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Unstructured space-time finite element methods

for optimal control of parabolic equations

Ulrich Langer∗, Olaf Steinbach†, Fredi Tröltzsch‡, Huidong Yang§

April 6, 2020

Abstract

This work presents and analyzes space-time finite element methods
on fully unstructured simplicial space-time meshes for the numerical so-
lution of parabolic optimal control problems. Using Babuška’s theorem,
we show well-posedness of the first-order optimality systems for a typi-
cal model problem with linear state equations, but without control con-
straints. This is done for both continuous and discrete levels. Based on
these results, we derive discretization error estimates. Then we consider
a semilinear parabolic optimal control problem arising from the Schlögl
model. The associated nonlinear optimality system is solved by Newton’s
method, where a linear system, that is similar to the first-order optimality
systems considered for the linear model problems, has to be solved at each
Newton step. We present various numerical experiments including results
for adaptive space-time finite element discretizations based on residual-
type error indicators. In the last two examples, we also consider semilinear
parabolic optimal control problems with box constraints imposed on the
control.

Keywords: Parabolic optimal control problems, space-time finite element
methods, discretization error estimates, linear parabolic equations, semilinear
parabolic equations.
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1 Introduction

In this paper, we apply continuous space-time finite element methods on fully
unstructured simplicial space-time meshes to the numerical solution of optimal
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control problems for linear and semilinear parabolic equations. More precisely,
we treat the corresponding parabolic forward-backward optimality systems at
once. In this way, we are able to apply the semismooth Newton method for
the optimal control of semilinear state equations and for problems with point-
wise control constraints. In particular, this is a challenge for our examples with
reaction-diffusion equations that develop wave-type solutions. We present an
error analysis for problems with a linear state equation without control con-
straints. However, our numerical examples confirm that the continuous space-
time finite element approach works also well for problems with semilinear equa-
tions and under additional pointwise control constraints.

Continuous space-time finite element methods (FEM) for solving parabolic
initial-boundary value problems (IBVP) on fully unstructured simplicial space-
time meshes have recently been studied from a mathematical point of view, e.g.,
in [6, 33, 41], and have been used in engineering applications; see, e.g., [8, 27].
We also refer the reader to the recent review article [43] on this topic and the
related references therein. This space-time approach considers the time variable
as just another variable in contrast to the classical time-stepping methods or to
the more recent, but closely related time discontinuous Galerkin (dG) or dis-
continuous Petrov-Galerkin (dPG) methods operating on time slices or slabs.
There is a huge amount of papers on these methods. Here we only refer to the
classical monograph [44] and to the survey articles [19, 43]. The fully unstruc-
tured space-time FEM is obviously more flexible with respect to approximation,
adaptivity, and parallelization than time-stepping methods. Moving interfaces
or spatial domains are fixed geometric objects in the space-time domain. How-
ever, we have to solve one large-scale system of linear or non-linear algebraic
equations at once instead of many smaller systems sequentially arising at each
time step. This may be seen as a disadvantage when using a sequential com-
putation on a standard computer (desktop or laptop) with one or only a few
cores. However, this is definitely a huge advantage on massively parallel com-
puters. Even on a standard computer, simultaneous space-time adaptivity can
dramatically reduce the complexity as our numerical experiments presented in
this paper show. Indeed, we are able to solve optimal control problems for linear
and semilinear parabolic reaction-diffusion equations in two-dimensional spatial
domains fast and with high accuracy on standard desktops or even laptops. We
should underline that all of our numerical experiments were performed on a
laptop or desktop computer.

An optimal control problem for a parabolic partial differential equation leads
to necessary optimality conditions that include a coupled system consisting of
the state equation being forward in time, and the adjoint equation (co-state
equation) that is directed backward in time, see, e.g., [36] or [46]. The numer-
ical solution of this forward-backward system is very demanding, because this
cannot easily be done by standard time-stepping methods or time-slice dG or
dPG methods in an efficient way. We here only mention the works by Meidner
and Vexler [37, 38] for optimal error estimates of advanced time-stepping dG
methods in the optimal control of parabolic PDEs. Therefore, various other
methods were applied for spatial dimensions larger than one, for instance, gra-
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dient type methods that proceed by sequentially solving forward and backward
equations [25, 46]. Moreover, several techniques were used that lower the dimen-
sion of the discretized equations to be solved. We mention multigrid methods,
Hackbusch [23], and cf. also the monograph by Borzi and Schulz [10]; model
order reduction by proper orthogonal decomposistion (POD), Alla and Volk-
wein [1], Kunisch, Volkwein and Xie [29]; wavelet decomposition, Kunoth [30];
tensor product approximations [12, 22, 28, 34]; or adaptive methods based on
goal-oriented error estimators, Becker et al. [7], Hintermüller et al [24]. Gong,
Hinze and Zhou [20] propose to solve a higher-order optimality system (second-
order in time and fourth-order in space) by means of a time-slice discretization.
A detailed survey on all related literature would exceed the scope of this paper.
Hence, we confine ourselves to the papers mentioned above, and the references
therein.

In contrast to these approaches, we apply fully unstructured space-time FEM
to the numerical solution of optimal control problems for linear and semilinear
parabolic partial differential equations. The fully unstructured space-time meth-
ods are especially suited for a forward-backward system since it is one system
of two coupled PDEs where the time is just another variable.

We start our investigation with a the standard space-time tracking opti-
mal control problem subject to a linear parabolic IBVP. The well-posedness
of the optimality system and of the discretized optimality system is studied by
Babuška’s theorem. In particular, the discrete inf-sup (stability) condition leads
to asymptotically optimal discretization error estimates.

For problems with a semilinear state equation or pointwise control con-
straints, we apply the semismooth Newton method, the currently most pop-
ular and powerful numerical technique for solving optimal control problems for
PDEs; we refer to Ito and Kunisch [26]. In this Newton-type method, a se-
quence of forward-backward equations must be solved that easily exceed the
storage capacity of standard computers, if the space dimension is larger than
one. Parallel-in-time numerical techniques such as parareal methods, cf. Lions
et. al. [35], Ulbrich [47], see also Gander [19], can also overcome this difficulty.
However, they are not easy to implement. In this context, we also mention
Götschel and Minion [21], who apply parallel-in-time methods to the optimal
control of the 3D heat equation and the 1D Nagumo equation.

In our examples, the level of difficulty is even higher, because our reaction-
diffusion equations exhibit wave type solutions such as traveling wave fronts,
spiral waves, or scroll rings. We refer, e.g., to Casas et. al. [14, 15, 16],
where optimal control problems for FitzHugh-Nagumo or Schlögl (Nagumo)
equations were solved in space dimensions one and two. Only in the spatially
one-dimensional case, the semismooth Newton method was applied, cf. [15],
while two-dimensional problems were tackled by a nonlinear conjugate gradient
optimization method, partially invoking a model-predictive approximation. In
contrast to the papers mentioned above, we directly solve the nonlinear opti-
mality systems by the Newton or semismooth Newton method. Finally, in each
iteration, we solve one system of linear or non-linear algebraic equations.

The rest of the paper is structured as follows. In Section 2, we introduce
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some notation and state some preliminary results on the solvability and numer-
ical analysis of the parabolic initial-boundary value problem that serves as state
equation in the optimal control problem studied in Section 3. In Section 4, we
consider the optimal control of semilinear parabolic initial-boundary value prob-
lem without and with pointwise box constraints on the control. We provide and
discuss typical numerical examples for all optimal control problems investigated
in the paper. Finally, some conclusions are drawn in Section 5.

