. Inserting the second boundary integral equation of

(2.5) into (2.3) we have to find û ∈ H1/2(ΓS) with û|Γ = g such that

p∑

i=1

αi

[
〈Diû|Γi

, v|Γi
〉Γi + 〈(

1

2
I +K ′

i)ti, v|Γi
〉Γi

]
= 0 (2.6)

for all test functions v ∈ H
1/2
0 (ΓS) = {v ∈ H1/2(ΓS) : v|Γ = 0}, where ti ∈ H−1/2(Γi) are the

unique solutions of the local variational problems

αi

[
〈Viti, wi〉Γi − 〈(

1

2
I +Ki)û|Γi

, wi〉Γi

]
= 0 (2.7)

for all test functions wi ∈ H−1/2(Γi), where 〈·, ·〉Γi denotes the duality pairing in H−1/2(Γi) ×
H1/2(Γi) that is the extension of the scalar product in L2(Γi) for i = 1, 2, . . . , p. After ho-
mogenization of the Dirichlet boundary condition via the ansatz û = ĝ + u with some exten-
sion ĝ|Γ = g and u|Γ = 0, we can rewrite (2.6) and (2.7) as mixed variational problem to find

t = (t1, t2, . . . , tp) ∈ T = T1 × T2 × . . . × Tp = H−1/2(Γ1) × H−1/2(Γ2) × . . . × H−1/2(Γp) and

u ∈ U = H
1/2
0 (ΓS) such that

αi

[
〈wi, Viti〉Γi − 〈wi, (

1

2
I +Ki)u|Γi

〉Γi

]
= αi〈wi, (

1

2
I +Ki)ĝ|Γi

〉Γi (2.8)
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for all wi ∈ Ti, i = 1, 2, . . . , p, and

p∑

i=1

αi

[
−〈(

1

2
I +K ′

i)ti, v|Γi
〉Γi − 〈Diu|Γi

, v|Γi
〉Γi

]
=

p∑

i=1

αi〈Diĝ|Γi
, v|Γi

〉Γi (2.9)

for all v ∈ U . It is well known that the mixed variational problem (2.8) and (2.9) is uniquely
solvable, and therefore the equivalent problem (2.6) and (2.7), too [31].

Let us now introduce the boundary element trial spaces

Uh = S1
h(ΓS) = span{ϕm}M

m=1 ⊂ U = H
1/2
0 (ΓS) (2.10)

and
Ti,h = S0

h(Γi) = span{ψi
k}

Ni

k=1 ⊂ Ti = H−1/2(Γi) (2.11)

spanned by continuous piecewise linear basis functions ϕm and by piecewise constant basis func-
tions ψi

k with respect to a regular globally quasi–uniform boundary element mesh Γi = ∪Ni

`=1τ
i
`

with the average mesh size h on ΓS and Γi, respectively. The restriction of the global trial space
Uh onto the local subdomain boundaries Γi is denoted by

Ui,h = S1
h(Γi) = S1

h(ΓS)|Γi
= span{ϕi

m}Mi
m=1 ⊂ H

1/2
0 (Γi), (2.12)

whereH
1/2
0 (Γi) = {v|Γi

: v ∈ H
1/2
0 (ΓS)}. The Galerkin discretization of the symmetric mixed vari-

ational formulation (2.8) and (2.9) now gives immediately the mixed boundary element equations
to find th = (t1,h, t2,h, . . . , tp,h) ∈ Th = T1,h × T2,h × . . .× Tp,h and uh ∈ Uh such that

αi

[
〈wi,h, Viti,h〉Γi − 〈wi,h, (

1

2
I +Ki)uh|Γi

〉Γi

]
= αi〈wi,h, (

1

2
I +Ki)ĝ|Γi

〉 (2.13)

for all wi,h ∈ Ti,h, i = 1, 2, . . . , p, and

p∑

i=1

αi

[
−〈(

1

2
I +K ′

i)ti,h, vh|Γi
〉Γi − 〈Diuh|Γi

, vh|Γi
〉Γi

]
=

p∑

i=1

αi〈Diĝ|Γi
, vh|Γi

〉Γi (2.14)

for all vh ∈ Uh. Applying standard arguments, it follows that the mixed boundary element
equations (2.13) and (2.14) admit an unique solution. Moreover, the discretization error is bounded
by the approximation error,

‖u− uh‖
2
U + ‖t− th‖

2
T ≤ c

{
inf

vh∈Uh

‖u− vh‖
2
U + inf

wh∈Th

‖t− wh‖
2
T

}
.

From the approximation properties of the boundary element trial spaces Uh and Th we then obtain
the a priori error estimate

‖u− uh‖
2
U + ‖t− th‖

2
T ≤ c h2s+1

[
‖u‖2

Hs+1(ΓS) +

p∑

i=1

‖ti‖
2
Hs

pw(Γi)

]
(2.15)

for a sufficiently smooth solution (u, t) with u ∈ Hs+1(ΓS) and ti ∈ Hs
pw

(Γi) and s ∈ (0, 1]. This

gives an optimal convergence rate of O(h3/2), see [55]. Here and in the following c denotes a
generic constant that is always independent on the discretization parameters.

Once the basis functions are chosen, the boundary element equations (2.13) and (2.14) are equiv-
alent to the following system of algebraic equations to find the coefficient vectors ti = [ti,k]Ni

k=1 ∈
IRNi for i = 1, 2, . . . , p and u = [um]Mm=1 ∈ IRM of the boundary element functions ti,h =∑Ni

k=1 ti,kψ
i
k and uh =

∑M
m=1 umϕm as the unique solution of the Galerkin system




α1V1,h −α1K̄1,hR1,h

. . .
...

αpVp,h −αpK̄p,hRp,h

−α1R
>
1,hK̄

>
1,h . . . −αpR

>
p,hK̄

>
p,h −Dh







t1
...
tp
u


 =




α1g1
...

αpgp

f


 , (2.16)
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where

Dh =

p∑

i=1

αiR
>
i,hDi,hRi,h and f =

p∑

i=1

αiR
>
i,hf i

. (2.17)

The entries of the matrices Vi,h, K̄i,h, Di,h and the coefficients of the right–hand sides g
i

and f
are defined by the relations

Vi,h[`, k] = 〈ψi
`, Viψ

i
k〉Γi ,

K̄i,h[`,m] = 〈ψi
`, (

1

2
I +Ki)ϕ

i
m〉Γi ,

Di,h[n,m] = 〈ϕi
n, Diϕ

i
m〉Γi

and

gi,` = 〈ψi
`, (

1

2
I +Ki)ĝ|Γi

〉Γi , fi,n = 〈Diĝ|Γi
, ϕi

n〉Γi

for all k, ` = 1, . . . , Ni and m,n = 1, . . . ,Mi, respectively. The restriction operator Ri,h maps
some global coefficient vector v ∈ IRM to the local vector vi ∈ IRMi containing those components
of v which correspond to Γi only, i = 1, 2, . . . , p. The matrices Ri,h are Boolean matrices which
are sometimes also called subdomain connectivity matrices.

