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Stable boundary element domain decomposition

methods for the Helmholtz equation

O. Steinbach, M. Windisch

Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, 8010 Graz, Austria
{o.steinbach,markus.windisch}@tugraz.at

Abstract

In this paper we present a stable boundary element domain decomposition method
to solve boundary value problems of the Helmholtz equation via a tearing and inter-
connecting approach. A possible non–uniqueness of the solution of local boundary
value problems due to the appearance of local eigensolutions is resolved by using
modified interface conditions of Robin type, which results in a Galerkin boundary el-
ement discretization which is robust for all local wave numbers. Numerical examples
confirm the stability of the proposed approach.

1 Introduction

The time–harmonic modeling of acoustic waves in a bounded Lipschitz domain Ω ⊂ R
3

results in the complex valued boundary value problem

∆u(x) + [κ(x)]2u(x) = 0 for x ∈ Ω,
∂

∂nx
u(x) = g(x) for Γ = ∂Ω, (1.1)

where κ ∈ R+ is the wave number, and nx is the exterior normal vector which is defined
for almost all x ∈ Γ. For simplicity we only consider Neumann boundary conditions in this
paper, but Dirichlet or boundary conditions of mixed type can be treated in a similar way.
We assume that the boundary value problem (1.1) admits a unique solution, i.e., κ2 is not
an eigenvalue of the associated Neumann eigenvalue problem of the Laplace operator.
The aim of this paper is to formulate and to analyze boundary element domain decompo-
sition methods for an efficient and parallel solution of the boundary value problem (1.1).
For this we consider a non–overlapping domain decomposition

Ω =

p⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Γi = ∂Ωi, (1.2)
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where the subdomains Ωi are assumed to be Lipschitz and simply connected. The local
interface Γij between two neighbored subdomains Ωi and Ωj , and the global interface ΓI

are given by

Γij = Ωi ∩ Ωj, ΓI =
⋃

i,j

Γij .

In addition, ΓS := ΓI ∪ Γ defines the skeleton of the domain decomposition (1.2). Note
that in the case of composite materials, see, e.g., [1, 21], we may also consider piecewise
constant wave numbers, i.e.

κ(x) = κi for x ∈ Ωi, i = 1, . . . , p. (1.3)

Moreover, we may also include an exterior subdomain Ω0 := R
3\Ω when modeling also

the surrounding area. Instead of the global boundary value problem (1.1) we now consider
local boundary value problems

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi,

∂

∂ni
ui(x) = g(x) for x ∈ Γi ∩ Γ, (1.4)

together with the transmission or interface conditions

ui(x) = uj(x),
∂

∂ni
ui(x) +

∂

∂nj
uj(x) = 0 for x ∈ Γij . (1.5)

Standard domain decomposition methods, see, e.g., [16, 18, 20], are based on the use of
local Dirichlet to Neumann maps

ti(x) :=
∂

∂ni
ui(x) = (Sκi

ũi)(x) for x ∈ Γi, (1.6)

where ui is the solution of the local Dirichlet boundary value problem

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi, ui(x) = ũi(x) for x ∈ Γi. (1.7)

While in the case of the Laplace equation the solution of a local Dirichlet boundary value
problem and therefore the Dirichlet to Neumann map (1.6) is well defined, this is not
always the case for the local Helmholtz equation (1.7). In particular, when λ = κ2

i is an
eigenvalue of the Dirichlet eigenvalue problem

−∆ui(x) = λui(x) for x ∈ Ωi, ui(x) = 0 for x ∈ Γi, (1.8)

the local Dirichlet to Neumann map (1.6), i.e. the local Steklev–Poincaré operator Sκi
is

not well defined. Note that the problem of non–uniqueness of local Dirichlet boundary
value problems can be avoided just by using sufficiently small subdomains Ωi to ensure
κ2

i < λmin(Ωi). But such an approach is not very practicable in applications.
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The boundary element discretization of the local Dirichlet to Neumann maps (1.6) leads
to a system of linear algebraic equations to be solved in parallel. For an efficient itera-
tive solution we will apply tearing and interconnecting methods [6, 11] which require the
solution of local Neumann boundary value problems

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi,

∂

∂ni
ui(x) = t̃i(x) for x ∈ Γi . (1.9)

Note that the local Neumann boundary value problem (1.9) is not uniquely solvable when
µ = κ2

i is an eigenvalue of the Neumann eigenvalue problem

−∆ui(x) = µui(x) for x ∈ Ωi,
∂

∂ni

ui(x) = 0 for x ∈ Γi . (1.10)

Hence, instead of the Neumann transmission condition in (1.5) we will consider interface
conditions of Robin type which allow a unique solution of the related subproblems [5].
Moreover, the use of the symmetric boundary integral formulation to include Robin type
interface conditions will also resolve the non–unique definition of the local Dirichlet to
Neumann maps in the case when the local wave number κ2

i is an eigenvalue of the Dirichlet
eigenvalue problem (1.8).
The finite element tearing and interconnecting (FETI) method was introduced in [6] as a
dual version of classical iterative substructuring methods. FETI methods are well estab-
lished as powerful and robust parallel solvers for large–scale finite element equations in
different fields of applications, see, e.g., [7, 15]. For a rigorous theoretical analysis, see, for
example, [2, 9, 13, 20]. In particular, for second–order self–adjoint elliptic problems such
as the potential equation or the linear elasticity problem, the FETI approach is based on
an equivalent minimization problem with constraints, which is reformulated by using dis-
crete Lagrange multipliers to enforce the continuity of the primal unknowns. The resulting
FETI algorithm then requires the solution of local Dirichlet and Neumann boundary value
problems which can be done in parallel. For floating subdomains, appropriate subspace
methods can be used for the solution of the local Neumann problem, when the kernel,
e.g. the rigid body motions in elasticity, is known. Recently, the boundary element tearing
and interconnecting (BETI) methods [11] have been introduced, for an inexact data–sparse
BETI algorithm, see [10]. In particular in electromagnetic and acoustic scattering problems
a boundary element approach has some advantages over a finite element approach in the
treatment of unbounded regions, or when considering composites with piecewise constant
material parameters.
In this paper we aim to formulate and to analyze stable boundary element domain de-
composition methods for an efficient and parallel solution of an interior boundary value
problem of the Helmholtz equation where the related bilinear form is not elliptic anymore.
Although we cannot consider an equivalent minimization problem to derive the dual formu-
lation, the latter can be deduced by using algebraic arguments only. But due to the possible
appearance of local eigensolutions of related Dirichlet or Neumann eigenvalue problems of
the Laplace operator, the local Dirichlet or Neumann boundary value problems may not
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be solvable, i.e., the local Steklov–Poincaré operator may not be well defined, or it is not
invertible. In [5], a FETI approach was considered to solve Helmholtz problems where
the Neumann transmission conditions were replaced by interface conditions of Robin type
to ensure a unique elimination of the primal unknowns. Indeed, by using modified Robin
type interface conditions it is possible to derive a boundary element domain decomposition
method which is stable for all local wave numbers.
This paper is organized as follows: In Sect. 2 we discuss the solution of local Dirichlet and
Robin type boundary value problems by using boundary integral equations. This leads to a
boundary integral representation of local Steklov–Poincaré operators which are valid for all
wave numbers. In Sect. 3 we formulate related domain decomposition methods and analyze
their stable discretization by using Galerkin boundary element methods. Numerical results
are given in Sect. 4 to demonstrate the stability of the proposed approach.