2 Preliminaries

The state problem, that appears as constraint in the optimal control problems,
is given by the linear parabolic IBVP

∂tu−∆xu = z in Q, u = 0 on Σ, u = 0 on Σ0, (1)

where Q := Ω × (0, T ), Σ := ∂Ω × (0, T ), Σ0 := Ω × {0}. The spatial compu-
tational domain Ω ⊂ Rd, d = 1, 2, 3, is supposed to be bounded and Lipschitz,
T > 0 is the final time, ∂t denotes the partial time derivative, ∆x =

∑d
i=1 ∂

2
xi

is the spatial Laplacian, and the source term z on the right-hand side of the
parabolic PDE serves as control. For simplicity, we consider homogeneous ini-
tial and boundary conditions only. It is clear that this simple model problem
can be replaced by more advanced parabolic IBVPs as they appear in many
practical applications such as instationary heat conduction, instationary diffu-
sion, 2D eddy current simulation, tumor grow, or after Newton linearization
of nonlinear parabolic IBVPs as considered in Section 4. The weak solvabil-
ity of such kind of parabolic IBVPs was studied in space-time Sobolev spaces
by Ladyzhenskaya and co-workers [31, 32], and in Bochner spaces of abstract
functions, mapping the time interval (0, T ) to some Hilbert or Banach space,
by Lions [36], see also [48]. Following the latter approach, the standard weak
formulation of the IBVP (1) in Bochner spaces of abstract functions reads as
follows: Given z ∈ Y ∗, find u ∈ X0 such that

b(u, v) = 〈z, v〉Q, ∀v ∈ Y, (2)

with the bilinear form b(·, ·) : X0 × Y → R,

b(u, v) :=

∫
Q

[
∂tu v +∇xu · ∇xv

]
dx dt, ∀(u, v) ∈ X0 × Y, (3)

and the linear form 〈z, ·〉Q : Y → R with the duality pairing

〈z, q〉Q :=

∫
Q

z v dx dt, ∀v ∈ Y, (4)

as extension of the inner product in L2(Q). Similarly, the first integral in (3)
has to be understood as duality pairing as well. The Bochner spaces X0 and Y
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are specified as follows:

X0 := L2(0, T ;H1
0 (Ω)) ∩H1

0,(0, T ;H−1(Ω))

=
{
v ∈ L2(0, T ;H1

0 (Ω)) : ∂tv ∈ L2(0, T ;H−1(Ω)), v = 0 on Σ0

}
,

Y := L2(0, T ;H1
0 (Ω)), Y ∗ := L2(0, T ;H−1(Ω)),

where H1
0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}, and H−1(Ω) := H1

0 (Ω)∗. Note
that we have X0 = {v ∈ W (0, T ) : v = 0 on Σ0} as used in [36]. The related
norms are given by

‖u‖X0 :=
(
‖∂tu‖2L2(0,T ;H−1(Ω)) + ‖∇xu‖2L2(Q)

)1/2

,

‖v‖Y := ‖∇xv‖L2(Q),

‖∂tu‖Y ∗ = ‖∂tu‖L2(0,T ;H−1(Ω)) = ‖∇xwu‖L2(Q) = ‖wu‖Y ,

and where wu ∈ Y is the unique solution of the variational formulation∫
Q

∇xwu · ∇xv dx dt = 〈∂tu, v〉Q, ∀v ∈ Y ; (5)

see [41]. In fact, we have

‖u‖X0
=
[
‖wu‖2Y + ‖u‖2Y

]1/2
.

The well-posedness of variational problems such as (2) can be investigated by
the Nec̆as-Babuška theorem [4, 40] that is sometimes also called the Banach-
Nec̆as-Babuška theorem [18] or the Babuška-Aziz theorem [5], see also [11]. This
theorem states that the operator B : X0 → Y ∗ generated by the bilinear form
b(·, ·) is an isomorphism if and only if the following three conditions are fulfilled:

1. boundedness (continuity) of b(·, ·), i.e., there exists a positive constant β1:

|b(u, v)| ≤ β1 ‖u‖X0
‖v‖Y , ∀(u, v) ∈ X0 × Y ; (6)

2. inf-sup (stability) condition (surjectivity of B∗), i.e., there exists a positive
constant β2 such that

inf
06=u∈X0

sup
0 6=v∈Y

b(u, v)

‖u‖X0
‖v‖Y

≥ β2; (7)

3. injectivity of B∗:

∀v ∈ Y \ {0} ∃ũ ∈ X0 : b(ũ, v) 6= 0. (8)

It is easy to show that the bilinear form (3) is bounded with β1 =
√

2. The
inf-sup condition (7) follows from [41, Theorem 2.1] with the stability constant
β2 = 1/(2

√
2). To prove (8), for v ∈ Y \ {0}, we choose

ũ(x, t) =

∫ t

0

v(x, s) ds, (x, t) ∈ Q.
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By definition, we have ũ ∈ X0, and

b(ũ, v) = ‖v‖2L2(Q) +
1

2
‖∇xũ(T )‖2L2(Ω) > 0.

Therefore, by the Nec̆as-Babuška theorem, the variational problem (2) is well-
posed.

For the finite element discretization of the variational formulation (2), we
introduce conforming space-time finite element spaces X0,h ⊂ X0 and Yh ⊂ Y ,
where we assumeX0,h ⊆ Yh. In particular, we may useX0,h = Yh = S1

h(Qh)∩X0

spanned by continuous and piecewise linear basis functions which are defined
with respect to some admissible decomposition Th(Q) of the space-time domain
Q into shape regular simplicial finite elements τ`, and which are zero at the initial
time t = 0 and at the lateral boundary Σ, where h denotes a suitable mesh-size
parameter, see, e.g., [11, 18, 41]. Then the finite element approximation of (2)
is to find uh ∈ X0,h such that

b(uh, vh) = 〈z, vh〉Q, ∀vh ∈ Yh. (9)

When replacing (5) by its finite element approximation to find wu,h ∈ Yh such
that ∫

Q

∇xwu,h · ∇xvh dx dt =

∫
Q

∂tu vh dx dt, ∀vh ∈ Yh, (10)

we can define a discrete norm

‖u‖X0,h
:=
[
‖wu,h‖2Y + ‖u‖2Y

]1/2
.

Due to the definition of wu,h as solution of the variational formulation (10), we
conclude

‖wu,h‖Y ≤ ‖wu‖Y for all u ∈ X0, (11)

while the opposite inequality is in general not true. As in the continuous case,
see (7), we can prove a discrete inf-sup condition, see [41, Theorem 3.1],

1

2
√

2
‖uh‖X0,h

≤ sup
06=vh∈Yh

b(uh, vh)

‖vh‖Y
, ∀uh ∈ X0,h. (12)

Hence, from the discrete version of Nec̆as-Babuška’s theorem, we conclude
unique solvability of the Galerkin scheme (9). Furthermore, we obtain the fol-
lowing quasi-optimal error estimate, see [41, Theorem 3.2]:

‖u− uh‖X0,h
≤ 5 inf

zh∈X0,h

‖u− zh‖X0
. (13)

In particular, when assuming u ∈ H2(Q), this finally results in the energy error
estimate, see [41, Theorem 3.3],

‖u− uh‖L2(0,T ;H1
0 (Ω)) ≤ c h |u|H2(Q) . (14)
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Once the basis is chosen, the finite element scheme (9) is nothing but a huge
linear system of the form

Khuh = f
h

(15)

with a positive definite, but non-symmetric system matrix Kh that can be gen-
erated together with the right-hand side f

h
similar as in the elliptic case. The

linear system (15) can efficiently be solved by means of the preconditioned GM-
RES method, see [42, 43], where Algebraic Multigrid (AMG) preconditioning
is used. We also use AMG preconditioned GMRES as solver in all numerical
experiments presented in this paper. It is clear that the unstructured space-
time approach to optimal control problems presented in this paper allows full
space-time adaptivity and parallelization.