The system matrix of (2.16) is symmetric, but indefinite. The matrices Vi,h are symmetric and
positive definite while the blocks Di,h are symmetric, but in general only positive semi–definite,
where the kernel is spanned by all vectors with constant entries. Unfortunately, all matrix blocks
involved in (2.16) are fully populated due to the nonlocal fundamental solution. Especially for
three–dimensional boundary value problems, this fact would yield unacceptable high resources
of memory and already a high complexity of a single matrix–by–vector multiplication. Since
the latter operation is the basic operation in every iteration method, we need some data–sparse
approximation of these matrices that reduces the quadratic complexity with respect to the number
of unknowns to an almost linear one, but without disturbing the accuracy given by the quasi–
optimal estimate (2.15).

As already pointed out in the introduction there exist several possibilities of fast boundary el-
ement methods to reduce the computational costs, for example panel clustering [28], algebraic
approximation techniques such as the Adaptive Cross Approximation method [3] and hierarchical
matrices [27] or wavelets [12]. Here we describe the application of the fast multipole method to all
the discrete boundary integral operators introduced above [46]. We will mainly use the original
version of the fast multipole method as described in [21, 22] but the main difference in our version
of the method, however, will be the use of reformulated spherical harmonics [48, 59, 60].
As already mentioned above, when using an iterative solver it is necessary to perform the matrix–
by–vector multiplications of the local stiffness matrices with given vectors efficiently. In particular,
if the vectors ri

1 ∈ IRNi and ri
2 ∈ IRMi are given, we need a fast computation of the matrix–by–

vector products
wi

1 = Vi,hr
i
1 ∈ IRNi , wi

2 = Ki,hr
i
2 ∈ IRNi , vi

1 = Di,hr
i
2 ∈ IRMi and of

vi
2 = K>

i,hr
i
1 ∈ IRMi .

We begin with the local matrix–by–vector product wi
1 = Vi,hr

i
1 of the discrete single layer potential

Vi,h which reads in components

wi
1,` =

Ni∑

k=1

Vi,h[`, k]ri
1,k =

Ni∑

k=1

ri
1,k

4π

∫

τ i
`

∫

τ i
k

1

|x− y|
dsydsx for ` = 1, . . . , Ni.

As in most of the fast boundary element methods, one first substitutes the kernel function by an
appropriate series expansion separating the integration variables x and y from each other. The
kernel of the single layer potential can be written in terms of Legendre polynomials,

k(x, y) =
1

|x− y|
=

∞∑

n=0

|x|n

|y|n+1
Pn(x̂ · ŷ), x̂ =

x

|x|
, ŷ =

y

|y|
,

10



where

Pn(u) =
1

2nn!

dn

dun
(u2 − 1)n for |u| ≤ 1.

An approximation of the kernel function k(x, y) is then defined by truncating the infinite sum at
at certain expansion degree %,

k%(x, y) =

%∑

n=0

|x|n

|y|n+1
Pn(x̂ · ŷ). (2.18)

Note that for |y| > |x| the following error estimate holds:

|k(x, y) − k%(x, y)| ≤
1

|y| − |x|

(
|x|

|y|

)%+1

. (2.19)

Since the product of the normalized integration variables x̂ and ŷ still appears as an argument
of the Legendre polynomials in (2.18), one may rather use spherical harmonics [29] to obtain the
kernel approximation

k%(x, y) =

%∑

n=0

n∑

m=−n

|x|n

|y|n+1
Y −m

n (x̂)Y m
n (ŷ) =

%∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x) (2.20)

when assuming |y| > |x|. The truncated series expansion (2.20) is the first ingredient of the fast
multipole method. The second one is the use of an artificial geometric hierarchy which is build
upon the boundary elements. All boundary elements τ i

k ⊂ Γi belong to a cluster ω0
i,1 which is

a box containing the whole subdomain Ωi. The clusters of the level λ + 1 are constructed by
the refinement of all boxes ωλ

i,j into eight similar sub–boxes ωλ+1
i,j′ . The clusters ωλ+1

i,j′ are called

the sons of the father cluster ωλ
i,j . This recursive process is repeated until an maximum level

L is attained. Clusters containing no boundary elements are neglected. All boundary elements
{τ i

k}
Ni

k=1 are assigned to the cluster ωL
i,j with respect to their midpoints.

Since the expansion (2.20) is only valid for |x| < |y|, one has to distinguish the farfield (FF) where
this expansion is admissible from the nearfield (NF) where the standard kernel has to be used. A
cluster ωλ

j on the same level λ is called to be in the nearfield of the cluster ωλ
i if the condition

dist{Cλ
i , C

λ
j } ≤ (d+ 1) max{rλ

i , r
λ
j } (2.21)

is satisfied with d > 1 a suitably chosen parameter. Cλ
i denotes the center and rλ

i is the radius
of the cluster ωλ

i which is determined by the cluster center and the extension of the contained
boundary elements τk ∈ ωλ

i .
Hence we obtain the approximate local matrix–by–vector product

w̃i
1,` =

∑

k ∈NF(`)

Vi,h[`, k]ri
1,k +

∑

k ∈FF(`)

ri
1,k

4π

∫

τ`

∫

τk

%∑

n=0

n∑

m=−n

Sm
n (y)Rm

n (x)dsxdsy

=
∑

k ∈NF(`)

Vi,h[`, k]ri
1,k +

%∑

n=0

n∑

m=−n

∑

k ∈FF(`)

ri
1,k

4π

∫

τk

Rm
n (x)dsx

∫

τ`

Sm
n (y)dsy

for all ` = 1, . . . , Ni. As the farfields differ from each other for most indices `, the question arises
how to compute the coefficients of the series expansion for different ` efficiently. This can be done
by using the cluster hierarchy constructed above. Starting on the finest level all coefficients for the
corresponding clusters are computed and later translated to their common fathers on the coarser
levels up to level zero. Next, these multipole expansions are converted into local expansions in
terms of their coefficients on the highest level, in which the kernel expansion is admissible. This
results in an algorithm of O(Ni log2Ni) complexity. For a more detailed description of the efficient
matrix–by–vector multiplication see [46] and the references given there.
In what follows we will focus on the stability and error analysis of the approximate matrix–by–
vector product w̃i

1 = Ṽi,hr
i
1 in the case of a fixed nearfield parameter d > 0.
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Lemma 2.1 [46, Lemma 4.1] Let % = O(log h−2) and the triangulation be quasi–uniform. Then

there holds the following consistency estimate for the approximated single layer potential Ṽi,

‖(Vi − Ṽi)ti,h‖L2(Γi) ≤ c h2‖ti,h‖L2(Γi) for all ti,h ∈ S0
h(Γi) ⊂ L2(Γi).

From the previous lemma and using the inverse inequality it is possible to choose the expansion
degree % = O(logNi) such that the approximate single layer potential Ṽi,h is S0

h(Γi)–elliptic,

〈Ṽi,hwi,h, wi,h〉Γi ≥ c
eVi
1 ‖wi,h‖

2
H−1/2(Γ) for all wi,h ∈ S0

h(Γi).

