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Programm

Sonntag, 25.9.2005
15.00–16.30 Kaffee
16.30–16.35 Eröffnung
16.35–17.05 B. Carpentieri (Graz)

A matrix–free two–grid preconditioner for solving boundary
integral equations in electromagnetism

17.15–17.45 G. Of (Stuttgart)
Boundary Element Tearing and Interconnecting Methods
in Linear Elastostatics

18.30 Abendessen
Montag, 26.9.2005

9.00–9.30 M. L. Zitzmann (München)
Hierarchical Algorithms for PEEC based EMC Simulations

9.45–10.15 A. Buchau (Stuttgart)
FMM based solution of non–linear magnetostatic field problems

10.30–11.00 Kaffee
11.00–11.30 C. Pechstein (Linz)

Coupled FETI/BETI for nonlinear potential problems
11.45–12.15 K. Straube (Stuttgart)

Approximate hierarchical Cholesky decomposition of sparse matrices
arising from curl–curl equation

12.30 Mittag
15.00–15.30 Kaffee
15.30–16.00 J. Djokic (Leipzig)

Efficient Update of Hierarchical Matrices assembled by ACA and HCA
16.15–16.45 U. Kähler (Chemnitz)

H2 matrix based Wavelet Galerkin BEM
17.00–17.30 C. Fasel (Saarbrücken)

Numerical solution of nonlinear parabolic inequalities
with an application in ice sheet dynamics

18.30 Abendessen
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Dienstag, 27.9.2005
9.00–9.15 Z. Andjelic (Baden)

Introduction to the work at ABB
9.15–9.45 J. Smajic (Baden)

Dirichlet/Neumann Laplace solver for massive multimaterial conductors
using BEM with ACA

9.45–10.15 M. Conry (Baden)
Simulation of coupled electromagnetic–mechanical systems using an
accelerated symmetric boundary element formulation

10.30–11.00 Kaffee
11.00–11.30 O. Steinbach (Graz)

Alternative representations of volume integrals in
boundary element methods

11.45–12.15 T. Rueberg (Graz)
Coupled time–domain boundary element analysis

12.30 Mittag
13.30–18.00 Wanderung
18.30 Abendessen

Mittwoch, 28.9.2005
9.00–9.30 D. Prätorius (Wien)

Averaging Techniques for BEM
9.45–10.15 T. S. A. Ribeiro (Graz)

An adaptive cell generation for elastoplastic boundary element analysis
10.30–11.00 Kaffee
11.00–11.30 R. Grzibovskis (Saarbrücken)

Geometric surface evolution using clustering
11.45 Ende des Workshops
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FMM based solution of non–linear magnetostatic field problems

A. Buchau, W. Hafla, W. M. Rucker

Universität Stuttgart

The solution of non–linear magnetostatic field problems is discussed in this paper. A
boundary element method in combination with volume integral equations is applied.
The fully dense matrix of the system of linear equations is compressed with the
fast multipole method. In practice, the material values in adjacent computing
domains differ by multiple orders of magnitude. A difference field approach is used
to improve numerical stability and to reduce the influence of cancellation errors.
Several solvers for the non–linear problem are compared. Furthermore, practical
aspects of the method are discussed. The efficiency and accuracy is shown with
numerical examples. E.g. the magnetic field for the Magnetic Transmission X–ray
Project at BESSY II was investigated.
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A matrix–free two–grid preconditioner for solving boundary integral
equations in electromagnetism

B. Carpentieri

Universität Graz

In this talk we present a matrix–free iterative scheme based on the GMRES method
and combined with the fast multipole method for solving electromagnetic scattering
applications expressed in the popular EFIE formulation. The preconditioner is an
additive two–grid cycle built on top of a sparse approximate inverse that is used as
smoother. The grid transfer operators are defined in terms of spectral information of
the preconditioned matrix. We show experiments on a set of linear systems arising
from radar cross section calculation in industry to illustrate the potential of our
method for solving large scale problems in electromagnetism.
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Simulation of Coupled Electromagnetic–Mechanical Systems Using an
Accelareted Symmetric Boundary Element Formulation