2 Dirichlet and Robin type boundary value problems

Within this section we consider boundary value problems of the Helmholtz equation with
respect to some bounded domain Ω ⊂ R

3 with Lipschitz boundary Γ = ∂Ω. Later we will
apply these results to the subdomains Ωi as introduced in the domain decomposition (1.2).

2.1 Boundary integral operators

Any solution of the Helmholtz equation

∆u(x) + κ2u(x) = 0 for x ∈ Ω ⊂ R
3

can be described by using the representation formula, see, e.g., [8, 12, 17, 19],

u(x) =

∫

Γ

U∗
κ(x, y)t(y)dsy −

∫

Γ

∂

∂ny
U∗

κ(x, y)u(y)dsy for x ∈ Ω (2.1)

where

U∗
κ(x, y) =

1

4π

eiκ|x−y|

|x− y| , t(y) :=
∂

∂ny

u(y), y ∈ Γ

are the fundamental solution of the Helmholtz equation and the associated normal deriva-
tive of the solution u, respectively. By taking the Dirichlet and Neumann traces of the
representation formula (2.1) we obtain a system of boundary integral equations which can
be written by means of the Calderon projector C on Γ as

(
u

t

)
=

( 1
2
I −Kκ Vκ

Dκ
1
2
I +K ′

κ

)(
u

t

)
=: C

(
u

t

)
(2.2)

where

(Vκt)(x) =

∫

Γ

U∗
κ(x, y)t(y)dsy, (Kκu)(x) =

∫

Γ

∂

∂ny

U∗
κ(x, y)u(y)dsy
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are the single and double layer potentials, and

(K ′
κt)(x) =

∫

Γ

∂

∂nx
U∗

κ(x, y)t(y)dsy, (Dκu)(x) = − ∂

∂nx

∫

Γ

∂

∂ny
U∗

κ(x, y)u(y)dsy

are the adjoint double layer potential and the hypersingular boundary integral operator,
respectively. The mapping properties of all boundary integral operators as introduced
above are well known, see, e.g., [4, 8, 12, 14, 17, 19]. In particular, from the projection
property C2 = C of the Calderon projector C as defined in (2.2) we conclude as in the case
of the Laplace operator [19] the following relations:

KκVκ = VκK
′
κ, K ′

κDκ = DκVκ, DκVκ = (
1

2
I −Kκ)(

1

2
I +Kκ) . (2.3)

Moreover, by using the duality pairing

〈v, τ〉Γ =

∫

Γ

v(x)τ(x)dsx

for all v ∈ H1/2(Γ) and τ ∈ H−1/2(Γ) we obtain

〈Vκw, τ〉Γ = 〈w, V−κτ〉Γ, 〈Kκv, τ〉Γ = 〈v,K ′
−κτ〉Γ, 〈Dκu, v〉Γ = 〈u,D−κv〉Γ .

2.2 Dirichlet boundary value problems

The Dirichlet to Neumann map is defined via the solution of the Dirichlet boundary value
problem

∆u(x) + κ2u(x) = 0 for x ∈ Ω, u(x) = g(x) for x ∈ Γ. (2.4)

Lemma 2.1. If κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (1.8), then
for any g ∈ H1/2(Γ) there exists a unique solution u ∈ H1(Ω) of the Dirichlet boundary
value problem (2.4), i.e. u = Sg, where the solution operator S : H1/2(Γ) → H1(Ω) is
well defined and bounded. If λ = κ2 is an eigenvalue of the Dirichlet eigenvalue problem
(1.8) with an associated eigenfunction uλ, then the Dirichlet datum g has to satisfy the
solvability condition

〈g, tλ〉Γ = 0, tλ(x) =
∂

∂nx
uλ(x) for x ∈ Γ. (2.5)

Moreover, the solution of the Dirichlet boundary value problem (2.4) is only unique up to
the eigensolution uλ,

u = ũ+ αuλ, α ∈ R, 〈ũ, uλ〉Ω = 0.

Proof. If κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (1.8), the assertion
follows as in the case of the Laplace equation, see, e.g, [12, 18].
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It remains to consider the case when λ = κ2 is an eigenvalue of the Dirichlet eigenvalue
problem (1.8). From Green’s first formula
∫

Ω

[
∇u(x) · ∇v(x)− κ2u(x)v(x)

]
dx =

∫

Ω

[
−∆u(x)− κ2u(x)

]
v(x)dx+

∫

Γ

∂

∂nx

u(x)v(x)dsx

we first obtain Green’s second formula
∫

Ω

[
− ∆u(x) − κ2u(x)

]
v(x)dx+

∫

Γ

∂

∂nx

u(x)v(x)dsx

=

∫

Ω

[
− ∆v(x) − κ2v(x)

]
u(x)dx+

∫

Γ

∂

∂nx
v(x)u(x)dsx .

For the solution u of the Dirichlet problem (2.4) and for v = uλ we then conclude the
solvability condition ∫

Γ

∂

∂nx
uλ(x)g(x)dsx = 〈g, tλ〉Γ = 0.

