
Technische Universit ät Graz
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Program

Friday, 29.9.2006
15.00–16.30 Coffee
16.30–16.35 Opening
16.35–17.20 H. Harbrecht (Kiel)

Sparse second moment analysis for potentials on stochastic domains
17.30–18.15 C. Pechstein (Linz)

Coupled FETI/BETI solvers for nonlinear potential problems
in unbounded domains

18.30 Dinner
Saturday, 30.9.2006

9.00–9.45 D. Brunner (Stuttgart)
Application of the fast multipole boundary element method to the
analysis of sound radiation of an engine

10.00–10.45 E. Ostermann (Hannover)
Sound radiation of tyres

10.45–11.30 Coffee
11.30–12.15 C. Fasel (Saarbrücken)

Nonlocal electrostatics
12.30 Lunch
15.00–15.30 Coffee
15.30–16.15 J. Djokic (Leipzig)

New developments of the H–matrix technique for BEM and FEM
16.15–17.00 M. Kuhn (Jena)

Simulation of optical systems based on domain decomposition ideas
17.00–18.30 Open Problem Discussion
18.30 Dinner
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Sunday, 1.10.2006
9.00–9.45 W. Weber (Erlangen)

The combination of fast BEM techniques for efficient
3D crack growth analysis

10.00–10.45 A. Pereira (Graz)
A dynamic multi–domain boundary element approach to model
elastic, viscoelastic and poroelastic rock media

10.45–11.30 Coffee
11.30–12.15 R. Grzibovski (Saarbrücken)

An interface relaxation coupling of FEM and ACA accelerated
BEM for incremental metal forming

12.30 Lunch
13.30–18.00 Hiking tour
18.30 Dinner

Monday, 2.10.2006
9.00–9.45 D. Pusch (Linz)

Sparse approximations on polygonal meshes based on
boundary element domain decomposition techniques

9.45–10.30 U. Kähler (Leipzig)
Wavelet radiosity

10.30–11.00 Coffee
11.00–11.45 A. Buchau (Stuttgart)

Post–processing and visualization in combination
with integral equation methods

11.45 Closing
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Application of the Fast Multipole Boundary Element Method to the
Analysis of Sound Radiation of an Engine

D. Brunner, M. Junge, Matthias Fischer

Universität Stuttgart

The reduction of noise level is a major demand on products in the automotive
industry. Numerical simulations of acoustic behavior help to optimize the design of
the structure in an early development stage. In this work the sound radiation of a
vibrating engine is simulated using a Galerkin boundary element method based on
the Burton-Miller approach. The boundary element operators are herby evaluated
by means of the fast multipole method, enabling a fast and efficient computation of
large-scale problems up to more than 100,000 degrees of freedom. Velocity boundary
conditions are applied to the surface of the engine. The resulting Neumann-problem
is solved by the generalized minimal residual method (GMRES). It is accelareted
by an approximate inverse preconditioner (AIP). The results demonstrate, that the
proposed method is capable of simulating typical industrial applications up to the
mid frequency range.
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Post–processing and visualization in combination with

integral equation methods

A. Buchau, W. Hafla, W. M. Rucker

Universität Stuttgart

Integral equation methods are very advantageous for the efficient solution of even
non–linear electromagnetic field problems. The surrounding space is implicitly taken
into account and only surfaces of linear and volumes of non–linear matter must be
modeled and discretized. Efficient matrix compression techniques like the fast mul-
tipole method significantly reduce memory requirements and computational costs of
the fully dense matrix of the appropriate linear system of equations. Nevertheless,
users of a field simulation tool are not only interested in the solution of a linear
system of equations but they are mainly interested in a powerful post–processing
and visualization of e.g. field strengths. On the other hand, a surface mesh suffices
for a solution of a problem with the BEM, but on the other hand users are mostly
interested in fields inside matter or in the surrounding air. Hence, in this paper it
is shown and discussed, how a post–processing in combination with a BEM can be
efficiently implemented. A second mesh is used to define field points, e.g. a volume
mesh to compute the field for a visualization of flux tubes. Fortunately, this second
mesh is independent of the mesh of the BEM. Often, the number of field points is
very large along with high computational costs. But matrix compression techniques
like the fast multipole method can be applied to the post–processing, too. Then,
the field even in a huge number of evaluation points is computed very fast. Post–
processing tools of finite element methods can be used for a visualization of the
field. Here, visualization with the program Covise, which is developed at the high
performance computing center in Stuttgart, is shown. Furthermore, a very simple
file format is vrml, which is a standardized format for virtual reality. Hence, the
results can be viewed in true 3D. It is shown that it is only a small step from a
robust and fast BEM to an impressive post–processing, which is very important
especially in industrial applications.
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New Developments of the H-Matrix Technique for BEM and FEM