3 Space-time tracking

3.1 The model problem

For a given target function ud ∈ L2(Q) and a regularization parameter % > 0,
we consider the minimization of the cost functional

J (u, z) :=
1

2

∫
Q

|u− ud|2 dx dt+
1

2
% ‖z‖2L2(Q) (16)

subject to the linear parabolic IBVP (1), where the control z is taken from
L2(Q).

3.2 The optimality system

If a control z is optimal with the associated state u, then the following first-order
necessary optimality conditions must be satisfied: There is a unique solution p
of the adjoint equation

−∂tp−∆xp = u− ud in Q, p = 0 on Σ, p = 0 on ΣT := Ω× {T},

such that the so-called gradient equation

p+ %z = 0 in Q

is satisfied. When eliminating the control z, the following optimality system is
necessary (and by convexity of the problem also sufficient) for the optimality of
its solution (u, p):

% [∂tu−∆xu] + p = 0 in Q, u = 0 on Σ, u = 0 on Σ0,

−∂tp−∆xp = u− ud in Q, p = 0 on Σ, p = 0 on ΣT .
(17)

The solution of this system exists and is unique, since the optimal control prob-
lem has a unique optimal solution; see [36]. This is due to the strict convexity
of the functional J . If the solution (u, p) is given, then z = −p/% is the optimal
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control. The weak formulation of the optimality system (17) is to find u ∈ X0

and p ∈ XT such that

%

∫
Q

[
∂tu v +∇xu · ∇xv

]
dx dt+

∫
Q

p v dx dt = 0,

−
∫
Q

u q dx dt+

∫
Q

[
− ∂tp q +∇xp · ∇xq

]
dx dt = −

∫
Q

ud q dx dt
(18)

is satisfied for all v, q ∈ Y . Note that

XT := L2(0, T ;H1
0 (Ω)) ∩H1

,0(0, T ;H−1(Ω))

=
{
p ∈ L2(0, T ;H1

0 (Ω)) : ∂tp ∈ L2(0, T ;H−1(Ω)), p = 0 on ΣT

}
.

An equivalent version of (18) is the saddle point problem to find (u, p) ∈ X0×XT

such that
B(u, p; v, q) = −〈ud, q〉L2(Q), ∀v, q ∈ Y, (19)

where

B(u, p; v, q) = %

∫
Q

[
∂tu v +∇xu · ∇xv

]
dx dt+

∫
Q

p v dx dt (20)

−
∫
Q

u q dx dt+

∫
Q

[
− ∂tp q +∇xp · ∇xq

]
dx dt

is a bounded bilinear form for (u, p) ∈ X0 ×XT , and (v, q) ∈ Y × Y , i.e.,

|B(u, p; v, q)| ≤ cB(%)
(
‖u‖2X0

+ ‖p‖2XT

)1/2(
‖v‖2Y + ‖q‖2Y

)1/2

with some positive constant cB(%).

Lemma 1. The bilinear form as given in (20) satisfies the stability condition

1

2
√

2

√
% ‖u‖2X0

+ ‖p‖2XT
≤ sup

06=(v,q)∈Y×Y

B(u, p; v, q)√
% ‖v‖2Y + ‖q‖2Y

for all (u, p) ∈ X0 ×XT .

Proof. For u ∈ X0, we define wu ∈ Y as the unique solution of the elliptic
variational problem∫

Q

∇xwu · ∇xv dx dt =

∫
Q

∂tu v dx dt, ∀v ∈ Y .

As in [41], we then have

‖∂tu‖Y ∗ = ‖wu‖Y , i.e., ‖u‖2X0
= ‖wu‖2Y + ‖u‖2Y .

In the same way, we define wp ∈ Y as the unique solution of the variational
problem ∫

Q

∇xwp · ∇xq dx dt = −
∫
Q

∂tp q dx dt, ∀q ∈ Y,
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where we conclude

‖∂tp‖Y ∗ = ‖wp‖Y , i.e., ‖p‖2XT
= ‖wp‖2Y + ‖p‖2Y .

For wp ∈ Y and for almost all x ∈ Ω, we define

vp(x, t) =

∫ T

t

wp(x, s) ds,

satisfying vp ∈ XT , i.e., vp = 0 on ΣT . Using wp = −∂tvp, and integration by
parts in time, and u = 0 on Σ0, we obtain

〈u,wp〉L2(Q) = −
∫ T

0

∫
Ω

u(x, t) ∂tvp(x, t) dx dt

= −
∫

Ω

u(x, t) vp(x, t) dx

∣∣∣∣T
0

+

∫ T

0

∫
Ω

∂tu(x, t) vp(x, t) dx dt

=

∫ T

0

∫
Ω

∇xwu(x, t) · ∇xvp(x, t) dx dt

=

∫ T

0

∫ T

t

∫
Ω

∇xwu(x, t) · ∇xwp(x, s) dx ds dt .

Analogously, defining

vu(x, s) =

∫ s

0

wu(x, t) dt, x ∈ Ω, s ∈ (0, T ),

we get

〈p, wu〉L2(Q) =

∫ T

0

∫
Ω

p(x, s) ∂svu(x, s) dx ds

=

∫
Ω

p(x, s) vu(x, s) dx

∣∣∣∣T
0

−
∫ T

0

∫
Ω

∂sp(x, s) vu(x, s) dx ds

=

∫ T

0

∫
Ω

∇xwp(x, s) · ∇xvu(x, s) dx ds

=

∫ T

0

∫ s

0

∫
Ω

∇xwp(x, s) · ∇xwu(x, t) dx dt ds

=

∫ T

0

∫ T

t

∫
Ω

∇xwp(x, s) · ∇xwu(x, t) dx ds dt.

Hence, we have
〈u,wp〉L2(Q) = 〈p, wu〉L2(Q).
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For v = u+ wu ∈ Y and q = p+ wp ∈ Y , we now obtain

B(u, p; v, q) =

= %

∫
Q

[
∂tu (u+ wu) +∇xu · ∇x(u+ wu)

]
dx dt+

∫
Q

p (u+ wu) dx dt

−
∫
Q

u (p+ wp) dx dt+

∫
Q

[
− ∂tp (p+ wp) +∇xp · ∇x(p+ wp)

]
dx dt

= %

∫
Q

[
∂tu (u+ wu) +∇xu · ∇x(u+ wu)

]
dx dt

+

∫
Q

[
− ∂tp (p+ wp) +∇xp · ∇x(p+ wp)

]
dx dt

= %

[
1

2
‖u(T )‖2L2(Ω) + ‖wu‖2Y + ‖u‖2Y +

∫
Q

∇xu · ∇xwu dx dt
]

+

[
1

2
‖p(0)‖2L2(Ω) + ‖wp‖2Y + ‖p‖2Y +

∫
Q

∇xp · ∇xwp dx dt
]

≥ %
[
‖wu‖2Y + ‖u‖2Y − ‖u‖Y ‖wu‖Y

]
+
[
‖wp‖2Y + ‖p‖2Y − ‖p‖Y ‖wp‖Y

]
≥ %

2

[
‖wu‖2Y + ‖u‖2Y

]
+

1

2

[
‖wp‖2Y + ‖p‖2Y

]
=

1

2

[
% ‖u‖2X0

+ ‖p‖2XT

]
.

Moreover, using the triangle and Hölder’s inequality, we get

‖v‖Y = ‖u+ wu‖Y ≤ ‖u‖Y + ‖wu‖Y ≤
√

2
√
‖u‖2Y + ‖wu‖2Y =

√
2 ‖u‖X0

,

as well as

‖q‖Y ≤
√

2
√
‖p‖2Y + ‖wp‖2Y =

√
2 ‖p‖XT

.