If we introduce the Sobolev space

H1
λ(Ω) :=

{
v ∈ H1(Ω) : 〈v, uλ〉Ω = 0

}

we can find ũ ∈ H1
λ(Ω) with ũ = g on Γ as the unique solution of the variational problem

∫

Ω

[
∇ũ(x) · ∇v(x) − κ2ũ(x)v(x)

]
dx = 0 for all v ∈ H1

λ(Ω)

and the general solution of (2.4) is given by u = ũ+ αuλ, α ∈ R.
Note that the solution operator S : H1/2(Γ) → H1(Ω) of the Dirichlet boundary value

problem (2.4) admits an adjoint operator S∗ : H̃−1(Ω) → H−1/2(Γ) which is defined by

〈g,S∗f〉Γ := 〈Sg, f〉Ω for all f ∈ H̃−1(Ω), g ∈ H1/2(Γ). (2.6)

To solve the Dirichlet boundary value problem (2.4) we may use the first boundary integral
equation in (2.2),

(Vκt)(x) = (
1

2
I +Kκ)g(x) for x ∈ Γ. (2.7)

Since Vκ − V0 is compact, see, e.g., [8, 17], we conclude that Vκ : H−1/2(Γ) → H1/2(Γ) is
invertible if κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (1.8). If λ = κ2 is
an eigenvalue of (1.8), we conclude from (2.2)

(V±κtλ)(x) = (
1

2
I −K ′

±κ)tλ(x) = 0 for x ∈ Γ, (2.8)

where tλ =
∂

∂n
uλ is the normal derivative of the assocated eigenfunction uλ.
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Lemma 2.2. If κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (1.8), then
for any g ∈ H1/2(Γ) there exists a unique solution t ∈ H−1/2(Γ) of the boundary integral
equation (2.7), i.e. t = Sκg, where the Steklov–Poincaré operator Sκ : H1/2(Γ) → H−1/2(Γ)
is well defined and bounded. If λ = κ2 is an eigenvalue of the Dirichlet eigenvalue problem
(1.8), the solvability condition (2.5) ensures solvability of the boundary integral equation
(2.7), but the solution is only unique up to eigensolutions tλ,

t = t̃+ α̃tλ, α̃ ∈ R, 〈t̃, R−1tλ〉Γ = 0,

where R : H1/2(Γ) → H−1/2(Γ) is some self–adjoint and H1/2(Γ)–elliptic operator.

Proof. If κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (1.8), the single layer
potential Vκ is invertible.
If λ = κ2 is an eigenvalue of the Dirichlet eigenvalue problem (1.8), the single layer potential
Vκ is not injective and therefore the boundary integral equation (2.7) is not solvable in
general. However, the solvability condition (2.5) implies

〈(1
2
I +Kκ)g, tλ〉Γ = 〈g, tλ〉Γ − 〈g, (1

2
I −K ′

−κ)tλ〉Γ = 0,

i.e., (1
2
I + Kκ)g ∈ ImVκ and the boundary integral equation (2.7) is solvable, but the

solution is only unique up to eigensolutions tλ.

2.3 Steklov–Poincaré operators

Within this section we only consider the case when κ2 is not an eigenvalue of the Dirichlet
eigenvalue problem (1.8). In this case, the Steklov–Poincaré operator Sκ is well defined,
and a boundary integral representation is given by the solution of the boundary integral
equation (2.7),

t(x) = V −1
κ (

1

2
I +Kκ)g(x) for x ∈ Γ.

When inserting this expression into the second equation of (2.2) this gives a second repre-
sentation

t(x) =
[
Dκ + (

1

2
I +K ′

κ)V
−1
κ (

1

2
I +Kκ)

]
g(x) =: (Sκg)(x) for x ∈ Γ. (2.9)

To investigate the invertibility of Sκ we will derive a G̊arding inequality and we will consider
the injectivity of Sκ.

Lemma 2.3. Let κ2 be not an eigenvalue of the Dirichlet eigenvalue problem (1.8). The
Steklov–Poincaré operator Sκ as given in (2.9) is then well defined, and satisfies a G̊arding
inequality,

〈Sκv, v〉Γ + c(v, v) ≥ cS1 ‖v‖2
H1/2(Γ) for all v ∈ H1/2(Γ), (2.10)

where c(v, v) is a compact perturbation.
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Proof. For an arbitrary but fixed v ∈ H1/2(Γ) the related Neumann datum τ = Sκv is well
defined. Hence we can introduce

φ(x) =

∫

Γ

U∗
κ(x, y)τ(y)dsy −

∫

Γ

∂

∂ny
U∗

κ(x, y)v(y)dsy for x ∈ Ω

satisfying

∆φ(x) + κ2φ(x) = 0 for x ∈ Ω, φ(x) = v(x),
∂

∂nx

φ(x) = τ(x) for x ∈ Γ.

Hence we obtain by Green’s first formula

〈Sκv, v〉Γ =

∫

Γ

∂

∂nx

φ(x)φ(x)dsx =

∫

Ω

|∇φ(x)|2dx− κ2

∫

Γ

|φ(x)|2dx

= ‖φ‖2
H1(Ω) − (κ2 + 1)‖φ‖2

L2(Ω) .

By using the adjoint solution operator as defined in (2.6) we further conclude

‖φ‖2
L2(Ω) = ‖Sv‖2

L2(Ω) = 〈Sv,Sv〉Ω = 〈v,S∗Sv〉Γ
where S∗S : H1/2(Γ) → H−1/2(Γ) is compact, since the imbedding Sg ∈ H1(Ω) ⊂ H̃−1(Ω)
is compact. Hence we can use the compact bilinear form

c(v, v) := (κ2 + 1) 〈v,S∗Sv〉Γ
to obtain

〈Sκv, v〉Γ + c(v, v) = ‖φ‖2
H1(Ω) ≥ cS1 ‖v‖2

H1/2(Γ)

by the trace theorem.
Since the Steklov–Poincaré operator Sκ : H1/2(Γ) → H−1/2(Γ) realizes the Dirichlet to
Neumann map it is obvious that Sκ is not injective if µ = κ2 is an eigenvalue of the
Neumann eigenvalue problem (1.10).
In the case that κ2 is neither an eigenvalue of the Dirichlet eigenvalue problem (1.8) nor of
the Neumann eigenvalue problem (1.10), the Steklov–Poincaré operator Sκ as given in (2.9)
is well defined, injective, and invertible. But to end up with a boundary integral domain
decomposition formulation which is stable independent of the wave number κ, instead of a
Dirichlet to Neumann map we will use a Dirichlet to Robin map as discussed in the next
section.