The multipole expansion of the double layer potential operator K̃i can be computed by applying
the normal derivative to the expansion (2.20) of the single layer potential Vi. In the case of the
adjoint double layer potential K ′

i, the normal derivative has to be applied to the coefficients in the
evaluation of the expansions. Therefore the transposition property between the Galerkin matrices
of the the double layer potential and its adjoint operator will be maintained if the same expansion
degree p is chosen for both. As for the approximate single layer potential Ṽi,h corresponding error
estimates follow, see [46, Lemma 4.3, Lemma 4.4].
The hypersingular boundary integral operator Di is treated via integration by parts [44]. The
bilinear form of the hypersingular integral operator Di can be written as sum of bilinear forms of
the single layer potential Vi,

〈Diui, vi〉Γi =
3∑

k=1

〈Vicurl|Γi
ui|k, curl|Γi

vi|k〉Γi ,

with the surface curl curl|Γi
ui(x) = nx ×∇u∗i,Γi

(x) defined for a constant extension u∗i|Γi
of u(x)

along the normal nx into a small neighborhood of Γi. In the case of piecewise linear, continu-
ous basis functions ϕi

m(x) and plane triangles as boundary elements, the vector curlΓi
ϕi

m(x) is
piecewise constant and constant on each boundary element. Therefore the Galerkin matrix of the
single layer potential Vi for piecewise constant basis functions ψi

k can be reused here leading to
the approximate bilinear form

〈D̃i,hui,h, vi,h〉Γi =
3∑

k=1

〈Ṽi,hcurl|Γi
ui,h|k, curl|Γi

vi,h|k〉Γi . (2.22)

The stability and error analysis for the approximation D̃i,h then follows as for the approximate
single layer potential.

Using the fast multipole approximations for the application of the discrete boundary integral
operators, instead of (2.16) we have to solve the perturbed linear system




α1Ṽ1,h −α1K̃1,hR1,h

. . .
...

αpṼp,h −αpK̃p,hRp,h

−α1R
>
1,hK̃

>
1,h . . . −αpR

>
p,hK̃

>
p,h −D̃h







t̃1
...

t̃p
ũ


 =




α1g̃1
...

αpg̃p

f̃



. (2.23)

As for the symmetric boundary integral formulation considered in [46, Theorem 4.1] there follows
the unique solvability of (2.23) as well as the quasi–optimal error estimate

‖u− ũh‖
2
U + ‖t− t̃h‖

2
T ≤ c h2s+1

[
‖u‖2

Hs+1(ΓS) +

p∑

i=1

‖ti‖
2
Hs

pw(Γi)

]
(2.24)

for the associated approximate solutions t̃h ∈ Th and ũh ∈ Uh when assuming % = O(logNi) and
smooth solutions as in (2.15), i.e., s ∈ (0, 1]. Hence we can ensure the same asymptotic behavior
as for the solution of the standard Galerkin boundary element method.
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A standard approach to solve the linear system (2.23) is to consider its Schur complement system

p∑

i=1

αiR
>
i,h

[
D̃i,h + K̃>

i,hṼ
−1
i,h K̃i,h

]
Ri,hu = −

p∑

i=1

αiR
>
i,h

[
f

i
+ K̃>

i,hṼ
−1
i,h gi

]
(2.25)

with the symmetric and positive definite system matrix

S̃h =

p∑

i=1

αiR
>
i,hS̃i,hRi,h, S̃i,h = D̃i,h + K̃>

i,hṼ
−1
i,h K̃i,h.

The linear system (2.25) can be solved by a conjugate gradient scheme where the application of a
possible preconditioner is given by

C−1
S =

p∑

i=1

1

αi
R>

i,hV̄i,hRi,h (2.26)

and V̄i,h is the single layer potential discretized by piecewise linear continuous basis functions and
approximated by means of a fast multipole method. Note that each application of the discrete
Steklov–Poincaré operators S̃i,h within one step of the conjugate gradient scheme requires one

inversion of the discrete single layer potential Ṽi,h which can be realized by an interior conjugate
gradient scheme.

3 Inexact BETI Methods

In order to avoid assembled matrices and vectors, we tear the global potential vector u on the
subdomain boundaries Γi by introducing the individual local unknowns

ui = Ri,hu. (3.1)

Conversely, the global continuity of the potentials is enforced by the constraints

p∑

i=1

Biui = 0 (3.2)

interconnecting the local potential vectors across the subdomain boundaries. Each row of the
matrix B = (B1, . . . , Bp) is connected with a pair of matching nodes across the subdomain bound-
aries. The entries of such a row are 1 and −1 for the indices corresponding to the matching nodes
on the interface (coupling boundaries) ΓC = ΓS \Γ and 0 otherwise. Therefore, (3.2) implies that
the corresponding boundary element functions ui,h are continuous across the interface ΓC , i.e.
ui,h = uj,h on Γi∩Γj 6= ∅. We assume here that the number of constraints at some matching node
is equal to the number of matching subdomains minus one. This method of a minimal number of
constraints respectively multipliers is called non–redundant, see, e.g., [34] for the use of redundant
constraints.
By introducing Lagrange multipliers λ ∈ IRL the linear system (2.23) is equivalent to

0
BBBBBBBBBBBB@

α1
eV1,h −α1

eK1,h

. . .
. . .

αp
eVp,h −αp

eKp,h

−α1
eK>

1,h
−α1

eD>

1,h
B>

1

. . .
. . .

..

.

−αp
eK>

p,h
−αp

eDi,h B>
p

B1 . . . Bp

1
CCCCCCCCCCCCA

0
BBBBBBBBBBB@

et
1

...
etp
eu
1

...
eup

λ

1
CCCCCCCCCCCA

=

0
BBBBBBBBBBBB@

α1g
1

...
αpg

p

α1f
1

..

.
αpf

p

0

1
CCCCCCCCCCCCA

.
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Setting V = diag(αiṼi,h), K = diag(αiK̃i,h), D = diag(αiD̃i,h) as well as B = (B1, . . . , Bp) we
have to solve the two–fold saddle point problem




V −K 0
−K> −D B>

0 B 0







t
u
λ


 =




g
f
0


 (3.3)

when ordering the vectors in an appropriate way. The matrix D̃i,h is symmetric and positive
definite if and only if the corresponding subdomain Ωi is a so–called non–floating subdomain.
A subdomain Ωi is called floating if the subdomain boundary Γi does not touch the Dirichlet
boundary part ΓD that is Γ for our model problem (2.1). Otherwise the subdomain is called

non–floating. For a floating subdomain Ωi the kernel of the matrix D̃i,h is spanned by the vector

ei = (1, . . . , 1)> ∈ IRMi , i.e. ker D̃i,h = span{ei}. Let us assume for simplicity that the first q (q <
p) subdomains are floating and the remaining subdomains are non–floating. The case q = 0 (no
floating subdomains) is trivial and does not need any discussion. In order to avoid singular block

entries D̃i,h and, therefore, singular Schur complements S̃i,h = αi(D̃i,h + K̃>
i,hṼ

