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BOUNDARY INTEGRAL FORMULATIONS OF EIGENVALUE
PROBLEMS FOR ELLIPTIC DIFFERENTIAL OPERATORS
WITH SINGULAR INTERACTIONS AND THEIR NUMERICAL
APPROXIMATION BY BOUNDARY ELEMENT METHODS

MARKUS HOLZMANN AND GERHARD UNGER

ABSTRACT. In this paper the discrete eigenvalues of elliptic second order dif-
ferential operators in L?(R™), n € N, with singular §- and §’-interactions are
studied. We show the self-adjointness of these operators and derive equivalent
formulations for the eigenvalue problems involving boundary integral opera-
tors. These formulations are suitable for the numerical computations of the
discrete eigenvalues and the corresponding eigenfunctions by boundary element
methods. We provide convergence results and show numerical examples.

1. INTRODUCTION

Schrodinger operators with singular interactions supported on sets of measure
zero play an important role in mathematical physics. The simplest example are
Schrédinger operators with point interactions, which were already introduced in the
beginnings of quantum mechanics [27,35]. The importance of these models comes
from the fact that they reflect the physical reality still to a reasonable exactness
and that they are explicitly solvable. The point interactions are used as idealized
replacements for regular potentials, which are strongly localized close to those points
supporting the interactions, and the eigenvalues can be computed explicitly via an
algebraic equation involving the values of the fundamental solution corresponding to
the unperturbed operator evaluated at the interaction support, cf. the monograph
[1] and the references therein.

Inspired by this idea, Schrodinger operators with singular §- and ¢’-interactions
supported on hypersurfaces (i.e. manifolds of codimension one like curves in R? or
surfaces in R?) where introduced. Such interactions are used as idealized replace-
ments of regular potentials which are strongly localized in neighborhoods of these
hypersurfaces e.g. in the mathematical analysis of leaky quantum graphs, cf. the
review [15] and the references therein, and in the theory of photonic crystals [18].
Note that in the case of §-potentials this idealized replacement is rigorously justified
by an approximation procedure [3]. The self-adjointness and qualitative spectral
properties of Schrodinger operators with d- and §’-interactions are well understood,
see e.g. [6,7,11,15,16,29] and the references therein, and the discrete eigenvalues can
be characterized via an abstract version of the Birman Schwinger principle. How-
ever, following the strategy from the point interaction model one arrives, instead of

Key words and phrases. elliptic differential operators, 6 and ¢’-interaction, discrete eigenvalues,
integral operators, boundary element method.
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an algebraic equation, at a boundary integral equation involving the fundamental
solution for the unperturbed operator.

In this paper we suggest boundary element methods for the numerical approx-
imations of these boundary integral equations. With this idea of computing the
eigenvalues of the differential operators with singular interactions numerically, we
give a link of these models to the original explicitly solvable models with point in-
teractions. As theoretical framework for the description of the eigenvalues in terms
of boundary integral equations we use the theory of eigenvalue problems for holo-
morphic and meromorphic Fredholm operator-valued functions [19,20,26]. For the
approximation of this kind of eigenvalue problems by the Galerkin method there
exists a complete convergence analysis in the case that the operator-valued function
is holomorphic [21,22,34]. This analysis provides error estimates for the eigenvalues
and eigenfunctions as well as results which guarantee that the approximation of the
eigenvalue problems does not have so-called spurious eigenvalues, i. e., additional
eigenvalues which are not related to the original problem.

Other approaches for the numerical approximation of eigenvalues of differential
operators with singular interactions are based on finite element methods, where R™
is replaced by a big ball, whose size can be estimated with the help of Agmon type
estimates. Moreover, in [12,17,30] it is shown in various settings in space dimen-
sions n € {2,3} that Schrodinger operators with d-potentials supported on curves
(for n = 2) or surfaces (for n = 3) can be approximated in the strong resolvent
sense by Hamiltonians with point interactions. An improvement of this approach
is presented in [14]. This allows also to compute numerically the eigenvalues of the
limit operator.