With this, we can now estimate√
% ‖v‖2Y + ‖q‖2Y

√
% ‖u‖2X0

+ ‖p‖2XT
≤
√

2
(
% ‖u‖2X0

+ ‖p‖2XT

)
≤ 2

√
2B(u, p; v, q),

which implies the stability condition as stated.

Lemma 2. For all v, q ∈ Y , we have the injectivity condition

sup
(u,p)∈X0×XT

B(u, p; v, q) > 0 .

Proof. For v ∈ Y and for almost all x ∈ Ω, s ∈ (0, T ), we define

uv(x, s) =

∫ s

0

v(x, t) dt, i.e., uv ∈ X0,
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while, for q ∈ Y and for almost all x ∈ Ω, t ∈ (0, T ), we define

pq(x, t) =

∫ T

t

q(x, s) ds, i.e., pq ∈ XT .

With this we have

B(uv, pq; v, q) = %

∫
Q

[
∂suv v +∇xuv · ∇xv

]
dx ds+

∫
Q

pq v dx dt

−
∫
Q

uv q dx ds+

∫
Q

[
− ∂tpq q +∇xpq · ∇xq

]
dx dt

= %

∫
Q

[
v2 +∇xuv · ∇x∂suv

]
dx dt+

∫ T

0

∫ T

t

∫
Ω

q v dx ds dt

+

∫
Q

[
q2 −∇xpq · ∇x∂tpq

]
dx dt−

∫ T

0

∫ s

0

∫
Ω

v q dx dt ds

= %
[
‖v‖2L2(Q) +

1

2
‖∇xuv(T )‖2L2(Ω)

]
+ ‖q‖2L2(Q) +

1

2
‖∇xpq(0)‖2L2(Ω)

> 0,

which concludes the proof.

Now, as a consequence of the Nečas-Babuška theorem, we are in the position to
state the main result of this subsection:

Theorem 1. For given ud ∈ L2(Q), the saddle point problem (19) admits a
unique solution (u, p) ∈ X0 ×XT .

Note that for ud ∈ Y ∗ the saddle point formulation (19) defines an isomorphism
from X0 ×XT onto Y ∗ × Y ∗.

3.3 Discretization of the optimality system

For the numerical solution of the saddle point problem (19), we use the con-
forming space-time finite element spaces X0,h = Y0,h = S1

h(Qh) ∩ X0, and we
introduce the space XT,h = YT,h = S1

h(Qh)∩XT of piecewise linear and contin-
uous basis functions which are zero at the final time T . Then the finite element
approximation of (19) is to find (uh, ph) ∈ X0,h ×XT,h such that

B(uh, ph; vh, qh) = −〈ud, q〉L2(Q), ∀(vh, qh) ∈ Y0,h × YT,h. (21)

To ensure unique solvability of (21), we need to establish a discrete inf-sup
stability condition as follows, but which is formulated in Y × Y , instead of
X0 ×XT as used in the continuous case.

Lemma 3. For all (uh, ph) ∈ X0,h × XT,h, there holds the discrete inf–sup
stability condition

1

2
√

2

√
% ‖uh‖2Y + ‖ph‖2Y ≤ sup

06=(vh,qh)∈Y0,h×YT,h

B(uh, ph; vh, qh)√
% ‖vh‖2Y + ‖qh‖2Y

.

11



Proof. For (uh, ph) ∈ X0,h×XT,h, we define wuh,h ∈ Y0,h as the unique solution
of the variational problem∫

Q

∇xwuh,h · ∇xvh dx dt =

∫
Q

[
∂tuh +

1

%
ph

]
vh dx dt, ∀vh ∈ Y0,h, (22)

and wph,h ∈ YT,h satisfying∫
Q

∇xwph,h · ∇xqh dx dt = −
∫
Q

[
∂tph + uh

]
qh dx dt, ∀qh ∈ YT,h. (23)

For vh = uh+wuh,h ∈ Y0,h and qh = ph+wph,h ∈ YT,h, we have, as in the proof
of Lemma 1, see also [41], and using (22) and (23),

B(uh, ph; vh, qh) = %

∫
Q

[
∂tuh (uh + wuh,h) +∇xuh · ∇x(uh + wuh,h)

]
dx dt

+

∫
Q

[
− ∂tph (ph + wph,h) +∇xph · ∇x(ph + wph,h)

]
dx dt

+

∫
Q

ph (uh + wuh,h) dx dt−
∫
Q

uh (ph + wph,h) dx dt

≥ %

∫
Q

[(
∂tuh +

1

%
ph

)
wuh,h +∇xuh · ∇x(uh + wuh,h)

]
dx dt

+

∫
Q

[
−
(
∂tph + uh

)
wph,h +∇xph · ∇x(ph + wph,h)

]
dx dt

= %

∫
Q

[
∇xwuh,h · ∇xwuh,h +∇xuh · ∇x(uh + wuh,h)

]
dx dt

+

∫
Q

[
∇xwph,h · ∇xwph,h +∇xph · ∇x(ph + wph,h)

]
dx dt

= %
(
‖∇xwuh,h‖2L2(Q) + ‖∇xuh‖2L2(Q) + 〈∇xuh,∇xwuh,h〉L2(Q)

)
+‖∇xwph,h‖2L2(Q) + ‖∇xph‖2L2(Q) + 〈∇xph,∇xwph,h〉L2(Q)

≥ 1

2

[
%
(
‖wuh,h‖2Y + ‖uh‖2Y

)
+ ‖wph,h‖2Y + ‖ph‖2Y

]
≥ 1

2

[
% ‖uh‖2Y + ‖ph‖2Y

]1/2
·
[
%
(
‖wuh,h‖2Y + ‖uh‖2Y

)
+ ‖wph,h‖2Y + ‖ph‖2Y

]1/2
.

With

‖vh‖2Y ≤
(
‖uh‖Y + ‖wuh,h‖Y

)2

≤ 2
(
‖uh‖2Y + ‖wuh,h‖2Y

)
and

‖qh‖2Y ≤ 2
(
‖ph‖2Y + ‖wph,h‖2Y

)
12



we further have

% ‖vh‖2Y + ‖qh‖2Y ≤ 2
[
%
(
‖uh‖2Y + ‖wuh,h‖2Y

)
+ ‖ph‖2Y + ‖wph,h‖2Y

]
,

which finally implies

≥ 1

2
√

2

[
% ‖uh‖2Y + ‖ph‖2Y

]1/2 [
% ‖vh‖2Y + ‖qh‖2Y

]1/2
.

Now, using standard arguments as for the heat equation, we can prove a best
approximation result, see Sect. 2 and [41],√

% ‖u− uh‖2Y + ‖p− ph‖2Y

≤ (1 + 2
√

2cB(ρ)) inf
06=(vh,qh)∈X0,h×XT,h

√
‖u− vh‖2X0

+ ‖p− qh‖2XT
,

and therefore we can state the main result of this section.

Theorem 2. Assume that the solution (u, p) ∈ X0 × XT of the saddle point
problem (19) satisfies u, p ∈ H2(Q). Let X0,h = Y0,h = S1

h(Qh)∩X0 and XT,h =
YT,h = S1

h(Qh) ∩ XT be conforming finite element spaces. Then the discrete
saddle point problem (21) admits a unique solution (uh, ph) ∈ X0,h × XT,h

satisfying the error estimate

% ‖u− uh‖2Y + ‖p− ph‖2Y ≤ c h2
(
|u|2H2(Q) + |p|2H2(Q)

)
.