J. Djokić

Max–Planck–Institute for Mathematics in the Sciences, Leipzig

The hierarchical matrix technique (or briefly H-matrix technique) has been deve-
loped during the past ten years. The main property of the hierarchical matrices is
their data-sparse structure (can be described by few data) and the main advan-
tage is that H-matrix arithmetics can be performed in almost optimal complexity
O(n log n) for n × n systems. The H-matrix technique has been efficiently applied
in many research fields (FEM, BEM, control theory).

In this overview talk we will present the work on the H-matrix techniques for FEM
and BEM of the Scientific Computing Group (MPI MIS). We will briefly mention
the basics of the H-matrix theory and present the key points of the recently finished
and current research.
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Nonlocal Electrostatics

C. Fasel1, S. Rjasanow1, O. Steinbach2

1Universität des Saarlandes, Saarbrücken, 2TU Graz

In recent years, a lively interest has been focused on the determination of electro-
static potentials of biomolecules. The electrostatic field of a virus, for example, is
one criterion to determine whether another biomolecule can react with the first one
or not.
The goal is to model the electric field of a molecule in water. The main problem is
that water is a ponderable media. The water molecules depend on each other via
hydrogenbonds, which they do not want to loose. On the other side, each water
molecule wants to arrange itself in a way that offers energetic advantages.
The reaction of water is nonlocal and can be described using an integral equation
with a kernel containing the fundamental solution of the Yukawa-Operator Lκ =
∆ − κ2.
The whole model leads to an elliptic system of eight partial differential equations,
four in the inside and four in the outside of the molecule, which couple via eight
interface conditions. The model is completed by two radiation conditions.
We present an analytical solution for the radial symmetric case and a fundamental
solution for the operator on the outside. The analytical solution is compared with
the analytical solutions of some other models.
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An interface relaxation coupling of FEM and ACA accelerated BEM

for incremental metal forming

R. Grzibovski

Universität des Saarlandes, Saarbrücken

Coupling of Finite Element Method (FEM) and Boundary Element Method (BEM)
has proven to be useful in modeling technological precesses. During some incremen-
tal metal forming procedures only a small portion of the workpiece undergoes plastic
deformations, while stress values in the rest of the material are below the propor-
tional limit. This observation suggests applying FEM to the part of the workpiece
where plastic deformations occur and compute deformations of the remaining part
using BEM. We use commercial solvers to handle the FEM part of the domain and
our own ACA accelerated Galerkin BEM solver to compute the elastic region. That
is why the Interface Relaxation Coupling method is chosen for the procedure. It al-
lows to perform FEM and BEM computations independently and exchange the data
on the interface after each coupling step. We present examples a Dirichlet-Neumann
coupling procedure for a 3D test example. We also show how the coupling iteration
process can be accelerated by using Aitken’s method or by linearisation.

11



Sparse Second Moment Analysis for Potentials on Stochastic Domains

H. Harbrecht1, R. Schneider1, C. Schwab2

1Christian–Albrechts–Universität zu Kiel, 2ETH Zürich

This talk is concerned with the numerical solution of Dirichlet problems in domains
with random boundary perturbations. Assuming normal perturbations with small
amplitude and known mean field and two-point correlation function, we derive,
using a second order shape calculus, deterministic equations for the mean field and
the two-point correlation function of the random solution for the Dirichlet problem
in the stochastic domain.
Using a variational boundary integral equation formulation on the mean boundary
and a wavelet discretization, we present and analyze an algorithm to approximate
the random solution’s two-point correlation function in essentially O(N) work and
memory, where N denotes the number of unknowns required for consistent discreti-
zation of the boundary of the domain. Here “essentially” means up to powers of
log N .
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Wavelet Radiosity