Let us introduce our problem setting and give an overview of the main results.
Consider a strongly elliptic and formally symmetric partial differential operator in
R™ n e N, of the form

Pi=— Y dhapd;+ Y (a;0; — ;) +a,
j=1

J.k=1

see Section 3 for details. Moreover, let ); be a bounded Lipschitz domain with
boundary ¥ := 0, let Q, := R™\();, and let v be the unit normal to ;. Eventually,
let v be the Dirichlet trace and B, the conormal derivative at ¥ (see (3.4) for the
definition). We are interested in the eigenvalues of two kinds of perturbations of P
as self-adjoint operators in L?(R™) which are formally given by

Ay =P +ady and Bg:=P + {3y, )d%,

where 0y; is the Dirac d-distribution supported on Y. and the interaction strengths
a, B are real valued functions defined on ¥ with o, 37! € L®(X). For P = —A these
operators have been intensively studied e.g. in [7,11,15,16], for certain strongly
elliptic operators and smooth surfaces several properties of A, and Bg have been
investigated in [6,29]. For the realization of A, as an operator in L?(R™) we remark
that if the distribution A, f is generated by an L*-function, then fi/e := f I Qe
has to fulfill

(1.1) vfi=7fc and B,fo—B,fi=ayf onX,
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as then the singularities at ¥ compensate, cf. [7]. In a similar manner, if the
distribution Bgf is generated by an L?-function, then f has to fulfill

(1.2) Byfi=Byf, and ~f.—~fi=BB,f on¥.

Hence, the relations (1.1) and (1.2) are necessary conditions for a function f to
belong to the domain of definition of A, and Bg, respectively. Our aims are to
show the self-adjointness of A, and Bs in L*(R™) and to fully characterize their
discrete spectra in terms of boundary integral operators. We pay particular atten-
tion to establish formulations which fit in the framework of eigenvalue problems for
holomorphic and meromorphic Fredholm operator-valued functions and which are
accessible for boundary element methods. This requires a thorough analysis of the
involved boundary integral operators.

When using boundary element methods for the approximations of discrete eigen-
values of A, and Bj it is convenient to consider the related transmission problems.
A value X belongs to the point spectrum of A, if and only if there exists a nontrivial
f € L?(R™) satisfying

(P=XNf=0 inR"X,
(13) ’Yfl = ,7.][67 on E7
Bufe—B,fi =ayf onX.

Similarly, A belongs to the point spectrum of Bg if and only if there exists a non-
trivial f € L?(R™) satisfying
(P=XNf=0 inR"X,
(1.4) B,fi=Byfe onZx,
Vfe—7fi=pBB,f onX.

This shows that the eigenvalue problems for A, and Bg are closely related to
transmission problems for P — A, as they were treated in [24,25], and the strategies
presented there are useful for the numerical calculation of the eigenvalues of A,
and Bﬁ.

For the analysis of the spectra of A, and Bs a good understanding of the unper-
turbed operator A being the self-adjoint realization of P with no jump condition
at X and some operators related to the fundamental solution of P — A are necessary.
Assume for A € p(Ag) U 0qisc(Ag) that G(\; z,y) is the integral kernel of a suitable
paramatrix associated to P — A which is explained in detail in Section 3; for A in
the resolvent set p(Ap) it is in fact a fundamental solution for P — A. We remark
that the knowledge of G(X; x,y) or at least a good approximation of this function is
essential for our numerical considerations. We introduce the single layer potential
SL(A) and the double layer potential DL(A) acting on sufficiently smooth functions
p: X —Cand ze R"\X as

SL(\)g(x) = LG(A;m,yw@)da(y)
and
DL(A) () = L(zsu,yw; £,9))p(y)do(y).

As we will see, all solutions of (P — \)f = 0 will be closely related to the ranges of
SL(A) and DL(A). Moreover, the boundary integral operators which are formally
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given by

S(A)¢ :==7SL\)p, TN ¢ =By (SL(N)¢)i + B, (SL(A)@)e,
and

TN :=y(DL(A)@)i + 7(DL(A)p)e,  R(A)p := =B, DL(A),
will play an important role. While the properties of the above operators are well-
known for many special cases, e.g. for P = —A, the corresponding results are, to
the best of the authors’ knowledge, not easily accessible in the literature for general
‘P. Hence, for completeness we spend some efforts in Section 3.3 to provide those
properties of the above integral operators which are needed for our considerations.
Eventually, following a strategy from [9], we show that the discrete eigenvalues
of Ag can be characterized as the poles of an operator-valued function which is
built up by the operators S(A), T(A), T(A\), and R(A); see also [13] for related
results. Compared to [9] our formulation is particularly useful for the application

of boundary element methods to compute the discrete eigenvalues of Ag numerically,
as the appearing operators are easily accessible for numerical computations.