Z. Andjelic1, M. Conry1, B. Cranganu–Cretu1, J. Ostrowski1, J. Smajic1,
O. Steinbach2

1ABB Switzerland Ltd., 2TU Graz

The simulation of coupled electromagnetic–mechanical systems is important in the
design of commercial power–systems. Electromagnetic loading induces eddy cur-
rents in conducting components, and the resulting Lorentz forces can damage of
destroy mechanical structures such as bus–bars and switches. Based on a symmet-
ric boundary element formulation, and using ACA [1], an accelerated BEM solver
for problems of linear elasticity has been implemented. Using body–force terms,
this has been linked with a boundary element electromagnetic solver allowing the
treatment of coupled electromagnetic–mechanical problems within a single BEM
framework.

References

[1] M. Bebendorf, S. Rjasanow: Adaptive Low–Rank Approximation of Collocation
Matrices. Computing 70 (2003) 1–24.
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Dirichlet/Neumann Laplace Solver for Massive Multimaterial
Conductors using BEM with ACA

Z. Andjelic1, M. Conry1, B. Cranganu–Cretu1, J. Ostrowski1, J. Smajic1,
M. Bebendorf2

1ABB Switzerland Ltd., 2Universität Leipzig

Complete integral equation based formulation for the computation of stationary
current distribution in multimaterial, multibody [1], massive conductors is proposed
and compared with other classical integral formulations. An attempt to generalize
the multimaterial approach to partially symmetric formulation is also provided.
The approach can treat pure Neumann problems without the need for regularization.
Discretization of the integral formulation is carried out via Galerkin technique. The
Adaptive Cross Approximation (ACA) technique is used for matrix compression,
as well as for preconditioning [2, 3]. Examples from the design/analysis process of
power transformers and switchgears are provided and FEM comparisons attest the
strenght of this method [1].

References

[1] J. Smajic, B. Cranganu–Cretu, J. Ostrowski, Z. Andjelic: Stationary Voltage
and Current Excited Complex System of Multimaterial Conductors with BEM.
Record of th 15th COMPUMAG Conference on the Computation of Electro-
magnetic Fields, June 2005, I–210,211.

[2] J. Ostrowski, Z. Andjelic, B.Cranganu–Cretu, J. Smajic: Fast BEM Solution of
Laplace Problems with H–Matrices and ACA. Record of th 15th COMPUMAG
Conference on the Computation of Electromagnetic Fields, June 2005, I–230,231.

[3] M. Bebendorf, S. Rjasanow: Adaptive Low–Rank Approximation of Collocation
Matrices. Computing 70 (2003) 1–24.
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Efficient Update of Hierarchical Matrices assembled by ACA and HCA

J. Djokic

Max–Planck–Institut für Mathematik in den Naturwissenschaften, Leipzig

H–matrices have been used for solving various kinds of problems which require large
matrices. The discretisation of an integral equation leads to a full matrix that can
be approximated by an H–matrix. The natural question that arises in the context of
adaptive grid refinement is: if the discretisation becomes locally finer, is it possible
to update an existing H–matrix instead of constructing a new one?
The first update algorithms have been developed in the case when the interpolation
scheme is used for assembling the low–rank blocks. The results we obtained have
proven the efficiency of the method, and therefore we have tried to update the
H–matrices in the case when the low–rank blocks are assembled by adaptive cross
approximation (ACA) or hybrid cross approximation (HCA). We shall also consider
the case when the refinement of the grid is not done locally. The numerical results
will demonstrate the efficiency of the update algorithm.
This is a joint work with Lars Grasedyck, Wolfgang Hackbusch and Sabine Le Borne.
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Numerical solution of nonlinear parabolic inequalities
with an application in ice sheet dynamics

C. Fasel

Universität des Saarlandes

Modelling the surface of an ice sheet [1,2] leads first of all to a partial differential
equation with free boundary which can be transformed into a parabolic nonlinear
variational inequality having the form

(∂tu, ϕ − u)L2(Ω) +
1

5
(u5|∂xu|

2u5, ∂x(ϕ − u))L2(Ω) ≥ (a, ϕ − u)L2(Ω)

∀ϕ ∈ V :=
{

φ ∈ H1(I; L2(Ω)) ∩ L2(I; H1
0 (Ω)) | φ ≥ 0

}

completed by the initial condition

u(0, x) = u0(x).