2.4 Robin type boundary value problems

Instead of the Dirichlet boundary value problem (2.4) we now consider a Helmholtz equa-
tion with Robin type boundary conditions,

∆u(x) + κ2u(x) = 0 for x ∈ Ω,
∂

∂nx
u(x) + iη(Ru)(x) = g(x) for x ∈ Γ, (2.11)

where the regularization operator R : H1/2(Γ) → H−1/2(Γ) is assumed to be self–adjoint
and H1/2–elliptic, and η ∈ R\{0}.
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Lemma 2.4. For any η ∈ R\{0} there exists a unique solution u ∈ H1(Ω) of the Robin
type boundary value problem (2.11).

Proof. The weak formulation of the boundary value problem (2.11) is to find u ∈ H1(Ω)
such that

∫

Ω

∇u(x) · ∇v(x)dx− κ2

∫

Ω

u(x)v(x)dx+ iη

∫

Γ

(Ru)(x)v(x)dsx =

∫

Γ

g(x)v(x)dsx

is satisfied for all v ∈ H1(Ω). Since the associated bilinear form satisfies a G̊arding in-
equality, i.e. for v ∈ H1(Ω)

Re





∫

Ω

[
∇v(x) · ∇v(x) − κ2v(x)v(x)

]
dx+ iη

∫

Γ

(Rv)(x)v(x)dsx





= ‖v‖2
H1(Ω) − (κ2 + 1) ‖v‖2

L2(Ω),

it is sufficient to prove injectivity. Let u ∈ H1(Ω) be any solution of the homogeneous
variational problem

∫

Ω

∇u(x) · ∇v(x)dx− κ2

∫

Ω

u(x)v(x)dx+ iη

∫

Γ

(Ru)(x)v(x)dsx = 0 (2.12)

for all v ∈ H1(Ω). By choosing v = u this gives

∫

Ω

|∇u(x)|2dx− κ2

∫

Ω

|u(x)|2dx+ iη

∫

Γ

(Ru)(x)u(x)dsx = 0

and therefore, when considering the imaginary part,

∫

Γ

(Ru)(x)u(x)dsx = 0 .

Since R is self–adjoint and H1/2(Γ)–elliptic, u(x) = 0 for x ∈ Γ follows. Then, since
u ∈ H1(Ω) is a solution of the variational problem (2.12), we have

∫

Ω

∇u(x) · ∇v(x)dx− κ2

∫

Ω

u(x)v(x)dx = 0 for all v ∈ H1(Ω) .

From this we conclude, by applying integration by parts,

∆u(x) + κ2u(x) = 0 for x ∈ Ω,
∂

∂nx
u(x) = 0 for x ∈ Γ.
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Hence, u is a solution of the Helmholtz equation with vanishing Cauchy data. Then, by
applying the representation formula (2.1), u(x) = 0 for x ∈ Ω follows.
To solve the Robin type boundary value problem (2.11) we aim to derive a boundary
integral formulation which is stable for all wave numbers κ. By using the second equation
in (2.2) we can rewrite the Robin boundary condition in (2.11) as

(Dκu)(x) + iη(Ru)(x) + (
1

2
I +K ′

κ)t(x) = g(x) for x ∈ Γ, (2.13)

and where we use in addition the first equation in (2.2),

(Vκt)(x) − (
1

2
I +Kκ)u(x) = 0 for x ∈ Γ. (2.14)

When κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (1.8) we obtain from
(2.14)

t(x) = V −1
κ (

1

2
I +Kκ)u(x) for x ∈ Γ

to be inserted into (2.13),

[
Dκ + (

1

2
I +K ′

κ)V
−1
κ (

1

2
I +Kκ)

]
u(x) + iη(Ru)(x) = g(x) for x ∈ Γ. (2.15)

Since the Steklov–Poincaré operator Sκ : H1/2(Γ) → H−1/2(Γ) is coercive, see Lemma
2.3, and since the injectivity of the operator Sκ + iηR follows as in the proof of Lemma
2.4, unique solvability of the boundary integral equation (2.15) follows. In particular, the
case when µ = κ2 is an eigenvalue of the Neumann eigenvalue problem (1.10), is covered.
Obviously, then also the system of boundary integral equations (2.13) and (2.14) admits a
unique solution. It remains to prove that the latter holds true also in the case when λ = κ2

is an eigenvalue of the Dirichlet eigenvalue problem (1.8).

Lemma 2.5. Let λ = κ2 be an eigenvalue of the Dirichlet eigenvalue problem (1.8). Then
the system (2.13) and (2.14) of boundary integral equations related to the Robin type bound-
ary value problem (2.11) admits a unique solution (u, t) ∈ H1/2(Γ) ×H−1/2(Γ).

Proof. Associated to the system of boundary integral equations (2.13) and (2.14) is the
bilinear form

a(u, t; v, τ) = 〈Vκt, τ〉Γ − 〈(1
2
I +Kκ)u, τ〉Γ + 〈(1

2
I +K ′

κ)t, v〉Γ + 〈Dκu, v〉Γ + iη〈Ru, v〉Γ .

Since the boundary integral operators Vκ−V0 : H−1/2(Γ) → H1/2(Γ), Kκ−K0 : H1/2(Γ) →
H1/2(Γ),Dκ−D0 : H1/2(Γ) → H−1/2(Γ), andK ′

κ−K ′
0 : H−1/2(Γ) → H−1/2(Γ) are compact,

see, e.g. [8, 17], the bilinear form a(·, ·; ·, ·) satisfies a G̊arding inequality

Re
{
a(v, τ ; v, τ) + c(v, τ ; v, τ)

}
≥ cA1

[
‖v‖2

H1/2(Γ) + ‖τ‖2
H−1/2(Γ)

]
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for all (v, τ) ∈ H1/2(Γ) ×H−1/2(Γ) where the bilinear form c(·, ·; ·, ·) is compact. Hence it
remains to prove injectivity.
Let (u, t) be a solution of the homogeneous boundary integral equations

Vκt− (
1

2
I +Kκ)u = 0, (

1

2
I +K ′

κ)t+Dκu+ iηRu = 0 . (2.16)

Since λ = κ2 is an eigenvalue of the Dirichlet eigenvalue problem (1.8), i.e.