In order to introduce A, and Bpg rigorously, consider the Sobolev spaces
HL(Q):={fe HY(Q): Pfe L*(Q)}.
Inspired by (1.1) and (1.2) we define A, as the partial differential operator in
L?(R™) given by
(1.5)
Aof:=Pfi®Pfe,

dom Ag :={f = i ® fe € Hp(%) ® Hp(Qe) : vfi = Vfe, Bufe — Bufi = avf},
and Bg by

(1.6)
Bsf :=Pfi®@Pfe,

domBﬁ = {f = fi @fe € H717(Ql) @H%(Qc) : Bufi = Bufca ’}/fc - PYfi = 6Buf}

In Section 4 and 5 we show the self-adjointness of these operators in L?(R™) and via
the Weyl theorem that the essential spectra of A, and Bg coincide with the essential
spectrum of the unperturbed operator Ag. Hence, to know the spectral profile of
A, and Bg we have to understand the discrete eigenvalues of these operators. The
characterization of the discrete eigenvalues of A, and Bpg in terms of boundary
integral equations depends on the discrete spectrum of the unperturbed operator
Ap being empty or not. Let us consider the first case. It turns out that A € p(Ap)
is a discrete eigenvalue of A, if and only if there exists a nontrivial ¢ € L?(X) such
that

(1.7) (I+aS(\)p=0.

Similarly, the existence of a discrete eigenvalue A € p(Ag) of Bj is equivalent to the
existence of a corresponding nontrivial ¢ € H/ 2(¥) which satisfies

(L8) (571 + R(A)Y = 0.

As shown in Sections 4 and 5 the boundary integral formulations in (1.7) and (1.8)
are eigenvalue problems for holomorphic Fredholm operator-valued functions. These
eigenvalue problems can be approximated by standard boundary element methods.



The convergence of the approximations follows from well-known abstract conver-
gence results [21, 22, 34], which are summarized in Section 2. In the case that
o4isc(Ao) 1s not empty, still all eigenvalues of A, and Bg in p(Ap) can be character-
ized and computed using (1.7) and (1.8), respectively. For the possible eigenvalues
A, and Bg which lie in 04isc(Ao) also boundary integral formulations are provided
which are accessible by boundary element methods and discussed in detail in Sec-
tion 4 and 5.

Finally, let us note that our model also contains certain classes of magnetic
Schrédinger operators with singular interactions with rather strong limitations for
the magnetic field. Nevertheless, one could use our strategy and the Birman-
Schwinger principle for magnetic Schrodinger operators with more general magnetic
fields provided in [4,30] to compute the discrete eigenvalues of such Hamiltonians
numerically. Also, an extension of our results to Dirac operators with d-shell inter-
actions [5] would be of interest, but this seems to be a rather challenging problem.

Let us shortly describe the structure of the paper. In Section 2 we recall some
basic facts on eigenvalue problems of holomorphic Fredholm operator-valued func-
tions and on the approximation of this kind of eigenvalue problems by the Galerkin
method. In Section 3 we introduce the elliptic differential operator P and the asso-
ciated integral operators and investigate the properties of the unperturbed operator
Ap. Sections 4 and 5 are devoted to the analysis of A, and Bg, respectively. We
introduce these operators as partial differential operators in L2?(R"), show their
self-adjointness and derive boundary integral formulations to characterize their dis-
crete eigenvalues. Moreover, we discuss how these boundary integral equations can
be solved numerically by boundary element methods, provide convergence results,
and give some numerical examples.

Notations. Let X and Y be complex Hilbert spaces. The set of all anti-linear
bounded functionals on X and Y are denoted by X* and Y*, respectively, and the
sesquilinear duality product in X* x X, which is linear in the first and anti-linear
in the second argument, is (-,-); the underlying spaces of the duality product will
be clear from the context. Next, the set of all bounded and everywhere defined
linear operators from X to Y is B(X,Y); if X =Y, then we simply write B(X) :=
B(X,X). For Ae B(X,Y) the adjoint A* € B(Y*, X*) is uniquely determined by
the relation (Ax,y) = (z, A*y) for all x € X and y € Y*.

If A is a self-adjoint operator in a Hilbert space, then its domain, range, and
kernel are denoted by dom A, ran A, and ker A. The resolvent set, spectrum, dis-
crete, essential, and point spectrum are p(A), 0(A), odisc(A), Tess(A), and o, (A4),
respectively. Finally, if A is an open subset of C and A : A — B(X, X*), then we
say that A € A is an eigenvalue of A(-), if ker A(X) # {0}.

Acknowledgements. We are specially grateful to O. Steinbach for encouraging
us to work on this project. Moreover, we thank J. Behrndt and J. Rohleder for
helpful discussions and literature hints.
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2. GALERKIN APPROXIMATION OF EIGENVALUE PROBLEMS FOR HOLOMORPHIC
FREDHOLM OPERATOR-VALUED FUNCTIONS

In this section we present basic results of the theory of eigenvalue problems
for holomorphic Fredholm operator-valued functions [19,26] and summarize main
results of the convergence analysis of the Galerkin approximation of such eigenvalue
problems [21,22,36]. These results build the abstract framework which we will
utilize in order to show the convergence of the boundary element method for the
approximation of the discrete eigenvalues of A, as well as of Bg which lie in p(Ay).
Under specified conditions the convergence for discrete eigenvalues of A, and Bj
in o4isc(Ag) is also guaranteed.