U. Kähler

Max–Planck–Institute for Mathematics in the Sciences, Leipzig

The present talk will consider the fast solution of boundary integral equations on
unstructured meshes by the Galerkin scheme. It is known that the system matrix
of the scheme in a wavelet basis which provides vanishing moments with respect
to traces of polynomials in the space can be compressed to O(N log N) relevant
matrix entries, where N denotes the number of unknowns.
Nevertheless, up to now, to solve a special boundary integral equation, namely the
radiosity equation, was a difficult task. For convex geometries its kernel behaves
similar to the kernel of the double layer operator. However, the presence of the
visibility function in the kernel provides discontinuities for a non convex geometry,
which cause trouble for the most of fast methods.
In the talk we present a Wavelet Galerkin method which is able to produce for the
radiosity equation on a reasonable geometry a system matrix with O(N log2 N)
relevant matrix coefficients. For that, a combination of wavelet and H2-techniques
is presented as well as the necessary compression. Numerical experiments conclude
the talk and confirm the theoretical results.
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Simulation of Optical Systems Based on Domain Decomposition Ideas

M. Kuhn1, F. Wyrowski2

1LightTrans GmbH, Jena, 2Friedrich Schiller Universität Jena

The usage of laser and LED devices in production processes as well as in consu-
mer products has been increased throughout the last years. Often it is necessary
to transform the initial light fields into user-defined distributions. For example, dif-
fusers can be designed such that a Gaussian laser beam can be transformed into
arbitrary shapes. The design of such elements requires powerful simulation methods
and optimization strategies which are based on an electromagnetic representation
of light.
It turns out that even state-of-the-art numerical methods cannot solve such pro-
blems at once using a rigorous electromagnetic field model based on Maxwell’s
equations. In this talk, we present simulation techniques which are well suited for
the simulation of optical systems. These methods are based on Domain Decompo-
sition ideas using further physical properties of the problem which is to be solved.
So called ”propagation operator” are chosen for each domain meeting two require-
ments: fast simulation and high modeling accuracy. It will be obvious, that also the
Boundary Element Methods could be applied as an alternative to existing operators.
Primarily, this talk will raise questions related to the application of Boundary Ele-
ment Methods and Domain Decomposition Methods for the solution of advanced
optical engineering problems. Some results using the optical engineering software
”VirtualLab(TM)” (www.lighttrans.com) are presented.
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Sound radiation of tyres

M. Maischak, E. Ostermann, E. P. Stephan

Leibniz Universität Hannover

In cooperation with Continental AG we currently model the sound radiation of tyres
in three dimensions. So far we set up a model using the transient wave equation
in connection with the Boundary Element Method. The corresponding retarded
potentials lead maturally to sparse matrices in contrast to to the dense matrices
usually associated with the BEM., but in each time step the matrix has to be
stored., creating a history of matrices. The sparsity of these matrices is a result of
the intersection of acoustic cones of an element with the boundary domain, such
that the actual number of interacting elements is rather small. Unfortunately, the
determination of this set is the basic difficulty within this method. We designed a
rough approximation algorithm and performed first numerical experiments.
In another approach, we adopt the modelling of given boundary data by a random
field. The idea is to combine this method with the above mentioned retarded poten-
tials. In order to test the so called stochastic Galerkin method, we use a Dirichlet
problem in 2D with BEM in space.
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Coupled FETI/BETI solvers for nonlinear potential problems in
unbounded domains

U. Langer1,2, C. Pechstein1

1Johannes Kepler Universität Linz, 2RICAM, Linz

Domain decomposition (DD) methods like the rather popular finite element tea-
ring and interconnecting (FETI) methods, dual-primal FETI (FETI–DP) methods
and balanced domain decomposition by constraints (BDDC) techniques offer mas-
sively parallelizable preconditioners for boundary value problems of the standard
partial differential equations like the Poisson problem or linear elasticity. The BETI
method, boundary element counterpart of the FETI method can be coupled into
this framework, resulting in fast solvers which benefit from the advantages of both
techniques, FEM and BEM.
The condition number of the preconditioned system can be bounded by
C(1 + log(H/h))2, where the constant C is independent of the mesh size h, the
average subdomain parameter H and jumps in the coefficients across subdomain
interfaces.
For the application of FETI/BETI methods to magnetostatic problems, two exten-
sions are of major interest: First, one wishes to consider the equations in the entire
space R