Vκtλ = V−κtλ = (
1

2
I −K ′

κ)tλ = (
1

2
I −K ′

−κ)tλ = 0,

we obtain with

0 = 〈t, V−κtλ〉Γ = 〈Vκt, tλ〉Γ = 〈(1
2
I +Kκ)u, tλ〉Γ = 〈u, tλ〉Γ − 〈u, (1

2
I −K ′

−κ)tλ〉Γ = 〈u, tλ〉Γ

the solvability condition
〈u, tλ〉Γ = 0 .

The general solution of the first boundary integral equation is then given by

t = t̃+ α̃tλ, α̃ ∈ R, 〈t̃, R−1tλ〉Γ = 0.

Applying Vκ to the second equation in (2.16) this gives, by using (2.3),

0 = Vκ

[
(
1

2
I +K ′

κ)t+Dκu+ iηRu
]

= (
1

2
I +Kκ)Vκt+ (

1

2
I +Kκ)(

1

2
I −Kκ)u+ iηVκRu

= (
1

2
I +Kκ)

[
Vκt+ (

1

2
I −Kκ)u

]
+ iηVκRu

= (
1

2
I +Kκ)u+ iηVκRu

= Vκ

[
t+ iηRu

]
,

i.e.
t+ iηRu = αtλ for some α ∈ R.

Moreover, when applying Dκ to the first equation in (2.16) we obtain, by inserting the
second equation in (2.16),

0 = Dκ

[
Vκt− (

1

2
I +Kκ)u

]
= (

1

2
I +K ′

κ)(
1

2
I −K ′

κ)t− (
1

2
I +K ′

κ)Dκu

= (
1

2
I +K ′

κ)
[
(
1

2
I −K ′

κ)t−Dκu
]

= (
1

2
I +K ′

κ)
[
t+ iηRu

]

= α(
1

2
I +K ′

κ)tλ = αtλ − α(
1

2
I −K ′

κ)tλ = αtλ

11



and therefore α = 0. Hence we conclude

t+ iηRu = 0

as well as
t̃+ α̃tλ + iηRu = 0 .

But then we conclude

0 = 〈t̃+ α̃tλ + iηRu,R−1tλ〉Γ = 〈t̃, R−1tλ〉Γ + α̃‖tλ‖2
R−1 + iη〈u, tλ〉Γ,

which implies α̃ = 0, i.e. t = t̃.
Next we define

φ(x) =

∫

Γ

U∗
κ(x, y)t̃(y)dsy −

∫

Γ

∂

∂ny

U∗
κ(x, y)u(y)dsy for x ∈ Ω

satisfying
∆φ(x) + κ2φ(x) = 0 for x ∈ Ω

and, due to the first equation in (2.16),

φ(x) = (Vκt̃)(x) +
1

2
u(x) − (Kκu)(x) = u(x) for x ∈ Γ.

Moreover, we have

∂

∂nx
φ(x) = (

1

2
I +K ′

κ)t̃(x) + (Dκu)(x) for x ∈ Γ.

From the second equation in (2.16) we therefore conclude, by using Green’s first formula,

0 = 〈(1
2
I +K ′

κ)t̃+Dκu+ iηRu, u〉Γ =

∫

Γ

∂

∂nx
φ(x)φ(x)dsx + iη〈Ru, u〉Γ

=

∫

Ω

[
|∇φ(x)|2 − κ2|φ(x)|2

]
dx+ iη〈Ru, u〉Γ .

When considering the imaginary part we obtain for η 6= 0

〈Ru, u〉Γ = 0,

and since R is self–adjoint and H1/2(Γ)–elliptic, u = 0 follows. Finally, t̃ = −iηRu = 0.
This proves, that the homogeneous system (2.16) only admits the trivial solution.

Remark 2.6. Note that we only assume η 6= 0 in the Robin type boundary condition
(2.11). Moreover it is sufficient to consider Robin type boundary conditions only on a part
ΓR ⊂ Γ of the boundary Γ = ∂Ω to ensure unique solvability of the related boundary value
problem with boundary conditions of mixed type (Dirichlet, Neumann, Robin), and of a
related boundary integral formulation.
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3 Domain decomposition methods

3.1 Variational formulations

Let us consider the local boundary value problems (1.4),

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi,

∂

∂ni
ui(x) = g(x) for x ∈ Γi = ∂Ωi ∩ Γ, (3.1)

together with the transmission or interface boundary conditions (1.5),

ui(x) = uj(x),
∂

∂ni

ui(x) +
∂

∂nj

uj(x) = 0 for x ∈ Γij . (3.2)

To avoid non–uniqueness in the solution of either local Dirichlet or Neumann boundary
value problems, instead of the Neumann transmission boundary condition in (3.2) we
consider a Robin type interface condition given as

∂

∂ni
ui(x) +

∂

∂nj
uj(x) + iηijRij [ui(x) − uj(x)] = 0 for x ∈ Γij , i < j, (3.3)

together with the Dirichlet transmission condition

ui(x) = uj(x) for x ∈ Γij . (3.4)

Note that Rij : H1/2(Γij) → H̃−1/2(Γij) is assumed to be self–adjoint andH1/2(Γij)–elliptic,
and ηij ∈ R\{0}. In this case, the equivalence of the interface transmission conditions (3.3)
and (3.4) with (3.2) follows immediately.
The local subdomain boundary Γi = ∂Ωi of a subdomain Ωi is considered as the union

Γi = (Γi ∩ Γ) ∪
⋃

Γij

Γij

where Γi ∩ Γ corresponds to the original boundary where Neumann boundary conditions
are given, while Γij denotes the coupling boundary with an adjacent subdomain. We define

(Riu|Γi
)(x) := (Riju|Γij

)(x) for x ∈ Γij (3.5)

and

ηi(x) :=





ηij for x ∈ Γij, i < j,

−ηij for x ∈ Γij, i > j,

0 for x ∈ Γi ∩ Γ .