Let X be a Hilbert space and let A < C be an open and connected subset
of C. We consider an operator-valued function F : A — B(X, X*) which de-
pends holomorphically on A € A, i.e., for each Ay € A the derivative F'()\g) :=
limy_, 5, /\%/\0 IF(A) = F(Xo)llp(x,x*) exists. Moreover, we assume that F(}) is
a Fredholm operator of index zero for all A € A and that it satisfies a so-called
Garding’s inequality, i. e., there exists a compact operator C(A) : X — X* and a
constant ¢(\) > 0 for all A € A such that

(2.1) [((FON) +CN\) u,u) | = c(N)|u|%k  for all ue X.

We consider the nonlinear eigenvalue problem for the operator-valued func-
tion F(-) of the form: find eigenvalues A € A and corresponding eigenelements
u € X\{0} such that

(2.2) F(MNu = 0.

In the following we assume that the set {\ € A : 3F(\)~! € B(X*, X)} is not empty.
Then the set of eigenvalues in A has no accumulation points inside of A [19, Cor.
XTI 8.4]. The dimension of the null space ker F(A) of an eigenvalue A is called the
geometric multiplicity of A. An ordered collection of elements ug, uy, ..., Up_1 in
X is called a Jordan chain of (X, ug), if it is an eigenpair and if

2 l'}'(j)()\)un,j =0 foralln=0,1,...,m—1
j=o "

is satisfied, where F) denotes the jth derivative. The length of any Jordan chain
of an eigenvalue is finite [26, Lem. A.8.3]. Elements of any Jordan chain of an
eigenvalue \ are called generalized eigenelements of A\. The closed linear space of
all generalized eigenelements of an eigenvalue X is called generalized eigenspace of

A and is denoted by G(F, ). The dimension of the generalized eigenspace G(F, \)
is finite [26, Prop. A.8.4] and it is referred to as algebraic multiplicity of .

2.1. Galerkin approximation. For the approximation of the eigenvalue prob-
lem (2.2) we consider a conforming Galerkin approximation. We assume that
(X~) yen 18 @ sequence of finite-dimensional subspaces of X such that the orthog-
onal projection Py : X — X converges pointwise to the identity I : X — X, i.e.,
for all u € X we have

(2.3) [Pvu—ulx = inf oy —u|x =0 as N — oo.
’L)NEXN



7

The Galerkin approximation of the eigenvalue problem reads as: find eigenpairs
(An,un) € A x Xn\{0} such that

(2.4) (FAn)un,vn) =0 forall v, € Xp.

For the formulation of the convergence results we need the definition of the gap
dv (V1, Vo) of two subspaces Vi, Va of a normed space V:
dy(Vi,Vo) := sup inf [v1 —vellv.

vieVR vo€Va

loillv=1
Theorem 2.1. Let F : A — B(X, X™*) be a holomorphic operator-valued function
and assume that for each A € A there exist a compact operator C(\) : X — X*
and a constant ¢(\) > 0 such that inequality (2.1) is satisfied. Further, suppose
that (Xn)nen 18 a sequence of finite-dimensional subspaces of X which fulfills the
property (2.3). Then the following holds true:

(i) (Completeness of the spectrum of the Galerkin eigenvalue problem) For each
eigenvalue X\ € A of the operator-valued function F(-) there exists a sequence
(AN)n of eigenvalues of the Galerkin eigenvalue problem (2.4) such that

AN = A as N — .

(ii) (Non-pollution of the spectrum of the Galerkin eigenvalue problem) Let K —
A be a compact and connected set such that 0K is a simple rectifiable curve.
Suppose that there is no eigenvalue of F(-) in K. Then there exists an
Ny € N such that for all N = Ny the Galerkin eigenvalue problem (2.4) has
no eigenvalues in K.

(iii) Let D < A be a compact and connected set such that 0D is a simple recti-
fiable curve. Suppose that \ € D is the only eigenvalue of F in D. Then
there exist an Ny € N and a constant ¢ > 0 such that for all N = Ny we
have:

(a) For all eigenvalues An of the Galerkin eigenvalue problem (2.4) in D

A= An| < edx (G(F,\), Xn)Y6x (G(F*,\), Xn)Y*

holds, where F*(-) := (F(7))* is the adjoint function with respect to
the pairing (-,-) for X* x X and ¢ is the mazimal length of a Jordan
chain corresponding to .