−1
i,h K̃i,h) for the

floating subdomains, we replace the singular blocks D̃i,h by the regularized matrices D̃i,h +βieie
>
i

with appropriately choosen positive constants βi for i = 1, . . . , q. We mention that

K̃i,hei = 0 for i = 1, . . . , q. (3.4)

Let us denote the unique solutions of the regularized equations

αi(D̃i,h + βieie
>
i )vi = −αif i

+Biλ− αiK̃
>
i,hti (3.5)

by vi, i = 1, . . . , q. If the right hand side of (3.5) fulfills the solvability conditions for the original
equations without the regularization term,

e>i (−αif i
+Biλ− αiK̃

>
i,hti) = e>i (−αif i

+ Biλ) = 0, (3.6)

then the solution vi of (3.5) is orthogonal to ker D̃i,h, i.e.

e>i vi = 0. (3.7)

Now the solution u = (u1, . . . , up)
> of the original system (3.3) can be recovered by the formulae

ui = vi + γiei, (3.8)

with γi = 0 for i = q + 1, . . . , p and appropriately chosen γi for i = 1, . . . , q. Taking into account
(3.4)–(3.8), we easily observe that the unique solution t ∈ IRM , v ∈ IRN , λ ∈ IRL and γ ∈ IRq of
the three–fold saddle point problem




V −K 0 0
−K> −D B> 0

0 B 0 G
0 0 G> 0







t
v
λ
γ


 =




g
f
0
e


 (3.9)

immediately yields the solution (t, u, λ) of the two–fold saddle point problem (3.3), where now D is

symmetric and positive definite since we replaced the singular blocks D̃j,h by the regularized ones
for the floating subdomains. The last equation in (3.9) is nothing but the solvability condition
(3.6). Note that the L× q matrix G and the vector e ∈ IRq are defined by the relations

G = (B1e1, . . . , Bqe1) and e = (e>1 f1
, . . . , e>q f q

)>. (3.10)

Now we use a subspace projection in order to separate the determination of γ from the determi-
nation of the rest of the unknowns in (3.9). Thus, we introduce the orthogonal projection

P = I −G(G>G)−1G> (3.11)
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from the space Λ := IRM onto the subspace Λ0 = kerG> = (rangeG)⊥ with respect to the scalar
product (·, ·) = (·, ·)Λ = (·, ·)IRM . We mention that in the case of large jumps in the coefficients of
the PDE the scalar product in Λ has to be changed according to the proposal made in [34], see
also [7] and [58]. Of course, the change of the scalar product changes the orthoprojection P too.
Since PG = 0, the application of P to the third equation of (3.9) gives PBv = 0 that excludes γ
from the first three equations of (3.9). Let us represent λ in the form

λ = T0λ0 + λe (3.12)

with known λe = G(G>G)−1e ∈ (kerG>)⊥ = rangeG, fulfilling the constraints G>λe = e, and
unknown T0λ0 ∈ kerG>, i.e. G>λ0 = 0, where λ0 ∈ IRL0 and L0 = dim Λ0. The columns of T0

span a basis of Λ0. We refer to Remark 3.1 for the practical implementation of the determination
of λ0 via subspace iteration. Now we can define t, v and λ0 from the two–fold saddle point problem




V −K 0
−K> −D B>P>T0

0 T>
0 PB 0







t
v
λ0


 =




g
d
0


 , (3.13)

where here d = f − B>λe. Once the vectors t, v and λ0 are defined from (3.13), we get λ from
(3.12), γ from the third equation of (3.9), i.e.

γ = −(G>G)−1G>Bv, (3.14)

and, finally, u from (3.8).

Remark 3.1 We mention that the iteration updates for λ completely life in the subspace Λ0 if the
initial guess is chosen as λe. Therefore, a basis of Λ0, forming the columns of T0, is not explicitly
needed in the computation (see also Algorithm 5.1 in Section 5).

Since V = diag(αiṼi,h) is block diagonal and therefore easily invertible we also may eliminate the
vector t in (3.13) to obtain

(
S −B>P>T0

T>
0 PB 0

) (
v
λ0

)
=

(
−d− V −1g

0

)
(3.15)

with
S = diag(αiS̃i,h), S̃i,h = D̃i,h + K̃>

i,hṼ
−1
i,h K̃i,h.

Eliminating v we have to solve the Schur complement system of (3.15),

Fλ0 = T>
0 PBS

−1B>P>T0λ0 = T>
0 PBS

−1[d+ V −1g]. (3.16)

Appropriate strategies to solve (3.16) were considered in [38]; another choice is the application of
a Bramble–Pasciak conjugate gradient scheme to the one–fold saddle point problem (3.15). Note
that appropriate preconditioners for both methods coincide with preconditioners already needed
for solving (3.13), see Section 5.

4 Solution of Two–fold Saddle Point Problems

In this section we construct and analyze preconditioned CG–like iterative methods for solving
two–fold saddle point problems possessing exactly the structure and the properties of the two–fold
saddle point problem (3.13), namely




A1 B>

1 0
B1 −A2 B>

2

0 B2 0








x1

x2

x3



 =




b1
b2
b3



 , (4.1)
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where S1 = A1, A2, S2 = A2+B1A
−1
1 B>

1 and S3 = B2S
−1
2 B>

2 are symmetric and positive definite.
It is easy to see that the system matrix

K3 =




A1 B>

1 0
B1 −A2 B>

2

0 B2 0





of (4.1) possesses a block LU–decomposition:

K3 = L3 U3 (4.2)

with

L3 =




S1

B1 −S2

B2 −S3



 and U3 =




I S−1

1 BT
1

I −S−1
2 BT

2

I





The factor L3 motivates the following construction of a preconditioner L̂3: We start by replacing
S1, S2 and S3 by preconditioners Ŝ1, Ŝ2 and Ŝ3. Additionally, we introduce two scaling factors.
First the left upper block is premultiplied by some factor τ1 > 0 leading to a 2–by–2 sub matrix

L̂2 =

(
τ1 Ŝ1

B1 −Ŝ2

)
.

We end up with the final form of the preconditioner by premultiplying this sub matrix by some
second scaling factor τ2 > 0:

L̂3 =

(
τ2 L̂2

B2E2 Ŝ3

)
=




τ2τ1 Ŝ1

τ2B1 −τ2 Ŝ2

B2 Ŝ3





with E2 =
(
0 I

)
. Now we have:

Theorem 4.1 If the parameter τ1 is chosen such that

0 < τ1 < λmin(Ŝ−1
1 A1)

then the matrix L̂−1
2 K2 is symmetric and positive definite in the scalar product (u, v)2 = (D2u, v)`2

with

K2 =

(
A1 BT

1

B1 −A2

)
and D2 =

(
A1 − τ1 Ŝ1

Ŝ2

)
.