(3.6)

We assume, that ηi(x) for x ∈ Γi does not change its sign. This can be guaranteed either
when considering a checker board domain decomposition [5], or when enforcing Robin type
boundary conditions only on a part of the local boundary Γi, i.e. setting ηij = 0 on some
coupling boundaries Γij.
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Let H1/2(ΓS) = H1(Ω)|ΓS
be the skeleton trace space which is related to the domain

decomposition (1.2). For u ∈ H1/2(ΓS) we set ui = u|Γi
∈ H1/2(Γi) to ensure the Dirichlet

transmission boundary condition (3.4).
For v ∈ H1/2(ΓS) we then obtain the variational formulation to find u ∈ H1/2(ΓS) such
that, due to (3.3),

p∑

i=1

∫

Γi

[
∂

∂ni

ui(x) + iηi(x)(Riu|Γi
)(x)

]
v|Γi

(x)dsx

=

∫

Γ

∂

∂nx
u(x)v(x)dsx

+
∑

i<j

∫

Γij

[
∂

∂ni

ui(x) + iηij(Riju|Γij
)(x) +

∂

∂ni

ui(x) − iηij(Riju|Γij
)(x)

]
v|Γij

(x)dsx

=

∫

Γ

g(x)v(x)dsx

for all v ∈ H1/2(Γ) subject to the local Helmholtz equations

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi.

By using the local representation formulae

ui(x) =

∫

Γi

U∗
κi

(x, y)ti(y)dsy −
∫

Γi

∂

∂ny

U∗
κi

(x, y)ui(y)dsy for x ∈ Ωi, i = 1, . . . , p

we obtain a boundary integral formulation to find u ∈ H1/2(ΓS) and ti ∈ H−1/2(Γi) for
i = 1, . . . , p such that

p∑

i=1

[
〈Dκi

u|Γi
, v|Γi

〉Γi
+ 〈(1

2
I +K ′

κi
)ti, v|Γi

〉Γi
+ 〈iηRiu|Γi

, v|Γi
〉Γi

]
=

∫

Γ

g(x)v(x)dsx (3.7)

for all v ∈ H1/2(Γ) and

〈Vκi
ti, τi〉Γi

− 〈(1
2
I +Kκi

)u|Γi
, τi〉Γi

= 0 for all τi ∈ H−1/2(Γi), i = 1, . . . , p. (3.8)

Theorem 3.1. The coupled variational problem (3.7) and (3.8) admits a unique solution
u ∈ H1/2(ΓS). In particular, the associated bilinear form is coercive. Moreover, if the
Neumann boundary value problem (1.1) is uniquely solvable, the associated bilinear form is
also injective.
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Proof. Coercivity follows as in the proof of Lemma 2.3. It remains to proof injectivity.
Let u ∈ H1/2(ΓS) and ti ∈ H−1/2(Γi) for i = 1, . . . , p be any solution of the homogeneous
system

p∑

i=1

[
〈Dκi

u|Γi
, v|Γi

〉Γi
+ 〈(1

2
I +K ′

κi
)ti, v|Γi

〉Γi
+ 〈iηRiu|Γi

, v|Γi
〉Γi

]
= 0

for all v ∈ H1/2(Γ) and

〈Vκi
ti, τi〉Γi

− 〈(1
2
I +Kκi

)u|Γi
, τi〉Γi

= 0 for all τi ∈ H−1/2(Γi), i = 1, . . . , p.

With the definition of Ri and ηi we also have

p∑

i=1

[
〈Dκi

u|Γi
, v|Γi

〉Γi
+ 〈(1

2
I +K ′

κi
)ti, v|Γi

〉Γi

]
= 0 for all v ∈ H1/2(ΓS).

Let us define

φi(x) =

∫

Γi

U∗
κi

(x, y)ti(y)dsy −
∫

Γi

∂

∂ny

U∗
κi

(x, y)u|Γi
(y)dsy for x ∈ Γi,

which satisfies
∆φi(x) + κ2φi(x) = 0 for x ∈ Ωi.

and
∂

∂nx

φi(x) = (
1

2
I +K ′

κi
)ti(x) + (Dκi

u|Γi
)(x) for x ∈ Γi

as well as

φi(x) = (Vκi
ti)(x) +

1

2
u|Γi

(x) − (Kκi
u|Γi

)(x) = u|Γi
for x ∈ Γi.

Hence we may consider φi = φ|Ωi
∈ H1(Ωi) as the restriction of a function φ ∈ H1(Ω).

Then we obtain, by using Green’s first formula,

0 =

p∑

i=1

[
〈Dκi

u|Γi
, v|Γi

〉Γi
+ 〈(1

2
I +K ′

κi
)ti, v|Γi

〉Γi

]

=

p∑

i=1

∫

Γi

∂

∂ny

φi(x)v|Γi
(x)dsx

=

p∑

i=1

∫

Ωi

[
∇φi(x) · ∇v|Ωi

(x)dx− κ2
iφi(x)v|Ωi

(x)
]
dx

=

∫

Ω

[
∇φ(x) · ∇v(x) − [κ(x)]2φ(x)v(x)

]
dx for all v ∈ H1(Ω).
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Since this is the weak formulation of the Neumann boundary value problem

∆φ(x) + [κ(x)]2φ(x) = 0 for x ∈ Ω,
∂

∂nx
φ(x) = 0 for x ∈ Γ,

φ(x) = 0 for x ∈ Ω follows. Recall that the Neumann boundary value problem (1.1) was
assumed to be unique solvable. From φi(x) = 0 for x ∈ Ωi we conclude u|Γi

(x) = 0 for
x ∈ Γi as well as ni · ∇xϕi(x) = 0 for x ∈ Γi. Hence we conclude

(
1

2
I +K ′

κi
)ti(x) = 0, (Vκi

ti)(x) = 0 for x ∈ Γi.

If κ2
i is not an eigenvalue of the Dirichlet eigenvalue problem (1.8), the single layer potential

Vκi
is injective and ti = 0 follows. On the other hand, if λ = κ2

i is an eigenvalue of the
Dirichlet eigenvalue problem (1.8), we also have

(
1

2
I −K ′

κi
)ti(x) = 0 for x ∈ Γi.

Again, ti(x) = 0 follows.
It remains to define the regularization operator Ri : H1/2(Γi) → H−1/2(Γi) which is as-
sumed to be self–adjoint, and H1/2(Γi)–elliptic. In particular, we will also use the re-

strictions Rij := Ri|Γij
: H1/2(Γij) → H̃−1/2(Γij). A particular choice is the use of the

hypersingular integral operator which is related to the Yukawa partial differential equation

−∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi.