(b) If (AN, un) is an eigenpair of (2.4) with Ay € D and |un|x = 1, then

. _ < _ .
uekgl(g-',/\) |u—un|x <c(|An — Al + dx(ker(F,A), Xn))

Proof. The Galerkin method fulfills the required properties in order to apply the
abstract convergence results in [21, 22, 36] to eigenvalue problems for holomorphic
operator-valued functions which satisfy inequality (2.1), see [34, Lem. 4.1]. We refer
to [21, Thm. 2] for assertion (i) and (ii), and to [22, Thm. 3] for (iii)a). The error
estimate in (iii)b) is a consequence of [36, Thm. 4.3.7]. O

3. STRONGLY ELLIPTIC DIFFERENTIAL OPERATORS AND ASSOCIATED INTEGRAL
OPERATORS

In this section we introduce the class of elliptic differential operators which will
be perturbed by the singular é- and ¢’-interactions supported on a hypersurface
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3, and we introduce the integral operators S(A\), T(\), T(A), and R()) in Sec-
tion 3.3 in a mathematically rigorous way and recall their properties, which will
be of importance for our further studies. Eventually, in Section 3.4 we show how
the discrete eigenvalues of Ay can be characterized with the help of these boundary
integral operators. But first, we introduce our notations for function spaces which
we use in this paper.

3.1. Function spaces. For an open set 2 € R™, n € N, and k € Ng U {0} we write
C*(Q) for the set of all k-times continuously differentiable functions and

Cyr(Q):={feC®Q): f,Vf are bounded}.
Moreover, the Sobolev spaces of order s € R are denoted by H*(Q2), see [28, Chap-
ter 3] for their definition.

In the following we assume that 2 < R™ is a Lipschitz domain in the sense
of [28, Definition 3.28]. We emphasize that 2 can be bounded or unbounded, but
09 has to be compact. Note that in this case we can identify H*(R™\02) with
H*(Q) ® H*(R™\Q). With the help of the integral on dQ with respect to the
Hausdorff measure we get in a natural way the definition of L?(0€2). In a similar
flavor, we denote the Sobolev spaces on 02 of order s € [0,1] by H?(02), see [28§]
for details on their definition. For s € [—1,0] we define H*(0Q2) := (H~*(00Q))* as
the anti-dual space of H~*(092).

Finally, we recall that the Dirichlet trace operator C*(Q) 3 f + f|aq can be
extended for any s € (2, 2) to a bounded and surjective operator
(3.1) v H3(Q) — H*Y2(09);

cf. [28, Theorem 3.38].

3.2. Strongly elliptic differential operators. Let a;i,a;,a € C;°(R"), n € N,
and j,k € {1,...,n}, and define the differential operator

n n

(3.2) Pfi=— > dulawdif) + ) (a;0;f — &;(@f)) + af

J,k=1 j=1

in the sense of distributions. We assume that a;; = ax; and that a is real valued,;
then P is formally symmetric. Moreover, we assume that P is strongly elliptic, that
means there exists a constant C' > 0 independent of z such that

M ajul@)& = Clef

7,k=1
holds for all x € R™ and all £ € C™.

Next, define for an open subset 2 = R” the sesquilinear form ®¢, : H(Q)x H(Q)
by

(3.3)  ®q[f,q]: L l Z ajk0; fOrg + Z a;(0; )9 + f(a;0;9)) + afg| da.
J,k=1 j=1

In the following assume that {2 < R" is a Lipschitz set, let v be the unit normal
vector field at 02 pointing outwards €2, denote by ~ the Dirichlet trace operator,



see (3.1), and introduce for f € H2(f2) the conormal derivative B, f by
(3.4) Z kY V(agrdif) + Z viv(@; f).
k=1 j=1 j=1

Then one can show that

(35) (Pfa g)L2(Q) = éﬂ[fvg] - (Bva ’yg)LQ(GQ)a f € Hz(Q)v ge HI(Q)a

holds. Next, we introduce the Sobolev space
(3.6) Hp(Q) == {f e H'(Q): Pfe L*(Q)},

where Pf is understood in the distributional sense. It is well known that the
conormal derivative B, has a bounded extension

(3.7) B, : H5(Q) — H™Y2(0Q),
such that (3.5) extends to

(3.8) (Pf,9)12(0) = ®alf,9] — (Buf,v9), feHp(Q), ge H' (),

where the term on the boundary in (3.5) is replaced by the duality product in
H=12(%) and HY2(X), see [28, Lemma 4.3]. We remark that this formula also
holds for 2 = R"™, then the term on the boundary is not present.