If, additionally, the parameter τ2 is chosen such that

0 < τ2 < λmin(L̂
−1
2 K2)

then the matrix L̂−1
3 K3 is symmetric and positive definite in the scalar product (u, v)3 = (D3u, v)`2

with

D3 =

(
D2(L̂

−1
2 K2 − τ2 I) 0

0 Ŝ3

)
.

For the proof, see [62].
This theorem shows that we can apply the standard conjugate gradient method in the scalar
product (u, v)3 = (D3u, v)`2 to the preconditioned system

L̂−1
3 K3 x = L̂−1

3 b,
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which is equivalent to (4.1), with x = (x1, x2, x3)
> and b = (b1, b2, b3)

>. Then we obtain the
following well–known error estimate for the n–th iterate x(n) of the conjugate gradient method in
the corresponding energy norm:

‖x− x(n)‖D3L̂
−1

3
K3

≤
2qn

1 + q2n
‖x− x(0)‖D3L̂

−1

3
K3

with q = (
√
κ(L̂−1

3 K3) − 1)/(
√
κ(L̂−1

3 K3) + 1), where κ(L̂−1
3 K3) denotes the relative condition

number: κ(L̂−1
3 K3) = λmax(L̂

−1
3 K3)/λmin(L̂

−1
3 K3).

The next theorem provides an estimate for this relative condition number depending on the quality
of the preconditioners for the Schur complements:

Theorem 4.2 If

σ1 Ŝ1 ≤ S1 ≤ σ1 Ŝ1, σ2 Ŝ2 ≤ S2 ≤ σ2 Ŝ2, σ3 Ŝ3 ≤ S3 ≤ σ3 Ŝ3

and the parameters τ1 and τ2 are chosen such that

τ1 < λ1, τ2 < λ2

then the matrices L̂−1
2 K2 and L̂−1

3 K3 are symmetric and positive definite with respect to the scalar
products (., .)2 and (., .)3 and

λmin(L̂−1
3 K3) ≥ λ3, λmax(L̂

−1
3 K3) ≤ λ3 and κ(L̂−1

3 K3) ≤
λ3

λ3

,

where λ1 = σ1,

λi+1 =
1

2τi

(
σi(σi+1 + 1) −

√
σ2

i (σi+1 + 1)2 − 4τiσiσi+1

)
for i = 1, 2

and λ3 is the largest positive zero of the rational function

θ3(λ) = −
λ

σ3
+

1 − λ

−
τ2λ

σ2
+

1 − τ2λ

−
τ1τ2λ

σ1
+ 1

.

For the proof see [62].

Remark 4.1 1. It is necessary to keep the parameters τ1 and τ2 below the limiting values λ1

and λ2 in order to guarantee a well-defined scalar product (u, v)3. On the other hand, the
closer these parameters are to their limiting values, the better it is, i.e.: the smaller is the
upper bound λ3/λ3 for the relative condition number.

2. If the parameters τ1 and τ2 are chosen close to their limiting values λ1 and λ2 in the sense:

λi

τi
= O(1) for i = 1, 2,

and if the spectral bounds are reasonably scaled:

1 + σiσi ≤ O(σi) for i = 1, 2, 3,

it can be shown, see [62], that
λ3

λ3

= O

(
σ1

σ1

σ2

σ2

σ3

σ3

)
.
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5 Data–Sparse BEM Preconditioners

As seen in the previous section we need to have appropriate efficient preconditioners for the local
discrete single layer potentials Ṽi,h, for the local discrete Schur complements S̃i,h as well as for the
assembled BETI Schur complement F , respectively.

Since the bilinear form of the local approximate discrete single layer potential Ṽi,h is spectrally
equivalent to the Galerkin matrix Vi,h and therefore to the H−1/2(Γi)–norm, we may use any
multilevel representation of an equivalent norm in H−1/2(Γi), [19, 47]. A suitable multilevel [6]
operator is defined by

A
−1/2
i wi,h =

J∑

j=0

hi,j(Qi,j −Qi,j−1)wi,h

for wi,h ∈ Ti,h = Ti,J where Ti,0 ⊂ Ti,1 ⊂ . . . ⊂ Ti,J = Ti,h ⊂ . . . is a nested sequence of
boundary element spaces of piecewise constant basis functions with related mesh sizes hi,j =
1
2hi,j−1. Moreover, Qi,j : L2(Γi) → Ti,j is the L2 Galerkin projection onto Ti,j .

Lemma 5.1 [47, Theorem 2] The hold the spectral equivalence inequalities

cVi
1 J−2 〈A

−1/2
i wi,h, wi,h〉Γi ≤ (Ṽi,hwi, wi) ≤ cVi

2 〈A
−1/2
i wi,h, wi,h〉Γi

for all wi,h ∈ Ti,J = Ti,h with J = O(1 + | logH/h|).

Note that in the case of piecewise constant basis functions the L2 projections Qi,jwi can be
computed directly by inverting diagonal matrices.
The crucial issue in the multilevel preconditioning approach is the availability of the nested hier-
archy of boundary element spaces Ti,j . Starting from a coarse mesh with an associated space Ti,0

one can define all boundary element spaces Ti,j and therefore Ti,h = Ti,J by a recursive refinement
procedure. Instead of this more academic situation we now consider the case where already the
boundary element space Ti,h = Ti,J is given and no further refinement is applicable. In this case
we have to construct an artificial mesh hierarchy to define an appropriate multilevel operator. For
this again we will use ideas from fast boundary element methods, in particular we will introduce an
appropriate clustering hierarchy of all boundary elements as it is used in the fast multipole method
itself. Using a recursive bisection algorithm all boundary elements τ i

k belonging to a subdomain
boundary Γi can be clustered hierarchically. Since the boundary element spaces Ti,h are spanned
by piecewise constant basis functions, one can define corresponding piecewise constant coarse grid
functions with respect to the cluster of underlying boundary elements. This results in an artificial
hierarchy of piecewise constant trial spaces which can be used for the definition of the multilevel
operator for preconditioning [53].

To construct preconditioning matrices CSi for the local discrete Schur complement matrices S̃i,h =

D̃i,h +K̃>
i,hṼ

−1
i,h K̃i,h we will apply the concept of boundary integral operators of the opposite order

[56]. Based on the local trial space Ui,h = S1
h(Γi) of piecewise linear basis functions ϕi

m as used
for the Galerkin discretization of the local hypersingular boundary integral operators Di we define
the Galerkin matrices

V̄i,h[n,m] = 〈ϕi
n, V ϕ

i
m〉Γi , M̄i,h[n,m] = 〈ϕi

n, ϕ
i
m〉Γi

for m,n = 1, . . . ,Mi and the application of the resulting preconditioning matrix is given by

C−1
Si

= M̄−1
i,h V̄i,hM̄

−1
i,h for i = 1, . . . , p. (5.1)

When the application of the discrete single layer potential V̄i,h is realized by using a fast multipole

method as described in Section 2 this results in an approximated preconditioning matrix C̃Si .
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Lemma 5.2 In the case of a non–floating subdomain Ωi with Γi ∩ Γ 6= ∅ there hold the spectral
equivalence inequalities

cSi
1 [1 + log2H/h]−1 (C̃Sivi, vi) ≤ (S̃i,hvi, vi) ≤ cSi

2 (C̃Sivi, vi) (5.2)

for all vi ∈ IRMi while for a floating subdomain Ωi with Γi ∩ Γ = ∅ the spectral equivalence
inequalities

cSi
1 (C̃Sivi, vi) ≤ (S̃i,hvi, vi) ≤ cSi

2 (C̃Sivi, vi) (5.3)

for all vi ∈ IRMi with e>i vi = 0 are valid where cSi
1 and cSi

2 are some positive constants independent
of h and H.