Hence we define

(Riui)(x) = − 1

4π

∂

∂nx

∫

Γi

∂

∂ny

e−κi|x−y|

|x− y| ui(y)dsy for x ∈ Γi. (3.9)

3.2 Boundary element discretizations

For the Galerkin discretization of the coupled variational formulation (3.7) and (3.8) let

Wh = span{ϕk}MS
k=1 ⊂ H1/2(ΓS)

be a boundary element space on the skeleton of, e.g., piecewise linear basis functions ϕk,
with respect to a quasi regular boundary mesh with mesh size hS. We also define local
restrictions of Wh onto Γi, in particular

Wi,h = Wh|Γi
= span{ϕi

k}Mi
k=1 ⊂ H1/2(Γi).

By using the isomorphisms

vi ∈ R
Mi ↔ vi,h =

Mi∑

k=1

vi,kϕ
i
k ∈Wi,h, v ∈ R

MS ↔ vh =

MS∑

k=1

vkϕk ∈Wh
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there exist Boolian connectivity matrices Ai ∈ R
Mi×MS mapping some v ∈ R

MS of global
nodal values onto the vector vi = Aiv ∈ R

Mi of the local subdomain boundary nodal values.
In addition, let

Zi,h = span{ψi
k}Ni

k=1 ⊂ H−1/2(Γi)

be some local boundary element space, e.g., of piecewise constant basis functions ψi
k, with

respect to a local quasi regular boundary mesh with average mesh size hi. The Galerkin
boundary element discretization of the variational formulation (3.7) and (3.8) now reads:
find uh ∈Wh and ti,h ∈ Zi,h such that

p∑

i=1

[
〈Dκi

uh|Γi
, vh|Γi

〉Γi
+ 〈(1

2
I +K ′

κi
)ti,h, vh|Γi

〉Γi
+ 〈iηRiuh|Γi

, vh|Γi
〉Γi

]
=

∫

Γ

g(x)vh(x)dsx

(3.10)
for all all vh ∈Wh and

〈Vκi
ti,h, τi,h〉Γi

− 〈(1
2
I +Kκi

)uh|Γi
, τi,h〉Γi

= 0 for all τi,h ∈ Zi,h, i = 1, . . . , p. (3.11)

Since the bilinear form of the coupled variational problem (3.7) and (3.8) is coercive and
injective, see Theorem 3.1, the stability of the Galerkin variational formulation (3.10) and
(3.11) follows for a sufficient small mesh size h, see, e.g., [17, 19]. In particular, there holds
the quasi–optimal error estimate

‖u− uh‖2
H1/2(ΓS) +

p∑

i=1

‖ti − ti,h‖2
H−1/2(Γi)

≤ c

{
inf

vh∈Wh

‖u− vh‖2
H1/2(ΓS) +

p∑

i=1

inf
τi,h∈Zi,h

‖ti − τi,h‖2
H−1/2(Γi)

}
.

When assuming optimal regularity u|ΓS
∈ H2

pw(ΓS), i.e. u ∈ H5/2(Ω), and when using the
Aubin–Nitsche trick, see, e.g., [19], we finally obtain the error estimate

‖u− uh‖L2(ΓS) ≤ c(u, ti) h
2 . (3.12)

3.3 Tearing and interconnecting

The Galerkin variational formulation (3.10) and (3.11) is equivalent to a linear system of
algebraic equations




Vκ1,h −K̃κ1,hAi

. . .
...

Vκp,h −K̃κp,hAp

A⊤
1 K̃

′
κ1,h . . . A⊤

p K̃
′
κp,h

p∑
i=1

A⊤
i [Dκi,h + iηiRi,h]Ai







t1
...
tp
u


 =




0
...
0

p∑
i=1

A⊤
i gi




(3.13)
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where the block matrices are defined by

Vκi,h[ℓ, k] = 〈Vκi
ψi

k, ψ
i
ℓ〉Γi

,

K̃κi,h[ℓ, n] = 〈(1
2
I +Kκi

)ϕi
n, ψ

i
ℓ〉Γi

,

K̃ ′
κi,h

[m, k] = 〈(1
2
I +K ′

κi
)ψi

k, ϕ
i
m〉Γi

,

Dκi,h[m,n] = 〈Dκi
ϕi

n, ϕ
i
m〉Γi

,

Ri,h[m,n] = 〈Riϕ
i
n, ϕ

i
m〉Γi

for k, ℓ = 1, . . . , Ni, m,n = 1, . . . ,Mi, and i = 1, . . . , p. In addition,

g
i
[m] = 〈g, ϕi

m〉Γi∩Γ for m = 1, . . . ,Mi.

To tear the global vector u ∈ R
MS we introduce the local unknowns ui = Aiu ∈ R

Mi. To
ensure the global continuity, in addition we have to require the interconnecting condition
in the form

p∑

i=1

Biui = 0 . (3.14)

In particular, for xk ∈ Γij the interconnecting condition (3.14) states the continuity condi-
tion

ui,h(xk) = uj,h(xk).

For i < j let ki and kj denote the local indices of the global index k. Then we can set

Bi[k, ki] = 1, Bj [k, kj] = −1 . (3.15)

Moreover, the global equation in (3.13) can be rewritten as

p∑

i=1

A⊤
i

[
(Dκi,h + iηiRi,h)ui + K̃ ′

κi,h
ti − g

i

]
= 0.

For xk ∈ Γij with local indices ki and kj we can rewrite this equation as

[
(Dκi,h + iηiRi,h)ui + K̃ ′

κi,h
ti − g

i

]

ki

+
[
(Dκj ,h + iηjRj,h)uj + K̃ ′

κj ,htj − g
j

]

kj

= 0 .

Hence, for i < j we may introduce a discrete Lagrange multiplier λk to define

[
(Dκi,h + iηiRi,h)ui + K̃ ′

κi,h
ti − g

i

]
ki

= λk,
[
(Dκj ,h + iηjRj,h)uj + K̃ ′

κj ,htj − g
j

]
kj

= −λk.