Our first goal is to construct the unperturbed self-adjoint operator Aq in L?(R")
associated to P. With the help of [28, Theorem 4.7] it is not difficult to show
that the sesquilinear form ®g~ fulfills the assumptions of the first representation
theorem [23, Theorem VI 2.1], so we can define A, as the self-adjoint operator
corresponding to ®gn. The following result is well-known, the simple proof is left
to the reader.

Lemma 3.1. Let P be given by (3.2) and let the form ®Prn be defined by (3.3).
Then ®grn is densely defined, symmetric, bounded from below, and closed. The
self-adjoint operator Ag in L?(R™) associated to ®gn is

(3.9) Aof =Pf, domAy = H*(R").
Assume that ; is a bounded Lipschitz domain in R™ with boundary ¥ := 0€);,

let v be the unit normal to €, and set Qe := R™\;. Then it follows from [28,
Theorem 4.20] that a function f = f; ® fo € Hp (%) ® Hp(Qe) fulfills

(3.10) fedomAy = H*R") <= ~f =~f and B, f; = B, f..
Next, we review some properties of the resolvent of Ay which are needed later.
In the following, let A € p(Ag) U caisc(Ap) be fixed. Recall that a map G is called a

paramatriz for P — X in the sense of [28, Chapter 6], if there exist integral operators
K1, Ko with C*®-smooth integral kernels such that

GP-Nu=u—Kiu and (P—XNGu=u—Kou

holds for all u € £*(R™), where £*(R"™) is the set of all distributions with compact
support, cf. [28]. A paramatrix is a fundamental solution for P — A, if the above
equation holds with Iy = s = 0.

Let us denote the orthogonal projection onto ker(Ag — A) by ]3/\ and set
(3.11) Py 1- Py
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Note that Py = I for A € p(Ap) and if {e1,...en}, N := dimker(4g — \), is a basis
of ker(Ag — A) for X € oqisc(Ap), then

N N
Pf = Z (f,en)r2@mmyer = J K(,y)f(y)dy, K(z,y):= Z ex(w)ex(y),
k=1 R™ k=1

for all f € L?(R™). We remark that the integral kernel K is a C'®-function by
elliptic regularity [28, Theorem 4.20]. By the spectral theorem we have that Ag— A
is boundedly invertible in Py(L?(R™)). Therefore, the map

(3.12) G(A) := Pa(Ao — \) "' Py

is bounded in L?(R"), and it is a paramatrix for P — A, as

(3.13) (P —=XN)Pa(Ag— NPy f = Py(Ag = NT'PA(P — N)f = P\f = f — P\f

holds for all f € C5°(R™). Therefore, by [28, Theorem 6.3 and Corollary 6.5] there
exists an integral kernel G(\; z,y) such that for almost every x € R"

(3.14) GNf(x) =] G\zy)flydy, [feL*R").
R"L
In the following proposition we show some additional mapping properties of G(\)

for X € p(Ag) U 0qisc(Ap); they are standard and well-known, but for completeness
we give the proof of this proposition.

Proposition 3.2. Let Ay be defined by (3.9), let X € p(Ag) Udaisc(Ao), and let G(A)
be given by (3.12). Then, for any s € [—2,0] the mapping G(\) can be extended to
a bounded operator

(3.15) G(\) : H¥(R™) — H*T3(R™).
Moreover, the map

p(A0) 2 A = (Ao —N)7"
is holomorphic in B(H*(R™), H**t2(R")).

Proof. Assume that A € p(Ag) U 04isc(Aop) is fixed. First, we show that
(3.16) G(\) : L*(R") — H*(R™)

is bounded. The operator in (3.16) is well-defined, as ranG(\) = ran Py\(Ag —
A)7IPy = Pydom (Ag — \) < H?(R"). Moreover, we claim that the operator
in (3.16) is closed, then it is also bounded by the closed graph theorem. Let
(fn) © L?(R") be a sequence and let f € L?(R") and g € H*(R™) be such that

fn— f inL*R") and G(\)f, — g in H*(R").
Since G(\) is bounded in L?(R"), we get G(\)f,, — G(A\)f in L2(R™). Moreover, as
H?(R") is continuously embedded in L?(R"), we also have
G\ fu =g in L*(R").

Hence, we conclude G(\)f = g, which shows that the operator in (3.16) is closed
and thus, bounded.

Since the operator in (3.16) is bounded for any A € p(Ag) Uadaisc(Aop), we conclude
by duality that also

G(A): H(R") — L*(R™)
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is bounded. Therefore, interpolation yields that the mapping property (3.15) holds
also for all s € (—2,0).