This inequality is going to be solved using a finite difference method for discreti-
sation in time, linearise it following the method of Kacanov and finally discretise
using linear finite elements in space. The obtained minimizing problem on a convex
set is solved by two different algorithms in order to examine their efficiency: the
projected method of Gauss–Seidel and a modified method of projected gradients.
Computation was based on the library DEAL [3].

References

[1] R. Calov, K. Hutter: Large scale motion and temperature distribution in land–
based ice–shields; the greenland ice–sheet in response to various climatic scenar-
ios. Archives of Mechanics 49 (1997) 919–962.

[2] A. C. Fowler: Modelling Ice Sheet Dynamics. Geophys. Astrophys. Fluid Dy-
namics 63.

[3] Differential Equations Analysis Library, available via http://www.lsx.

mathematik.uni-dortmund.de/user/lsx/suttmeier/deal.html oder
http://www.fem2m.de, 1995.
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Geometric surface evolution using clustering

R. Grzibovskis

Universität des Saarlandes

We present a method of tracking a geometric surface evolution. This method is
based on a hierarchical clustering procedure and allows to efficiently apply convolution-
thresholding schemes when the time step is small. This is important because the
evolving surface can have complicated shape and, therefore, one might need O(106)
triangles to describe it. We compare the efficiency of this method to the efficiency
of the procedure which is based on the Fourier transform. We also present some
numerical examples involving smooth surfaces as well as surfaces with singularities.
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H2 matrix based Wavelet Galerkin BEM

U. Kähler

TU Chemnitz

This talk is devoted to the fast solution of boundary integral equations on unstruc-
tured meshes by the Galerkin scheme. To avoid the quadratic costs of traditional
discretizations with their densely populated system matrices it is necessary to use
fast techniques such as hierarchical matrices, the multipole method or wavelet ma-
trix compression, which will be the topic of the talk.
On the given, possibly unstructured, mesh we construct a wavelet basis providing
vanishing moments with respect to the traces of polynomials in the space. With
this basis at hand, the system matrix in wavelet coordinates can be compressed to
O(N log N) relevant matrix coefficients, where N denotes the number of unknowns.
For the computation of the compressed system matrix with suboptimal complexity
we will present a new method based on the strong similarities of substructures of
the H2 matrices and the used wavelet basis.
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Boundary Element Tearing and Interconnecting Methods
in Linear Elastostatics

G. Of1, O. Steinbach2, W. L. Wendland1

1Universität Stuttgart, 2TU Graz

The Boundary Element Tearing and Interconnecting (BETI) methods have recently
been introduced in [1] as boundary element counterparts of the well-established
Finite Element Tearing and Interconnecting (FETI) methods. As domain decom-
position methods, the BETI methods are efficient parallel solvers for large scale
boundary element equations.
Here, the BETI method will be used for problems in linear elastostatics. An efficient
iterative solver is provided by a twofold saddle point formulation. Efficient precon-
ditioners are used for the global system and the local boundary integral operators.
Sparse approximations of the occurring boundary integral operators are realized by
the use of the Fast Multipole Method.
The treatment of floating subdomains, where the kernel of the local Steklov Poincare
operator has to be eliminated by a stabilization and a global projection, is more
difficult than in the case of the Laplacian. Therefore, a new all–floating formulation
is presented for the BETI method. This formulation unifies and simplifies the
treatment of the floating and non–floating subdomains. In the numerical examples,
this formulation provides a faster solution than the standard BETI formulation. The
treatment of jumping coefficients and the nearly incompressible linear elasticity is
of special interest.

References

[1] U. Langer, O. Steinbach, Boundary element tearing and interconnecting meth-
ods. Computing 71 (2003) 205-228.
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Coupled FETI/BETI for Nonlinear Potential Problems

C. Pechstein

Johannes Kepler Universität Linz

The Finite Element Tearing and Interconnecting (FETI) method has become a well–
established Domain Decomposition method allowing intense parallel computing.
Not long ago, its boundary element counterpart, the Boundary Element Tearing
and Interconnecting (BETI) method was introduced, as well as the coupling of
both methods, FETI and BETI.