By using (3.15) we therefore end up with the local systems

(Dκi,h + iηiRi,h)ui + K̃ ′
κi,h

ti − g
i

= B⊤
i λ for i = 1, . . . , p.
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Hence, the linear system (3.13) is equivalent to




Vκ1,h −K̃κ1,h

K̃ ′
κ1,h Dκ1,h + iηR1,h −B⊤

1
. . .

...

Vκp,h −K̃κp,h

K̃ ′
κp,h Dκp,h + iηRp,h −B⊤

p

B1 . . . Bp







t1
u1
...
tp
up

λ




=




0
g

1
...
0
g

p

0




.

(3.16)

Remark 3.2. In the tearing and interconnecting approach for a second order partial differ-
ential equation with an elliptic bilinear form the equivalence of the variational problem with
a related minimization problem is used. After localization, Lagrange multipliers are used
to enforce global continunity of the primal unknowns. Since in the case of the Helmholtz
equation the bilinear forms are only coercive satisfying a G̊arding inequality, algebraic ar-
guments have to be used to derive (3.16).

Let us consider in (3.16) the local systems

(
Vκi,h −K̃κi,h

K̃ ′
κi,h

Dκi,h + iηiRi,h

)(
ti
ui

)
=

(
0

g
i
+B⊤

i λ

)
(3.17)

which correspond to the Galerkin discretization of the boundary integral equations (2.13)
and (2.14). Since the associated bilinear form is coercive and injective, stability of the
local Galerkin scheme (3.17) follows for a sufficiently small mesh size hi < h0. Hence we
obtain the Schur complement system of (3.16)

p∑

i=1

(
0 Bi

)(
Vκi,h −K̃κi,h

K̃ ′
κi,h

Dκi,h + iηiRi,h

)−1(
0

B⊤
i λ

)

= −
p∑

i=1

(
0 Bi

)(
Vκi,h −K̃κi,h

K̃ ′
κi,h

Dκi,h + iηiRi,h

)−1(
0
g

i

)
,

which can be written as
Fhλ = f . (3.18)

Note that the linear system (3.18) corresponds to the standard dual system in tearing and
interconnecting domain decomposition methods.

4 Numerical results

As a numerical example we consider the Neumann boundary value problem (1.1) with
respect to several computational domains Ω ⊂ R

3, and by using different domain decom-
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position strategies. In all examples, the exact solution is given by

u(x) =
eiκ|x−bx|

|x− x̂| . (4.1)

First we consider the domain

Ω =
{
x ∈ R

3 : x1 ∈ (−1.0, 1.5), x2 ∈ (0.0, 1.0), x3 ∈ (0.0, 1.0)
}

which is divided into two subdomains, see Fig. 1,

Ω1 = {x ∈ Ω : x1 < 0} , Ω2 = {x ∈ Ω : x1 > 0} ,

and x̂ = (2, 0, 2)⊤.

Ω1 Ω2

Figure 1: Domain decomposition with two subdomains.

The boundary element discretization of the coupled variational formulation (3.7) and (3.8)
is done with respect to a globally uniform boundary mesh of Ni plane triangular elements
with Mi nodes per subdomain and by using piecewise constant basis functions ψi

k and
piecewise linear continuous basis functions ϕi

n. The linear system (3.18) is solved by a
GMRES method with a relative error reduction of ε = 10−8.
First we consider the global wave number κ = 2, which corresponds neither to a Dirichlet
nor to a Neumann eigenvalue of both subproblems. The results, which confirm the error
estimate (3.12), are given in Table 1.

Ni Mi GMRES ‖u1 − u1,h‖L2(Γ1)

12 8 3 1.759 –1
48 26 8 3.359 –2
192 98 11 7.635 –3
768 386 13 1.853 –3
3072 1538 15 4.586 –4
12288 6146 18 1.142 –4

Table 1: Numerical results for two subdomains, κ = 2.

In a second example we consider the global wave number κ =
√

3π ≈ 5.4414 which cor-
responds to the first Dirichlet and Neumann eigenvalue of the unit cube Ω1. The results
given in Table 2 confirm the stability of the proposed approach.
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Ni Mi GMRES ‖u1 − u1,h‖L2(Γ1)

12 8 3 4.056 –1
48 26 8 1.716 –1
192 98 15 2.569 –2
768 386 17 5.419 –3
3072 1538 19 1.266 –3
12288 6146 22 3.077 –4

Table 2: Numerical results for two subdomains, κ =
√

3π.

p Ni Mi GMRES ‖u1 − u1,h‖L2(Γ1)

8 24 14 23 3.195 –1
8 96 50 29 9.827 –2
8 384 194 31 2.528 –2
8 1536 770 35 6.006 –3
8 6144 3074 41 1.379 –3
27 24 14 54 1.600 –1
27 96 50 58 4.506 –2
27 384 194 59 1.090 –2
27 1536 770 62 2.498 –3
64 24 14 100 9.622 –2
64 96 50 105 2.527 –2
64 384 194 104 5.922 –3
64 1536 770 105 1.474 –3
125 24 14 167 6.347 –2
125 96 50 156 1.567 –2
125 384 194 137 3.817 –3
125 1536 770 137 7.976 –4

Table 3: Domain decomposition with p = n3 subdomains.

In the last example we consider a sequence of domain decompositions where the unit cube
Ω = (0, 1)3 is subdivided into p = n3 subdomains, n = 2, 3, 4, 5. Again, the global wave
number is κ = 2, and the exact solution is given as in (4.1) with x̂ = (−0.1, 0, 0)⊤. The
related results are given in Table 3.

5 Conclusions

In this work we have presented a stable boundary element domain decomposition approach
to solve interior boundary value problems for the Helmholtz equation via tearing and inter-
connecting methods. All numerical results confirm the stability of the proposed approach.
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But in particular the results given in Table 3 indicate the requirement of an efficient pre-
conditioner for the BETI Schur complement Fh. For this we may apply ideas from finite
element tearing and interconnecting methods as described in [5]. But this has to be com-
bined with preconditioned solution strategies for the coupled linear system (3.16), which
also require the use of preconditioners for the discrete single layer potential Vκi,h and for
the discrete hypersingular boundary integral operator Dκi,h. Moreover, fast boundary ele-
ment methods such as the fast multipole method have to be incorporated to end up with
an efficient simulation tool, see, e.g., [10], for the case of data sparse boundary element
domain decomposition methods in the case of the potential equation.
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