3.4 Numerical experiments

In all the numerical examples considered in this work, we set Ω = (0, 1)2, T = 1,
and therefore Q = (0, 1)3. The initial (coarsest) space-time finite element mesh
contains 125 vertices (5 vertices in each direction), 384 tetrahedral elements,
and thus the initial mesh size is h = 1/4. By uniform refinement (red-green
refinement [9]), the mesh size will be reduced successively, i.e., h = 1/8, 1/16
and so on. The numerical experiments are performed on a desktop with Intel@
Xeon@ Prozessor E5-1650 v4 (15 MB Cache, 3.60 GHz), and 64 GB memory. To
solve the discrete linear coupled first-order necessary optimality system, we use
the algebraic multigrid preconditioned GMRES method. The relative residual
error ε = 10−7 is taken as a stopping criterion for the GMRES iteration. In
constructing the algebraic multigrid preconditioner for the coupled system, we
utilize a simple blockwise coarsening strategy and a blockwise ILU smoother on
each level; see the performance study for solving such coupled systems in [43].
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3.4.1 An example with explicitly known solution (Example 1)

In the first example, we consider the following explicitly known solution of the
first order optimality system

u(x, t) = sin(πx1) sin(πx2)
(
at2 + bt

)
, a = −2π2 + 1

2π2 + 2
, b = 1,

p(x, t) = −% sin(πx1) sin(πx2)
(
2π2at2 + (2π2b+ 2a)t+ b

)
,

z(x, t) = sin(πx1) sin(πx2)
(
2π2at2 + (2π2b+ 2a)t+ b

)
,

and we set % = 0.01. The exact solution u satisfies homogeneous initial and
boundary conditions for the state equation, and p obeys the homogeneous ter-
minal and boundary conditions for the adjoint equation; see Fig. 1 for an il-
lustration. The estimated order of convergence (eoc) is provided in Tables 1-3.

Figure 1: Example 1, numerical solutions of u, p, and z for the linear model
problem (from left to right).

From these results, we clearly see optimal convergence in Y = L2(0, T ;H1
0 (Ω))

as predicted by Theorem 2. In addition, we observe a nearly optimal conver-
gence rate in L2(Q). Finally, we see the second-order convergence rate of the
objective functional.

Table 1: Example 1, estimated order of convergence (eoc) for uh and ph in Y
for the linear model problem.

#Dofs h ‖u− uh‖Y eoc ‖p− ph‖Y eoc

250 2−2 2.218e− 1 − 4.201e− 2 −
1, 458 2−3 1.141e− 1 0.959 2.235e− 2 0.910
9, 826 2−4 5.677e− 2 1.007 1.123e− 2 0.993

71, 874 2−5 2.816e− 2 1.012 5.588e− 3 1.007
549, 250 2−6 1.400e− 2 1.008 2.781e− 3 1.006

2, 146, 689 2−7 6.983e− 3 1.004 1.387e− 3 1.003
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Table 2: Example 1, estimated order of convergence (eoc) for uh and ph in
L2(Q) for the linear model problem.

#Dofs h ‖u− uh‖L2(Q) eoc ‖p− ph‖L2(Q) eoc

250 2−2 3.767e− 2 − 4.146e− 3 −
1, 458 2−3 1.156e− 2 1.704 1.160e− 3 1.837
9, 826 2−4 3.009e− 3 1.942 2.981e− 4 1.961

71, 874 2−5 7.595e− 4 1.986 7.515e− 5 1.988
549, 250 2−6 1.927e− 4 1.979 1.950e− 5 1.947

2, 146, 689 2−7 4.948e− 5 1.961 5.244e− 6 1.894

Table 3: Example 1, J(uh, zh) and |J(uh, zh) − J(u, z)| for the linear model
problem, where J(u, z) = 9.53329e− 2.

#Dofs h J(uh, zh) |J(uh, zh)− J(u, z)| eoc

250 2−2 1.04613e− 1 9.2801e− 3 −
1, 458 2−3 9.80559e− 2 2.7230e− 3 1.769
9, 826 2−4 9.60214e− 2 6.8850e− 4 1.984

71, 874 2−5 9.55024e− 2 1.6950e− 4 2.022
549, 250 2−6 9.53748e− 2 4.1900e− 5 2.016

2, 146, 689 2−7 9.53433e− 2 1.0400e− 5 2.010

3.4.2 An example with discontinuous target (Example 2)

In the second example, the space-time domain Q = (0, 1)3 and the discontinuous
target function

ud(x, t) =

{
1 if

√
(x1 − 1

2 )2 + (x2 − 1
2 )2 + (t− 1

2 )2 ≤ 1
4 ,

0 else

are considered. Further, we set homogeneous initial and boundary conditions
for the state equation, and homogeneous terminal and boundary conditions for
the adjoint equation. For the L2-regularization parameter, we select % = 10−6.
Following the approach in [42], we have utilized a residual based error indicator
to drive our mesh refinements in order to resolve the discrete optimality system.
The space-time finite element solutions for the state and adjoint variables, as
well as the time-dependent target are displayed in Fig. 2. The control is re-
constructed by a postprocessing step using piecewise constant ansatz functions,
which is demonstrated in the last column in Fig. 2. For a discussion and an
error analysis of this postprocessing idea, we refer to [39] in the case of elliptic
PDE control. The adaptive mesh is illustrated in Fig. 3 at the 20th refining
step, which contains 2, 080, 493 grid points, i.e., the total number of degrees of
freedom for the coupled state and adjoint equation is 4, 160, 986.
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Figure 2: Example 2, numerical solutions of u, p, and z for the linear model
problem with a discontinuous target, at t = 0.3, 0.5, and 0.7 (from top to
bottom).

4 Control of a semilinear parabolic equation

4.1 The control problem

Here, we consider the following optimal control problem for a semilinear heat
equation to minimize

J(u, z) :=
1

2

∫
Q

(u− ud)2 dx dt+
%

2

∫
Q

z2 dx dt (24)

subject to

∂tu−∆xu+R(u) = z in Q, ∂nu = 0 in Σ, u = 0 on Σ0. (25)

The control z is taken from the space Lp(Q) with p > 1 + d/2 to guarantee
existence and uniqueness of a bounded solution u to (25). We look for the
solution u of (25) in the space Y ∩L∞(Q). Moreover, we here assume ud ∈ Lp(Q)
to ensure later that the adjoint state belongs to L∞(Q).

The function R : R→ R is a C2-function with locally Lipschitz second-order
derivative, i.e., for all M > 0, there is some L(M) > 0 such that

|R′′(v1)−R′′(v2)| ≤ L(M) |v1 − v2| ∀vi with |vi| ≤M, i = 1, 2.
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Figure 3: Example 2, adaptive mesh refinement at the 20th step in space-time
at t = 0.375, 0.5, and 0.625 (from left to right), with a discontinuous target.

Moreover, we require the existence of some c0 ∈ R (possibly negative) such that

R′(u) ≥ c0 ∀u ∈ R.

An important particular case for the reaction term R is

R(u) = (u− u1)(u− u2)(u− u3),

where real numbers u1 ≤ u2 ≤ u3 are given. Obviously, this function obeys the
assumptions above. It is used for the Schlögl and FitzHugh-Nagumo equations.
The following theorem on the solvability of (25) is known:

Theorem 3 ([14]). Let Ω ⊂ Rd, d ≤ 3, be a bounded Lipschitz domain and
let R satisfy the conditions stated above. Then for all controls z ∈ Lp(Q) with
p > 1 + d/2, the equation (25) has a unique solution u ∈ Y ∩ L∞(Q). The
control-to-state mapping G : z 7→ u is of class C2.

The optimal control problem (24)-(25) can be expressed in the reduced form

min
z∈Lp(Q)

f(z) :=
1

2

∫
Q

(G(z)− ud)2 dx dt+
%

2

∫
Q

z2 dx dt.

Compared with the quadratic optimal control problems of the former sections,
several new difficulties occur.