In order to show that A\ — (Ag — A\)~! is holomorphic in B(H*(R"), H**2(R"))
for any s € [—2,0] in a fixed point Ag € p(Ap), we note that the resolvent identity
implies

[1= (A= 20)(Ag = X0) ' ](Ao = A) 7" = (Ag — Xo) .
If A is close to g, we deduce from the Neumann formula that 1—(A—Xg)(Ag— o)~}
is boundedly invertible in H**2(R") and hence,

(Ao =N =1 = (A= Xo)(Ao — 2o) 1] (Ao — Ao) %

In particular, (Ag — A\)~! is uniformly bounded in B(H®(R"™), H5*2(R")) for A
belonging to a small neighborhood of Ay and continuous in A\. Employing this and
once more the resolvent identity

(Ag—A) 1= (Ao — X)) = (A= X0) (Ao —N) 1A — Xo)H,
we find that p(Ag) 3 A — (Ag — A\)~! is holomorphic in B(H*(R"), H**2(R")). O

3.3. Surface potentials associated to P. In this section we introduce several
families of integral operators associated to the paramatrix G(A) which will be of
importance in the study of A, and Bg and for the numerical calculation of their
eigenvalues. Remark that many of the properties shown below are well known for
special realizations of P, for instance P = —A, but for completeness we also provide
the proofs for general P.

Throughout this section assume that X is the boundary of a bounded Lipschitz
domain €, set Q. := R"\();, and let v be the unit normal to €. If f is a function
defined on R"™, then in the following we will often use the notations f; := f [
and fo:= f | Qe.

Recall that the Dirichlet trace operator v : H'(R") — HY?(¥) is bounded
by (3.1). Hence, it has a bounded dual 4* : H=/2(¥%) — H~'(R"). This allows us
to define for A € p(Ap) U caisc(Aog) the single layer potential

(3.17) SL(\) := GO\* : HV2(2) - HY(R™).

By the mapping properties of v* and Proposition 3.2 the map SL()) is well-defined
and bounded. Moreover, we have ran SL(A\) < ran Py, = L*(R") © ker(Ap — \).
With the help of (3.14) and duality, it is not difficult to show that SL()\) acts on
functions ¢ € L?(X) and almost every x € R"\Y as

SL(X) () = j GOz, 9)p(y)do(y).

Some further properties of SL(\) are collected in the following lemma. In particular,
the map SL(A) plays an important role to construct eigenfunctions of the operator
Ay defined in (1.5). For that, we prove in the lemma below the correspondence of
the range of SL(\) with all solutions f € H3(R™\X) of the equation

(P=XNf=0 imR™\X and ~fi =~fe.
For this purpose we define for A € p(A4g) U 04isc(Ap) the set
(3.18) My = {pe HV2(E): (p,vf) = 0 Vf € ker(4g — \)}.
We remark that My = H~Y2(X) for X € p(Ay).
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Lemma 3.3. Let SL(A), A € p(Ap) U daisc(Ao), be defined by (3.17). Then the
following is true:

(i) We have ranSL(\) ¢ HH(R™\X) and
(319)  SL(A)(My) @ker(Ag — A) = {f e H'(R"): (P —\)f =0 in R"\S}.
(ii) Let B, be the conormal derivative defined by (3.8). Then for any ¢ €
H=Y2(%) the jump relations
V(SL(A) )i = (SL(A) @)e =0 and B, (SL(A) )i — B, (SL(A) )e = ¢

hold.
(iii) The map
p(Ag) 3 A — SL(})
is holomorphic in B(HY/2(X), H5(R™\X)).

Proof. (1)—(ii) Let {e1,...,en} be a basis of ker(4g — \) (we use the convention
that this set is empty for A € p(Ap)). Since G(A) is a paramatrix for P — A, the
considerations in [28, equation (6.19)] and (3.13) imply for ¢ € H~/2(%) that

N
(3.20) (P—NSL(\)g = —Pav*o = — Y (#,7€;)e; on R™ME.

j=1
This implies, in particular, that ran SL(A\) ¢ Hp(R™\X) and hence, B, (SL(A)@)i/e
is well-defined for o € H=/2(X) by (3.7). The jump relations in item (ii) are shown
in [28, Theorem 6.11]. Furthermore, (3.20) implies (P — A)SL(A)p = 0 in R™\X for
@ € M) and thus,