We use coupled FETI/BETI methods to solve boundary value problems for nonlin-
ear potential problems of the form −∇·[ν(|∇u|)∇u] = f . One prominent application
is the nonlinear magnetostatic problem in 2D, originating from Maxwell’s equations.
There, due to the underlying physics, the computational domain splits into subdo-
mains where the coefficient ν is constant (suitable for BEM), and subdomains where
ν is nonlinear (treated with FEM).

Applying Newton’s method to the nonlinear variational formulation, each linearized
problem has the same structure as an originally linear potential problem, except for
the occurrence of matrix coefficients in the nonlinear domains. In order to get a
good starting value for Newton’s iteration, we use a grid hierachy. For the sake of
efficiency, the linear residuals of the inner iteration must be controlled, what can
be done using inexact local solvers.
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Averaging Techniques for BEM

D. Praetorius

TU Wien

Averaging techniques for finite element error control, occasionally called ZZ esti-

mators for the gradient recovery, enjoy a high popularity in engineering because of
their striking simplicity and universality: One does not even require a PDE to ap-
ply the non-expensive post-processing routines. Recently averaging techniques have
been mathematically proved to be reliable and efficient for various applications of
the finite element method.
In our talk we establish a class of averaging error estimators for boundary integral
methods. Symm’s integral equation of the first kind with a non-local single-layer
integral operator serves as a model equation studied both theoretically and nu-
merically. We introduce new error estimators which are proven to be reliable and
efficient up to terms of higher order. The higher-order terms depend on the regu-
larity of the exact solution. Numerical experiments illustrate the theoretical results
and show that the [normally unknown] error is sharply estimated by the proposed
estimators, i.e. error and estimators almost coincide.
The talk is based on recent joint work with C. Carstensen (HU Berlin) and S.
Funken (Brunel University).

References

[1] C. Carstensen, D. Praetorius: Averaging Techniques for the Effective Numerical
Solution of Symm’s Integral Equation of the First Kind. SIAM J.Sci.Comp.,
accepted for publication, 2005.

[2] C. Carstensen, D. Praetorius: Averaging Techniques for the A Posteriori BEM
Error Control for a Hypersingular Integral Equation. Submitted to SIAM
J.Sci.Comp., 2005.

[3] C. Carstensen, D. Praetorius: A Unified Theory on Averaging Techniques for
the Effective Numerical Solution of Differential and Integral Equations. Work in
progress (2005).

[4] S. A. Funken, D. Praetorius: Averaging on Large Patches for the Hypersingular
Integral Equation in 3D. Work in progress (2005).
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An adaptive cell generation for elastoplastic boundary element analysis

T. S. A. Ribeiro, C. Dünser, G. Beer

TU Graz

The boundary element method (BEM) has been shown to be an alternative to the
domain methods such as the finite element method (FEM) in the analysis of many
physical problems. For some problems, especially the ones that contain singularities
or where an infinite domain is analyzed, there is a significant gain in accuracy when
using the BEM instead of the domain methods. Besides, the reduction of input data
for the BEM in comparison to FEM, for instance, is very significant, especially for
infinite domains. However, when dealing with plasticity analysis, not only boundary
integrals but also domain integrals have to be computed. The commonly used
approach to compute these integrals is to adopt internal cells. The drawback here
is the requirement of domain discretization. Even though the discretization can be
optimized, in a sense that the cells can be located only where plasticity will occur,
the amount of input data is still larger than for a boundary–only discretization and
the computational cost can be higher than necessary depending on the definition of
the cells. In the current work we intend to avoid the input of the internal cells as well
as the unnecessary domain evaluations by developing a procedure to automatically
generate the domain discretization of the plastic zones during the analysis. The
user does not need to know a priori where the plastic zone will occur in order to
discretize the domain in an optimized way. The discretization will be progressively
generated only on those zones where plasticity occurs, leading to a gain in efficiency,
since unnecessary domain computations can be avoided. The new method has been
tested on examples and the accuracy of the results is in agreement with the solution
from a finite element calculation and from a calculation with the boundary element
method using predefined cells.