Proof. Since the approximated discrete single layer potential Ṽi,h is spectrally equivalent to the
Galerkin matrix Vi,h and therefore positive definite, and using the representation (2.22) of the

approximate hypersingular boundary integral operator D̃i we first conclude

(S̃i,hvi, vi) ≥ (D̃i,hvi, vi) + (Ṽ −1
i,h K̃i,hvi, K̃i,hvi) ≥ (D̃i,hvi, vi)

=

3∑

k=1

〈Ṽi,hcurl|Γi
vi,h|k, curl|Γi

vi,h|k〉Γi

≥ c

3∑

k=1

〈Vicurl|Γi
vi,h|k, curl|Γi

vi,h|k〉Γi = c (Di,hvi, vi)

for all vi ∈ IRMi . The approximate discrete Steklov–Poincaré operator S̃i,h is bounded above
[9, 54], i.e.

(S̃i,hvi, vi) ≤ (Si,hvi, vi) = 〈Sivi,h, vi,h〉Γi ≤ c 〈Divi,h, vi,h〉Γi = c (Di,hvi, vi)

holds for all vi ∈ IRMi . Hence, to find a preconditioner for S̃i,h it is sufficient to find a precondi-
tioner for the discrete hypersingular integral operator Di,h. In the case of a floating subdomain
Ωi with Γi ∩ Γ = ∅ the preconditioning matrix CSi = M̄i,hV̄i,hMi,h is spectrally equivalent to the
discrete hypersingular integral operator Di,h [56], and since the multipole approximation of V̄i,h

is spectrally equivalent to V̄i,h the same is true for the approximate preconditioner C̃Si , see also
[45]. Hence we obtain the spectral equivalence inequalities (5.3).
When the subdomain Ωi is a non–floating subdomain with Γi∩Γ 6= ∅ we have to use the trial space
Ui,h ⊂ H̃1/2(Γi\(Γ ∩ Γi)) of piecewise linear basis functions vanishing on the Dirichlet boundary
Γ. Due to the mapping properties of the boundary integral operators

Di : H̃1/2(Γi\(Γ ∩ Γi)) → H−1/2(Γi\(Γ ∩ Γi)),

Vi : H̃−1/2(Γi\(Γ ∩ Γi)) → H1/2(Γi\(Γ ∩ Γi))

we have to consider the discrete embedding

‖vh‖
2
H1/2(Γi\(Γ∩Γi))

≤ c [1 + log2H/h] ‖vh‖
2
eH1/2(Γi\(Γ∩Γi))

for vh ∈ Ui,h yielding the spectral equivalence inequalities (5.2), see [43] together with an appro-
priate scaling argument.

We finally have to describe a suitable preconditioning matrix for the BETI Schur complement

F =

q∑

i=1

1

αi
Bi[S̃i,h + βieie

>
i ]−1B>

i +

p∑

i=q+1

BiS̃
−1
i,hB

>
i .

Following [38] we can define the scaled sparse hypersingular BETI preconditioner

C−1
F = (BC−1

α BT )−1BC−1
α D̃hC

−1
α BT (BC−1

α B>)−1. (5.4)
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Lemma 5.3 [38, Theorem 3.2] For the scaled sparse hypersingular BETI preconditioner (5.4), the
condition estimate

κ(PC−1
F P TP TFP ) ≤ c

(
1 + log

H

h

)2

(5.5)

holds, where the positive constant c is independent of h, H, p and the αi’s (coefficient jumps).

Combining Theorem 4.2 with the results of Lemmata 5.1–5.3 and taking into account the com-
plexity estimate for the fast multipole method we can finally arrive at our main theorem.

Theorem 5.1 If the two–fold saddle point problem (3.13) is solved by the 2SPCG algorithm
where the preconditioner is built from the block preconditioners CV , CS and CF , respectively,
then not more than I(ε) = O((1 + log(H/h))3 log ε−1) iterations and ops(ε) = O((H/h)2(1 +
log(H/h))5 log ε−1) arithmetical operations in a parallel regime are required in order to reduce the
initial error by the factor ε ∈ (0, 1) in a parallel regime. The number of iterations I(ε) is robust
with respect to the jumps in the coefficients. Moreover, not more than O((H/h)2(1 + log(H/h))2)
storage units are needed per processor.

Note that the complexity estimates given in Theorem 5.1 take not into account the costs for the
projection (3.11) that involves the global information exchange.

Remark 5.1 If we use optimal preconditioners C̃Vi for the local single layer potentials Ṽi,h and

C̃Si for the local boundary element Schur complements S̃i,h, then the number of iteration I(ε) of our
2SPCG solver would behave like
O((1+log(H/h)) log ε−1), whereas the arithmetical complexity would decrease from O((H/h)2(1+
log(H/h))5 log ε−1) to O((H/h)2(1 + log(H/h))3 log ε−1). Such preconditioners are available, see,
e.g., [37, 49, 56, 57]. If we convert the non–floating subdomains having a Dirichlet boundary part
to floating subdomains by including the Dirichlet boundary condition into the constraints, then the
data–sparse opposite order preconditioners S̃i,h given above is optimal.

Applying the 2SPCG introduced in Section 4 to our two–fold saddle point problem (3.13) with
the preconditioners presented above and taking into account Remark 3.1, we obtain a subspace
iteration version of the 2SPCG that can be rewritten in following algorithmic form:

Algorithm 5.1 Inexact BETI two–fold saddle point problem CG

λe = QG>(G>QG)−1e {forcing the constraint G>λe = e}
x0

1 = 0, x0
2 = 0, x0

3 = λe {choose the initial guess}
b1 = g, b2 = d = f −B>λe, b3 = 0 {compute right hand side}

d = K3x
0 − b {compute the defect}

r0 = D3L̂
−1
3 d {apply the transformation}

p0 = w0 = D−1
3 r0 {preconditioning}

ρ0 = (w0, r0)
for n = 0 step 1 until ρn ≤ ερ0 do

vn = D3L̂
−1
3 K3p

n {matrix vector multiplication and transformation}
σ = (vn, pn)
α = ρn+1/σ
xn+1 = xn − αpn {update the iterate}

rn+1 = rn − αvn {update the defect}
wn+1 = D−1

3 rn+1 {preconditioning}
ρn+1 = (wn+1, rn+1)
β = ρn+1/ρn

pn+1 = wn+1 + βpn {update of the search direction}
end for
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Note that for an efficient implementation, the application of D3L̂
−1
3 and D−1

3 have to be concate-
nated, see [55, 62]. Here, we have used the notations of Section 4 for the matrix in (3.13) and a
vector x = (x1, x2, x3)

T , where xi corresponds to the i-th block of the system (3.13).
Algorithm 5.1 was used in our numerical experiments the results of which are given in the next
section.