Though we have f(u) → ∞ if ‖z‖L2(Q) → ∞, the existence of an optimal
control z̄ cannot be proved by standard weak compactness techniques. It was
recently shown by fairly deep arguments that at least one (globally) optimal
control exists for the unconstrained case, cf. [13, 16]. This justifies to consider
the optimal control problem without control constraints.

Moreover, even though the functional J is convex, the reduced functional f is
not in general convex, because G is nonlinear. Therefore, the optimality system
is not sufficient for (local or global) optimality of its solution. We might also
have different global or local solutions of the optimal control problem. They
are even not guaranteed to be locally unique. To overcome these difficulties,
we assume that a given reference solution of the optimality system satisfies a
second-order sufficient optimality condition.
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Finally, we should mention that the mappingG is not in general differentiable
or twice differentiable in the Hilbert space L2(Q).

To allow for a Hilbert space setting as in the previous sections, we will
proceed as follows: In the infinite-dimensional setting, we will apply a New-
ton method (sequential quadratic programming (SQP) method) that solves the
problem by a sequence of quadratic optimal control problems that are posed
in Hilbert space. These are solved by the methods of the former sections. For
convergence of this method, the second-order sufficient optimality condition is
needed again.

4.2 The Lagrange-Newton-SQP method

Let us define the Lagrangian L : (Y ∩ L∞(Q))2 × Lp(Q)→ R, p > 1 + d/2, by

L(u, p, z) = J(u, z)−
∫
Q

(
∂tu p+∇u · ∇p+R(u) p− z p

)
dx dt.

Then the SQP method proceeds as follows: An arbitrary triplet (u0, p0, z0) ∈
(Y ∩L∞(Q))2×Lp(Q) is taken as initial iterate. For a given iterate (un, pn, zn)
the following quadratic optimal control problem (QPn) is considered:

min J ′(un, zn)(u− un, z − zn) +
1

2
L′′u,z(un, pn, zn)(u− un, z − zn)2

subject to the linearized equation

∂tu−∆xu+R(un) +R′(un)(u− un) = z in Q,

∂nu = 0 on Σ,

u = 0 on Σ0.


(QPn)

The next iterate zn+1 is the optimal control of (QPn), provided that it exists,
un+1 is the associated optimal state and pn+1 is the associated adjoint state.

The numerical treatment of (QPn) requires the solution of the optimality
system

∂tu−∆xu+R(un) +R′(un)(u− un) +
1

%
p = 0, u(0) = u0,

−∂tp−∆xp+R′(un)p+ pnR
′′(un)(u− un) = un − ud, p(T ) = 0

 (OSn)

subject to homogeneous Neumann conditions. Then we have un+1 = u and
pn+1 = p; the new control iterate is zn+1 = −pn+1/%. This iteration method is
called Lagrange-Newton method, because it comes from linearizing the whole
optimality system. In contrast to this, the SQP method would not linearize the
state equation. We refer for a general exposition to [2, 3], for the convergence
analysis for semilinear parabolic equations in an L∞-setting to [45, 46] and the
discussion in a Hilbert space setting to [25].

To make all iterates well defined, we will invoke a second-order sufficient
optimality condition.
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4.3 Second-order sufficient optimality condition and con-
vergence of the Lagrange-Newton method

Let (ū, p̄, z̄) be a fixed triplet that satisfies the optimality system for the opti-
mal control problem (24)-(25). We say that the triplet fulfils the second-order
sufficient optimality condition, if it enjoys the following property of positive
definiteness: A number σ > 0 exists, such that

L′′u,z(ū, p̄, z̄)(u, z)2 ≥ σ ‖z‖2L2(Q) (26)

holds for all pairs (u, z) that obey the linearized equation

∂tu−∆xu+R′(ū)u = z in Q, ∂nu = 0 on Σ, u = 0 on Σ0.

It is known that this condition is sufficient for the local optimality of z̄ in the
sense of L2(Q), [15]. Moreover, z̄ is unique in a certain L2(Ω)-neighborhood.
It is not in general possible to verify this condition by numerical methods. As
usual, it is just a theoretical basis for the analysis.

In the case of the optimal control problem (24)-(25), the derivative L′′ has
the form

L′′u,z(ū, p̄, z̄)(u, z)2 = ‖u‖2L2(Q) + % ‖z‖2L2(Q) −
∫
Q

p̄ R′′(ū)u2 dx dt.

Therefore, the second-order sufficient optimality condition is satisfied in partic-
ular, if

1− p̄(x, t)R′′(ū(x, t)) ≥ σ for a.a. (x, t) ∈ Q.
For instance, this holds, if p̄ is small, i.e., ū is close to ud. The convergence
theorem below is based on the second-order sufficient condition. Since it needs
box constraints on the control to ensure that all iterates belong to a bounded
set of L∞(Q), we invoke the following result:

Lemma 4. There is at least one optimal control of problem (24)-(25) that be-
longs to L∞(Q).

Proof. We rely on Theorem 2.4 of [16] that guarantees the existence of at least
one optimal control ū of (24)-(25) that is bounded in L∞(0, T ;L2(Ω)). There-
fore, the search for a control can be restricted to the set {u ∈ L∞(0, T ;L2(Ω)) :
‖u‖L∞(0,T ;L2(Ω)) ≤ R}, where R = ‖ū‖L∞(0,T ;L2(Ω)). Thanks to the existence
and regularity Theorem 2.1 of [16], all associated states are bounded in L∞(Q).
The right-hand side of the associated adjoint equation is ū− ud ∈ Lp(Q), since
we assumed ud ∈ Lp(Q). Therefore, the adjoint state p̄ is also a function of
L∞(Q). This property transfers to ū by the gradient equation ū = −p̄/%, hence
the existence of an optimal control in L∞(Q) is proved.

The following result is known for the convergence of the Lagrange-Newton-SQP
method for problems of the type (24)-(25) with additional box constraints

a ≤ u(x, t) ≤ b for a.a. (x, t) ∈ Q, (27)

where −∞ < a < b <∞:
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Theorem 4 (Convergence of the Lagrange-Newton method). Let (ū, p̄, z̄) be a
triplet that satisfies the optimality system for the optimal control problem (24)-
(25) with additional box constraints (27). Assume that this triplet satisfies the
second-order sufficient condition (26).

Then the Lagrange-Newton method converges locally and quadratic to (ū, p̄, z̄).
This means the following: There exist r > 0, C > 0 such that, if the initial it-
erate (u0, p0, z0) ∈ (Y ∩ L∞(Q))2 × L∞(Q) satisfies

‖(u0, p0, z0)− (ū, p̄, z̄)‖L∞(Q)3 ≤ r,

then the system (OSn) is uniquely solvable for all n ≥ 0. The iterates fulfill

‖(un, pn, zn)− (ū, p̄, z̄)‖L∞(Q)3 ≤ r, ∀n ≥ 1,

and

‖(un+1, pn+1, zn+1)− (ū, p̄, z̄)‖L∞(Q)3 ≤ C ‖(un, pn, zn)− (ū, p̄, z̄)‖2L∞(Q)3

for all n ≥ 0.

The proof is a bit delicate, because the L2(Q)-norm appears in the second-
order sufficient condition, while the differentiability of L is considered in L∞(Q).
This is the so-called two-norm discrepancy. For a proof with additional control
constraints a ≤ z ≤ b, we refer to [45]. For problems, where the two-norm-
discrepancy does not appear, a convergence analysis for the Newton method in
the unconstrained method is given in [17] and, in the context of optimal control,
in [25].

The Lagrange-Newton-SQP method differs from the Lagrange-Newton me-
thod by adding the box constraints (27) to the subproblems (QPn) and the
associated projection formula to the optimality system (QPn). In our imple-
mentation, we formally added box constraints with a = −106, b = 106, justified
by Lemma 4. These bounds became never active. Hence, the Lagrange-Newton-
SQP method was equivalent to the Lagrange-Newton method described in the
last subsection.