18



Coupled Time–Domain Boundary Element Analysis

T. Rüberg, M. Schanz

TU Graz

The Time–Domain Boundary Element Method has found to be well suited for mod-
eling wave propagation phenomena in large or unbounded media. Nevertheless,
material discontinuities or local non-linear effects are beyond the scope of classical
BEM and require special techniques. Here, we propose a (possibly hybrid) Domain
Decomposition Method in order to circumvent these limitations and to obtain an
efficient solution procedure at the same time.
By means of local Dirichlet–to–Neumann maps and a weak statement of the inter-
face conditions one obtains a condensed abstract formulation describing the global
problem in a variational principle without specification of the descritization method
(e.g., BEM or FEM).
Whereas this methodology has been fully established for elliptic partial differential
equations, we aim at transferring it to hyperbolic initial boundary value problems.
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Alternative representations of volume integrals
in boundary element methods

O. Steinbach

TU Graz

General volume or Newton potentials can be transformed to surface potentials when
a particular solution of the associated inhomogeneous partial differential equation
is known. In particular, the associated Cauchy data can be determined by applying
a multilevel finite element method.
In special cases, where the volume density function itself is a solution of a certain
partial differential equation, the transformation to surface potentials can be done
by using integration by parts. Then, higher order derivatives are needed.
In this talk we will discuss several theoretical and practical aspects needed in this
approach.
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Approximate hierarchical Cholesky decomposition of sparse matrices
arising from curl–curl–equation

I. Ibragimov1, S. Rjasanow1, K. Straube2

1Universität des Saarlandes, 2Robert Bosch GmbH Stuttgart

Three–dimensional problems in electromagnetic field calculation can be solved with
the coupling of boundary and finite element method (BEM–FEM–coupling). Fine
discretisation of complex problems yields large systems of equations. The BEM
part can be solved with asymptotically optimal complexity by using adaptive cross
approximation (ACA). In larger problems the main cost is caused by the FEM part.
Hence, we will consider the efficient solution of large sparse linear systems with a
symmetric positive definite system matrix.
For computing the exact Cholesky decomposition, reordering methods essentially
affect the number of non–zeros in the factorisation (fill in). The so–called hier-
archical interface clustering is suitable to construct such a reordering. For higher
dimensions, preconditioned iterative methods are used for solving the systems. In
order to construct a preconditioner, we will apply the hierarchical interface clus-
tering to H–matrix techniques and investigate the computation of an approximate
Cholesky decomposition. Further, we will present an approach which is also based
on low–rank approximation but computes the decomposition non–recursively. This
algorithm has almost linear complexity.
The construction of these hierarchical preconditioners is evaluated by means of 3D–
magnetostatic problems. Its performance is compared to an incomplete factorisation
algorithm, so that conclusions about the efficiency of hierarchical approaches can
be given.
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Hierarchical Algorithms for PEEC based EMC Simulations

M. L. Zitzmann

BMW Forschungszentrum München

High system integration densities and an increase in the operating frequencies of
modern electronic systems lead to the fact that electromagnetic (EM) field based
problems caused by interconnection and package structures have to be accounted
for in EM modeling. The partial element equivalent circuit (PEEC) method which
was developed at IBM by Dr. A. E. Ruehli in 1974 is an integral equation based
approach for time and frequency domain and has proven to be very suited for
combined EM field and circuit problems. PEEC models can efficiently be simulated
by conventional circuit solvers such as SPICE (simulation program for integrated
circuit emphasis) based on the modified nodal analysis (MNA) approach.
For accurate simulation results an adequate discretization of the conducting object
leads to very large and dense PEEC system matrices. A sparsification by modern
techniques enables the application of iterative solution methods. Even so the sim-
ulation of electrical systems with practical relevance will be limited by tremendous
memory and time requirements.
The aim is to efficiently apply hierarchical techniques like H–Matrices or the fast
multipole method to reach linear complexity in time and memory requirements.
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