3, together with a radiation condition. Secondly, the modelling of nonli-
nearities is of upmost importance. When applying the FETI/BETI solver to the
linearized Newton–type problems, the coefficient field on a subdomain may involve
high variation.
We suggest a preconditioner that addresses such variation much more than a straight
foreward technique would do. This can be well observed in the numerical examples.
Additionally, we give a short convergence analysis for the two–dimensional case,
when the exterior region is included as a subdomain into the domain decomposition
framework.
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A dynamic multi–domain boundary element approach to model

elastic, viscoelastic and poroelastic rock media

A. Pereira, U. Eberwien, W. Moser, G. Beer

Technische Universität Graz

In many research fields in rock mechanics engineering, such as wave propagation
problems, the correct representation of infinite or semi-infinite domains is of gre-
at importance. The Boundary Element Method (BEM) is well-suited for this task
since it implicitly fulfils the radiation condition. Moreover, viscoelastic and poro-
elastic constitutive equations should be used for a better description of the rock
properties. However, to model viscoelastic and poroelastic capabilities there are on-
ly fundamental solutions available in Laplace domain BEM, and no one in time
domain. In addition, the interaction between multiple domains (commonly appea-
ring in the rock mass) must not be neglected. In order to satisfy the equilibrium
and compatibility at the interface of the domains, the interface forces due to each
domain contribution are derived from the Duhamel integral equation. This equation
is based on the convolution integral of any form of dynamic loading with respect to
the unit-impulse response matrix due to a unit pure impulse of this loading. To al-
low for a numerical evaluation, these Duhamel integrals are approximated by means
of the Convolution Quadrature Method. This technique approximates convolution
integrals by a quadrature rule, whose weights can be determined exclusively by the
Laplace transformed function and a linear multi-step method. In the case of the
current integrals, the convolution weights are calculated from the unit-impulse re-
sponse matrices. The latter are obtained using the Laplace domain BEM, applying
unit impulses on the boundary and evaluating their responses at the interfaces. In
this way, a boundary element formulation for domain decomposition problems in
time domain using all the advantages of the Laplace domain formulation is finally
achieved allowing to model elastic, viscoelastic and poroelastic media. In order to
validate the accuracy and stability of the proposed technique, some problems are
solved and compared to results from the literature.
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Sparse Approximations on Polygonal Meshes Based on

Boundary Element Domain Decomposition Techniques

U. Langer1,2, D. Pusch1

1Johannes Kepler Universität Linz, 2RICAM, Linz

We present new boundary element discretizations for diffusion-type equations on
polyhedral meshes. Based on boundary element domain decomposition techniques
we obtain an approximation which leads to large-scale sparse linear systems.
In our numerical experiments we are applying the conjugate gradient method and
it turned out that using algebraic multigrid preconditioners yield an almost optimal
solver.
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The combination of fast BEM techniques for efficient

3D crack growth analysis

W. Weber, K. Kolk, G. Kuhn

Universität Erlangen–Nürnberg

The simulation of crack propagation denotes a challenging task for industrial app-
lications. To perform the simulation as effectively as possible the boundary element
method (BEM) in terms of the 3D Dual BEM is utilized. The evaluation of the boun-
dary integral equations is performed in the framework of a collocation procedure.
The solution of the resulting linear system of equations is the most time consu-
ming factor. To reduce the numerical complexity different fast techniques provide a
significant speed–up.
Due to the nonlinearity of crack growth an incremental procedure has to be applied.
In each increment a stress analysis is needed. Based on the accurate stress field the
stress intensity factors (SIFs) are calculated by an optimized local extrapolation
method. Afterwards, the new crack front is determined by a reliable 3D crack growth
criterion based on experimental observations. Finally, the numerical model has to
be updated for the next increment.
Usually, a crack growth simulation may slightly exceed the number of 100 incre-
ments. This leads to an increasing number of degrees of freedom (dof) during the
crack propagation due to the enlargement of the crack surfaces. As a result the
memory requirements are also increasing. As long as the system matrix fits into the
available random access memory (RAM) a fast iterative solver is applied. Otherwise,
a slower Gaussian elimination has to be chosen. To handle large practical examples
efficiently fast BEM techniques are utilized.
At first the classical substructure technique is used to obtain a block wise band
structured system matrix. Due to wide parts of zero entries in the matrix the me-
mory requirements as well as the numerical effort of the matrix vector product
(MVP) in the framework of the iterative solver is reduced. Furthermore, by the in-
troducing of the discontinuities of displacements and tractions on the crack surfaces
one can substitude one crack surface with respect to the integration. If any three of
the six discontinuities are unknown, the system of linear equations can be reduced
by the unknowns of one crack surface. Finally, the adaptive cross approximation
(ACA) is applied to each substructure. This leads to significantly reduced memory
requirements and a fast solution of the corresponding system of linear equations.
The efficiency of the combined methods is shown on both a standard fracture me-
chanics specimen and a complex industrial example.
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