4.4 Numerical experiments

For the nonlinear first order necessary optimality system, when considering a
nonlinear reaction term in the state equation or in the presence of box con-
straints on the control, we apply a (semismooth) Newton method in the outer
iteration. Usually, we need about 2 − 8 iterations to reach a precision of 10−8

of the relative residual error. Inside each Newton iteration, we apply the same
algebraic multigrid preconditioned GMRES solver as used for the linear system.
However, the performance study and the development of robust and efficient
solvers are beyond the scope of this work; we will investigate them somewhere
else.
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4.4.1 Unconstrained control with explicitly known optimal solution
(Example 3)

Following the approach provided in [46], we construct an exact solution for the
following modified optimal control problem of a semilinear parabolic equation:

min J(u, z) :=
1

2

∫
Q

(u− ud)2 dx dt+
%

2

∫
Q

z2 dx dt

subject to

∂tu−∆xu+R(u) = z + eu in Q, u = 0 on Σ, u = 0 on Σ0,

where the function eu is defined such that a desired pair u, z is optimal. The
first order necessary optimality system for this semilinear model problem reads
as follows (see [46]): It is composed of the state equation

∂tu−∆xu+R(u) +
1

%
p = eu in Q, u = 0 on Σ, u = 0 on Σ0, (28)

and the adjoint equation

− ∂tp−∆xp+R′(u)p = u− ud in Q, p = 0 on Σ, p = 0 on ΣT . (29)

The desired solutions of the optimality system are given by

u(x, t) = sin(πx1) sin(πx2)
(
at2 + bt

)
,

p(x, t) = −% sin(πx1) sin(πx2)
(
2π2at2 + (2π2b+ 2a)t+ b

)
,

z(x, t) = sin(πx1) sin(πx2)
(
2π2at2 + (2π2b+ 2a)t+ b

)
,

R(u) = u(u− 0.25)(u+ 1),

where a = − 2π2+1
2π2+2 , b = 1, and % = 10−4. It is easy to see that the state obeys

homogeneous initial and boundary conditions, and the adjoint state satisfies
homogeneous terminal and boundary conditions; see the illustration in Fig. 4.
The functions eu and ud are computed by inserting the above solutions to the
system (28) and (29).

The estimated order of convergence is given in Tables 4-6. As we expect, we
observe optimal convergence rates in Y = L2(0, T ;H1

0 (Ω)). However, the con-
vergence rate is not that good as expected in L2(Q) for this particular example.
This requires further investigation. Moreover, we see almost second-order con-
vergence for the objective functional.

4.4.2 Box constrained control with explicitly known optimal solution
(Example 4)

In this example, we minimize

J(u, z) :=
1

2

∫
Q

(u− ud)2 dx dt+
%

2

∫
Q

z2 dx dt+

∫
Q

ez z dx dt
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Figure 4: Example 3, numerical solutions of u, p, and z, and R(u) for the
semilinear model problem without control constraint.

subject to

∂tu−∆xu+R(u) = z + eu in Q, u = 0 on Σ, u = 0 on Σ0,

and
a ≤ z(x, t) ≤ b for a.a. (x, t) ∈ Q.

For this optimal control problem, we compute the functions eu and ez such
that the desired solutions u, p and z satisfy the first order necessary optimality
conditions. This system consists of the state equation

∂tu−∆xu+R(u) = z + eu in Q, u = 0 on Σ, u = 0 on Σ0,

the adjoint equation

−∂tp−∆xp+R′(u)p = u− ud in Q, p = 0 on Σ, p = 0 on ΣT ,

and the gradient equation

z = P[a,b]

(
−1

%
(p+ ez)

)
in Q.
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Table 4: Example 3, estimated order of convergence (eoc) of uh, ph in Y for the
semilinear model problem without control constraint.

#Dofs h ‖u− uh‖Y eoc ‖p− ph‖Y eoc

250 2−2 2.344e− 1 − 8.136e− 4 −
1, 458 2−3 1.159e− 1 1.017 2.795e− 4 1.541
9, 826 2−4 5.690e− 2 1.026 1.193e− 4 1.228

71, 874 2−5 2.815e− 2 1.015 5.691e− 5 1.068
549, 250 2−6 1.400e− 2 1.008 2.801e− 5 1.023

2, 146, 689 2−7 6.982e− 3 1.003 1.394e− 5 1.007

Table 5: Example 3, estimated order of convergence of uh, ph in L2(Q) for the
semilinear model problem without control constraint.

#Dofs h ‖u− uh‖L2(Q) eoc ‖p− ph‖L2(Q) eoc

250 2−2 1.315e− 2 − 9.435e− 5 −
1, 458 2−3 3.692e− 3 1.833 2.104e− 5 2.165
9, 826 2−4 1.008e− 3 1.873 4.770e− 6 2.141

71, 874 2−5 2.621e− 4 1.943 1.213e− 6 1.976
549, 250 2−6 7.218e− 5 1.861 3.542e− 7 1.775

2, 146, 689 2−7 3.180e− 5 1.183 1.417e− 7 1.321

The projection formula is equivalent to the variational inequality∫
Q

(p+ %z + ez)(ẑ − z) dx dt ≥ 0 for all ẑ ∈ [a, b], (30)

for more details, see [46].
We now prescribe the solutions of the optimality system as follows:

u(x, t) = sin(πx1) sin(πx2)
(
ct2 + dt

)
,

p(x, t) = −% sin(πx1) sin(πx2)
(
2π2ct2 + (2π2d+ 2c)t+ d

)
,

z(x1, x2, t) =


−1 if 0 ≤ x2 ≤ −x1 + 1/2 and 0 ≤ x1 ≤ 1/2,

1 if − x1 + 3/2 ≤ x2 ≤ 1 and 1/2 ≤ x1 ≤ 1,

2x1 + 2x2 − 2 else ,

where c = − 2π2+1
2π2+2 and d = 1. As nonlinearity, we fix R(u) = u(u−0.25)(u+1).

For the constraints, we use the bounds a = −1 and b = 1, and we set % =
0.001 as regularization parameter. The constructed solutions u and p fulfill
the initial/terminal and boundary conditions for the state and adjoint; see the
numerical solutions in Fig. 5 for an illustration.

Inserting the exact solutions prescribed above in the primal and adjoint
equations, respectively, the unknown functions eu and ud are obtained. Along
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Table 6: Example 3, J(uh, zh) and |J(uh, zh)−J(u, z)| for the semilinear model
problem without control constraint, where J(u, z) = 1.98767e− 4.

#Dofs h J(uh, zh) |J(uh, zh)− J(u, z)| eoc

250 2−2 4.60861e− 4 2.6209e− 4 −
1, 458 2−3 2.37900e− 4 3.9133e− 5 2.744
9, 826 2−4 2.06470e− 4 7.7030e− 6 2.345

71, 874 2−5 2.00532e− 4 1.7650e− 6 2.126
549, 250 2−6 1.99206e− 4 4.3900e− 7 2.007

2, 146, 689 2−7 1.98887e− 4 1.2000e− 7 1.871

with the defined active and inactive sets

Aa := {(x, t) ∈ Q : −%−1(p+ ez) < a},
Ab := {(x, t) ∈ Q : −%−1(p+ ez) > b},
I := Q\{Aa ∪ Ab},

(31)

using the variational inequality (30), we can construct the remaining unknown
function ez as follows:

ez =


(p+ %a)− on Aa,
−(p+ %z) on I,
−(p+ %b)+ on Ab.