6 Numerical Results

For the numerical examples we consider the unit cube which is subdivided into eight similar
subdomains as shown in Figure 1. The given Dirichlet data g(x) is chosen as the trace of a
regular solution of the boundary value problem (2.1). This allows to check the convergence of the
computed numerical solution to the exact one.

Figure 1: Domain decomposition with 8 subdomains

In Table 1, the geometric informations of the domain and the subdomains are listed for the
refinement levels L. Starting from the coarsest grid with 192 triangles for the whole domain
Ω, the refined meshes are recursively constructed by subdividing each triangle into four smaller
similar triangles. N and M are the total numbers of triangles, respectively nodes of the whole
domain. Mc is the total number of coupling nodes. The numbers of local triangles and nodes
of a single subdomain Ωi are given by Ni and Mi, respectively. If the boundary mesh of one
subdomain Ωi with 98 304 triangles was uniformly extended to the interior of the subdomain, the
corresponding FEM grid would consist of 4448731 tetrahedra. For the whole domain almost 36
millions tetrahedra would be used.
In all following tables, a unified notation is used. L again denotes the refinement level and Table 1
gives the corresponding information of the grids. t1 and t2 are the measured times in seconds for
setting up the respective system of linear equations and for their solution. it denotes the number
of iterations needed to solve the respective system of linear equations with a relative accuracy of
10−8. In the column error the error ‖u− uh‖L2(Γi) is itemized for the different levels.
The effects of the preconditioners for inverting the single layer potential in the representation of
the Steklov–Poincare operator and for the Schur complement system (2.25) by the preconditioner
(2.26) are shown in Table 2. Setting up the preconditioners takes some time as can be seen in the
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L N M Mc Ni Mi

0 192 63 13 24 14
1 768 261 67 96 50
2 3072 1089 319 384 194
3 12288 4473 1399 1536 770
4 49152 18153 5863 6144 3074
5 196608 73161 24007 24576 12290
6 786432 293769 97159 98304 49154

Table 1: Geometric information

unpreconditioned preconditioned
L t1 t2 it error t1 t2 it error
0 0 0 4( 6) 3.2954e-2 0 0 4(11) 3.2954e-2
1 1 0 12(21) 5.1662e-3 1 0 14(22) 5.1662e-3
2 2 3 17(33) 1.1907e-3 4 3 20(28) 1.1907e-3
3 9 30 25(46) 2.8996e-4 13 19 22(31) 2.8996e-4
4 35 380 36(65) 6.9990e-5 48 150 24(35) 6.9989e-5
5 159 4912 52(87) 1.7508e-5 178 1194 26(38) 1.7506e-5
6 807 40294 74(122) 4.3532e-6 844 6099 29(41) 4.3488e-6

Table 2: Schur complement system of (2.16)

differences of t1 for the unpreconditioned and preconditioned case. But the preconditioning pays
off as the numbers it of iterations are reduced significantly. In brackets the average numbers of
iterations are given for the inversion of the local single layer potentials. Accordingly, the times t2
for solving the system of linear equations are reduced, while the errors are about the same. These
calculations have been executed on a standard PC pool with 3.06 MHz Intel processors and 1 GB
of RAM.
Next, the Schur complement system (2.25) will be compared to three different BETI formulations.
As the times t1 to set up the system of linear equations only differ slightly from each other due
to measuring inaccuracies, only the times t2 for solving and the numbers it of iterations will be
compared in Table 3. Only the numbers for the preconditioned systems are treated. The numbers
of iterations differ slightly from those of Table 2, as a slightly different preconditioner C−1

V was

used for the inversion of the local single layer potentials Ṽi,h. The computational times are a
little bit higher than in the example of Table 2 as the computations have been executed on a
different cluster. All further computations have been executed on the mozart cluster of the Chair
of Simulation of Large Systems and the Chair of Numerics for Supercomputers at the University
of Stuttgart. The cluster consists of 64 nodes with 2 CPU Intel Xeon 3,066 and 4 GB RAM each.
In addition, Table 4 itemizes the corresponding errors.
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(2.25) (3.16) (3.15) (3.3)
L t2 it t2 it t2 it t2 it
0 0 4(12) 2 2( 3(12)) 2 9(12) 1 40
1 2 14(22) 6 6(10(22)) 4 27(22) 3 67
2 4 20(28) 33 11(16(28)) 11 32(28) 12 84
3 24 22(32) 263 12(18(32)) 77 36(32) 70 99
4 164 24(36) 2221 14(21(36)) 572 41(35) 450 111
5 1427 26(40) 21429 15(23(39)) 4947 44(38) 3739 128
6 7691 29(43) 132892 17(26(43)) 26011 48(42) 18875 148

Table 3: comparison of standard DD and BETI for 8 cubes

The first BETI formulation is the Schur complement system (3.16). This system involves two
recursive inversions in each iteration step. The iteration numbers given in brackets are average
numbers needed to invert the local Steklov-Poincare operators and the local single layer potential,
respectively, while the other number is the number of iterations for solving the BETI Schur com-
plement system (3.16). For example, on the sixth refinement level about 17 · 26 inversions of the
local single layer potentials are executed and the average number of iterations needed for such an
inversions is 43.
The second BETI formulation is the saddle point problem (3.15). This system only needs the
inversions of the local single layer potentials in each iteration step of the system, while the local
potentials ui are determined simultaneously in the global system. Due to the larger number of
unknowns in the global system, the number of iterations raises but not too strongly. Therefore
the total number of applications of the Galerkin matrices of the local boundary integral operators
is less than for the BETI Schur complement system. Correspondingly, the improvement on the
times t2 for solving the system is significant.
A further improvement on the times t2 can be made by using the third BETI formulation, the
twofold saddle point problem given by (3.3). In this formulation no inner inversion is needed,
but the number of unknowns in the system is raised by almost 800 000 for the local fluxes ti on
the sixth level. Therefore the number of iterations again raises. Correspondingly, the number
of applications of the Galerkin matrices of the local single layer potentials is again decreased.
The benefit for solving the system is lower than in the case before, as the number of application
of the Galerkin matrices of the other boundary integral operator raises. Unfortunately, theses
applications are more expensive. The formulation (3.3) using the twofold saddle point problem
performs best of all BETI formulations. But it still performs worse than the Schur complement
system (2.25).
The systems (3.15) and (3.3) have been solved as the transformed systems described in Section
4 by using Algorithm 5.1. The used preconditioners have been scaled optimally according to the
estimates of the eigenvalues of the transformed systems given by Theorem 4.2.
In Table 4 the errors ‖u− uh‖L2(ΓS) are compared for the miscellaneous approaches. As can be
easily seen, there are not small differences in the accuracy for the different formulations. The
two–fold saddle point formulation (3.3) seems to give the best approximation.
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L (2.25) (3.16) (3.15) (3.3)
0 3.2954e-2 3.2954e-2 3.2954e-2 3.2954e-2
1 5.1662e-3 5.1662e-3 5.1662e-3 5.1662e-3
2 1.1907e-3 1.1907e-3 1.1909e-3 1.1907e-3
3 2.8996e-4 2.8996e-4 2.9012e-4 2.8995e-4
4 6.9990e-5 6.9993e-5 7.0097e-5 6.9954e-5
5 1.7506e-5 1.7510e-5 1.7580e-5 1.7466e-5
6 4.3487e-6 4.3514e-6 4.3894e-6 4.2888e-6