(32)

Now, starting from the variational inequality (30), using a piecewise constant
ansatz for the control, we arrive at the elementwise projection formula

z` = P[a,b]

(
− 1

%|τ`|

∫
τ`

(ph + ez) dx dt

)
, ∀τ` ∈ Th(Q). (33)

Inserting this formula in the discrete state equation, we obtain a coupled nonlin-
ear first order necessary optimality system for the state and adjoint variables.
This discrete nonlinear system is solved by the semismooth Newton method.
After having computed ph, in a final postprocessing step, we use the projection
formula (33) to compute the optimal control as a piecewise linear and continuous
function.

The estimated order of convergence in Y = L2(0, T ;H1
0 (Ω)) is displayed in

Table 7. We clearly observe an optimal convergence rate. For this example,
we do not have optimal convergence in L2(Q); see Table 8. However, we see a
second-order convergence rate for the objective functional; cf. Table 9.

4.4.3 Example with a turning wave (Example 5)

As final example, we consider the following optimal control problem:

minJ (u, z) :=
1

2

∫
Q

(u− ud)2 dx dt+
%

2

∫
Q

z2 dx dt
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Figure 5: Example 4, numerical solutions of u, p, and z, and R(u) for the
semilinear model problem with box constraint on control.

subject to the state equation

∂tu−∆xu+R(u) = z in Q, ∂nu = 0 on Σ, u = u0 on Σ0,

and
a ≤ z(x, t) ≤ b for a.a. (x, t) ∈ Q.

This simplified model problem is an adapted version of that one provided in [14],
here without L1-regularization. The first-order necessary optimality system for
this model problem reads as follows: In addition to the above state equation,
the adjoint equation is

−∂tp−∆xp+R′(u)p = u− ud in Q, ∂np = 0 on Σ, p = 0 on ΣT ,

and the gradient equation reads

z = P[a,b]

(
−1

%
p

)
in Q.

As for the turning wave example constructed in [14], we define the nonlinear
reaction term R(u) = u(u− 0.25)(u+ 1), the initial condition

u0 =

(
1 + exp

( 70
3 − 70x1√

2

))−1

+

(
1 + exp

(
70x1 − 140

3√
2

))−1

− 1 on Σ0
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Table 7: Example 4, estimated order of convergence (eoc) of uh, ph in Y for the
semilinear model problem with box constraints.

#Dofs h ‖u− uh‖Y eoc ‖p− ph‖Y eoc

250 2−2 2.121e− 1 − 5.272e− 3 −
1, 458 2−3 1.126e− 1 0.913 2.396e− 3 1.138
9, 826 2−4 5.653e− 2 0.995 1.142e− 3 1.069

71, 874 2−5 2.817e− 2 1.008 5.608e− 4 1.026
549, 250 2−6 1.401e− 2 1.005 2.790e− 4 1.007

2, 146, 689 2−7 7.017e− 3 0.997 1.407e− 4 0.988

Table 8: Example 4, estimated order of convergence (eoc) of uh, ph, zh in L2(Q)
for the semilinear model problem with box constraints (‖ · ‖ = ‖ · ‖L2(Q)).

#Dofs h ‖u− uh‖ eoc ‖p− ph‖ eoc ‖z − zh‖ eoc

250 2−2 2.133e− 2 − 3.811e− 4 − 3.072e− 1 −
1, 458 2−3 5.873e− 3 1.861 1.018e− 4 1.905 9.984e− 2 1.622
9, 826 2−4 1.566e− 3 1.907 2.489e− 5 2.032 3.251e− 2 1.619

71, 874 2−5 4.733e− 4 1.727 6.355e− 6 1.970 1.379e− 2 1.237
549, 250 2−6 2.224e− 4 1.089 3.731e− 6 0.768 7.435e− 3 0.891

2, 146, 689 2−7 1.741e− 4 0.353 3.793e− 6 −0.024 5.016e− 3 0.568

for the state, and the target

ud =

(
1.0 + exp

(
cos(g(t))

(
70
3 − 70x1

)
+ sin(g(t))

(
70
3 − 70x2

)
√

2

))−1

+

(
1.0 + exp

(
cos(g(t))

(
70x1 − 140

3

)
+ sin(g(t))

(
70x2 − 140

3

)
√

2

))−1

− 1

in Q, where g(t) = 2π
3 min

{
3
4 , t
}

. We should mention that the target defined in
[14] contained a typo; this is corrected here. The wave front turns 90 degrees
from time t = 0 to t = 0.75 and remains fixed after t = 0.75; see the target at
t = 0, 0.25, 0.5, and 0.75 illustrated in Fig. 6.

As parameters, we use % = 10−6, a = −10+6, and b = 10+6 in the uncon-
strained case, while a = −10+2 and b = 10+2 are set in the constrained case. We
then follow the approach of the previous section to solve the coupled nonlinear
first order optimality system by the semismooth Newton method. The numeri-
cal solutions for state, adjoint state, and control in the space-time domain are
visualized in Fig. 7.

In Fig. 8 and Fig. 9, we visualize the numerical solutions for the state and the
control at different times t = 0, 0.25, 0.5, 0.75, respectively. In this particular
turning wave example, we see almost no difference between the cases with or
without control constraints.
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Table 9: Example 4, J(uh, zh) and |J(uh, zh)−J(u, z)| for the semilinear model
problem with box constraint on control, where J(u, z) = 5.1743e− 4.

#Dofs h J(uh, zh) |J(uh, zh)− J(u, z)| eoc

250 2−2 1.8162e− 3 1.299e− 3 −
1, 458 2−3 8.1878e− 4 3.014e− 4 2.108
9, 826 2−4 5.8804e− 4 7.061e− 5 2.094

71, 874 2−5 5.3448e− 4 1.705e− 5 2.050
549, 250 2−6 5.2161e− 4 4.180e− 6 2.028

2, 146, 689 2−7 5.1846e− 4 1.030e− 6 2.021

Figure 6: Example 5, plots of the target at time t = 0, 0.25, 0.5, 0.75 for the
turning wave example.

For the coupled state and adjoint state system, we applied again an adaptive
method as it was used in [42] for the heat (state) equation. The adaptive meshes
in the space-time domain and at different time levels t = 0, 0.25, 0.5, 0.75 are
illustrated in Fig. 10. We clearly observe that our adaptive mesh refinements
follow the rotation of the turning wave fronts in both the unconstrained and
constrained cases. In the unconstrained problem, the mesh is visualized for the
25th refinement step, containing 3, 774, 637 grid points, i.e., 7, 549, 274 degrees
of freedom in total for the coupled first order necessary optimality system. In
the constrained setting, the mesh is displayed for the 28th refinement step,
containing 5, 100, 060 grid points, i.e., 10, 200, 120 degrees of freedom in total
for the coupled optimality system.

5 Conclusions

In this work, we have considered unstructured space-time finite element methods
for the optimal control of linear and semilinear parabolic equations, without
or with box constraints imposed on the control. We have shown stability of
the continuous and the discrete optimality system (with linear state equations
and without control constraints), and derived error estimates. Our numerical
results confirm the theorems and show optimal convergence rates of the space-
time finite element approximations. Further, our methods are applicable to
more complicated optimal control problems with semilinear state equations and
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Figure 7: Example 5, visualization of the numerical solutions for state, adjoint
state and control in the space-time domain: Without box constraints (a =
−1e + 6, b = 1e + 6, top), with box constraints (a = −1e + 2, b = 1e + 2,
bottom).

box constraints. This is also confirmed by our numerical experiments, using
the Lagrange-Newton method. We use adaptivity based on a residual error
indicator to reduce the complexity. The rigorous analysis of adaptive space-
time procedures is certainly a challenging task of future research work. The
linear system respectively the linearized systems of finite element equations are
solved by an algebraic multigrid preconditioned GMRES method. This GMRES
works fine in practice, but a rigorous convergence analysis is still missing. The
development of parallel solvers will certainly make this space-time approach an
efficient alternative to time-stepping methods which are sequential in time.
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