Table 4: comparison of the errors for standard DD and BETI

The BETI methods perform much better when considering jumping coefficients instead of constant
coefficients as in the previous example. We have chosen a different regular solution which fits also
to jumping coefficients. In Table 5 the time t2 for solving the linear system and the corresponding
numbers it of iterations are itemized, while in Table 6 the corresponding numbers are itemized for
the coefficients α1 = 1 and α2 = 105 distributed on the subdomains like on a chequerboard. Again,
the three different BETI formulations are compared to the Schur complement system (2.25).

(2.25) (3.16) (3.15) (3.3)
L t2 it t2 it t2 it t2 it
0 0 4(12) 2 2( 3(12)) 2 9(12) 1 40
1 2 14(22) 6 6(10(22)) 4 27(22) 3 67
2 4 20(28) 33 11(16(28)) 11 32(28) 12 84
3 24 22(32) 263 12(18(32)) 77 36(32) 70 99
4 164 24(36) 2221 14(21(36)) 572 41(35) 450 111
5 1427 26(40) 21429 15(23(39)) 4947 44(38) 3739 128
6 7691 29(43) 132892 17(26(43)) 26011 48(42) 18875 148

Table 5: comparison of standard DD and BETI

(2.25) (3.16) (3.15) (3.3)
L t2 it t2 it t2 it t2 it
0 2 8(12) 2 2(2(4)) 1 5(4) 1 30
1 2 16(19) 4 6(6(18)) 4 17(18) 2 43
2 5 23(27) 29 10(14(28)) 10 25(26) 8 58
3 29 28(32) 245 12(16(32)) 70 32(31) 51 71
4 226 33(36) 1929 13(19(36)) 497 36(34) 328 80
5 2439 44(39) 17762 13(21(39)) 4442 40(37) 2593 89
6 15045 55(44) 106341 14(23(43)) 24748 45(41) 13667 106

Table 6: comparison of standard DD and BETI for jumping coefficients

Comparing the iteration numbers in Table 5 and 6, the scaled version of the BETI preconditioner
performs even better and this example confirms the independence of the preconditioned system of
the respective coefficients. On the other hand the iteration numbers for solving the Schur comple-
ment system of (2.16) increase in the case of jumping coefficients, even though the preconditioner
still works.
Comparing the times t2 for solving the respective systems, the numbers are a lot better for the
BETI method. The twofold saddle point formulation (3.3) of the BETI method outperforms the
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Schur complement system (2.25) on the sixth refinement level and one would expect an even larger
difference of the seventh level.

7 Conclusions and Final Remarks

In this paper we presented inexact data–sparse Boundary Element Tearing and Interconnecting
domain decomposition methods for solving boundary value problems for the potential equation
with piecewise constant coefficients. In contrast to the classical approach we avoided the elimina-
tion of local unknowns, i.e. of the subdomain vectors ti and ui. This finally led us to a two–fold
saddle point problem. We presented preconditioned CG–like iterative methods for solving such
kind of two–fold saddle point problems and gave an rigorous analysis of the preconditioning prob-
lem resulting in precise CG–like convergence rate estimates. Furthermore, we present data–sparse
preconditioners which yield an almost optimal iterative solver for the inexact data–sparse BETI
equations. Moreover, the convergence rate is not affected by large jumps in the coefficients of
the PDE. This is confirmed by all our numerical experiments. The data–sparse preconditioners
proposed in this paper do not need special constructions since they are available in the BETI
discretization anyway. So, they are completely algebraic. This is very important for the practical
acceptance of our method. It is clear that inexact data–sparse BETI allows us to solve really large–
scale problems with several million boundary unknowns on distributed memory parallel computers
very efficiently.
The treatment of the outer Dirichlet problem and other boundary conditions is straightforward.
The generalization of our method to linear elasticity problems with piecewise constant materials
is also possible. Using the symmetric coupling technique proposed by Costabel [10] and combining
the results of this paper with the results obtained by Klawonn and Widlund [33], we can easily
construct and analyze inexact FETI–BETI solvers for large scale coupled finite and boundary
element equations. Exact FETI–BETI solvers were already proposed and analyzed in [39].
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[44] J. Nédélec: Integral equations with non integrable kernels. Int. Eq. Operat. Th. 5 (1982)
562–572.

[45] G. Of, O. Steinbach, A fast multipole boundary element method for a modified hypersingular
boundary integral equation. In: Proceedings of the International Conference on Multifield
Problems (M. Efendiev, W. L. Wendland eds.). Springer Lecture Notes in Applied Mechanics,
vol. 12, Springer, Berlin, 2003, 163–169.

27



[46] G. Of, O. Steinbach, W. L. Wendland: The fast multipole method for the symmetric boundary
integral formulation. Bericht 2004/08, SFB 404, Universität Stuttgart, 2004.

[47] P. Oswald: Multilevel norms in H−1/2(Γ). Computing 61 (1998) 235–255.

[48] J. M. Perez–Jorda, W. Yang: A concise redefinition of the solid spherical harmonics and its
use in the fast multipole method. J. Chem. Phys. 104 (1996) 8003–8006.

[49] T. v. Petersdorff, E. P. Stephan: Multigrid solvers and preconditioners for first kind integral
equations. Num. Methods Part. Diff. Eq. 8 (1992) 443–450.

[50] K. H. Pierson, P. Raghaven, G. M. Reese: Experiences with FETI–DP in a production level
finite element application. In: Proceedings of the 14th International Conference on Domain
Decomposition Methods (I. Herrera, D. E. Keyes, O. Widlund, R. Yates eds.), DDM.org, pp.
233–240, 2003.

[51] V. Rokhlin: Rapid solution of integral equations of classical potential theory . J. Com-
put. Phys. 60 (1985) 187–207.

[52] D. Stefanica: A numerical study of FETI algorithms for mortar finite element methods.
SIAM J. Sci. Comput. 23 (2001) 1135–1160.

[53] O. Steinbach: Artificial multilevel boundary element preconditioners. Proc. Appl. Math.
Mech. 3 (2003) 539–542.

[54] O. Steinbach: Stability estimates for hybrid coupled domain decomposition methods. Lecture
Notes on Mathematics, vol. 1809, Springer, Heidelberg, 2003.
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