(321)  SL(A) (M) @ker(4g —A) = {f e H'(R™) : (P —\)f =0 in R"\Z}.
Next, we verify the second inclusion in (3.19). Let f € HY(R") n HH(R™\X)

such that (P — \)f = 0 in R"\X. Set ¢ := B, fi — B, f. € H™/?(%). We claim

that ¢ € My. For X € p(Ap) this is clear by the definition of M in (3.18). For

A € 0dise(4p) < R we get with (3.8) applied in ; and €. (note that v is pointing
outside €; and inside (2.) for any g € ker(Ag — \) = H?(R")

(S0379) = (Bufi - Bl/fcv’yg) - (7f> Bugi - Bugc)
= (f,P9) 2wy — (Pf,9) 2wy = (f; \g) L2@ny — (M, 9) 12y = 0,

which implies ¢ € M. Next, consider the function h := f — SL(A)p. Then
h e H*(R™) and by (ii) we have

thi - Buhe = Bl/fi - Bufe - (BV(SL(A)QD)I - BU(SL(A)SO)E) =P —-p= O

Hence, (3.10) yields h € dom Ay. Eventually, due to the properties of f and SL(\)p
for ¢ € M, we conclude

(Ag—=Nh=(P =Xhi® (P — Nhe
= (P =X (fi = (SLA)¢)) & (P — A)(fe — SL(A))e) = 0.
This gives h = f — SL(A\)p € ker(Ag — ). Therefore, we have also verified
(3.22) {fe H'(R™) : (P—=\)f =0in R"\X} < ran SL(A\) @ ker(4y — A).
The inclusions in (3.21) and (3.22) imply finally (3.19).
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(iii) By the definition of SL(A) and Proposition 3.2 we have that SL() is holomor-
phic in B(H~Y2(2), H'(R")). Since PSL(\)¢ = ASL(\)g in R™\Y for A € p(Ay)
by (i), we find that the H'-norm is equivalent to the norm in HLH(R™\X) on
ran SL()). Therefore, SL()) is also holomorphic in B(H~Y/2(Z), H5(R™\X)). O

Two important objects associated to SL(\) are the single layer boundary integral
operator S(A), which is defined by

(3.23) St HTVA(E) - HYA(R), S(Np =SL(V)p = 16(\)7*e,
and the mapping 7 (\)’, which is given by
(324) T : HTVA(E) - HTV2(2),  T(\)'¢ = B,(SL(V )i + B, (SL(A\)@)e.

The operators S(A\) and 7 ()\)" have for a density ¢ € L?(X) and almost all x € 3
the integral representations

S(V) o) = j GOz 9)e(y)do(y)

and

T\ @(x) =2lim By G\ z,y)e(y)do(y).
eNo S\B(z,e)

Some further properties of S(A) and 7(\)" are stated in the following lemma:

Lemma 3.4. Let S(A) and T(A), X € p(Ap) U daisc(Ao), be defined by (3.23)
and (3.24), respectively. Then, the following is true:

(i) The restriction So(\) := S(A\) | L2(X) has the mapping property So()\) :
L*(X) —» HY(X). In particular, So()\) is compact in L*(X).

(ii) S(N) is a Fredholm operator with index zero and there exist a compact op-
erator C(\) : H=Y2(2) — HY?(X) and a constant ¢(\) > 0 such that

Re (¢, (S(V) +CN)p) = e @l F-12x,

holds for all p € H=Y?(%).
(iii) The maps

p(Ao) 29X — S(\) and p(Ag) 3 X —T(\)

are holomorphic in B(H=Y?(X), HY?(X)) and B(H'%(X)), respectively.
(iv) For any p € H=Y?(X%)

BLSLOG) = (0 + TOY'9) and BuSLOg)e = 3~ + TO'g)

hold.

Proof. For the proof of the mapping property of Sy(A) in (i) we refer to the discus-
sion after [28, Theorem 6.12], the compactness of Sy(A) follows then from the fact
that H*(X) is compactly embedded in L?(X). Statement (ii) is shown in [28, The-
orem 7.6]. Item (iii) is a consequence of Lemma 3.3 (iii) and the mapping prop-
erties of v and B, respectively. Finally, statement (iv) follows immediately from
Lemma 3.3 (ii) and the definition of 7(A) in (3.24). O
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Next, we define the double layer potential associated to P — A. For that we
recall the definition of the conormal derivative B, from (3.4) and note that B, :
H?(R?) — L3(X) is bounded. Hence, it admits a dual B € B(L?*(X), H 2(R"))
and with the help of Proposition 3.2 (applied for s = —2) we can define the double
layer potential as the bounded operator

(3.25) DL(\) := G(\)B¥ : L*(X) — L*(R"™).

Since ran G(A\) = L*(R™) ©ker(Ag — ), we have ran DL()\) « L?(R")Oker(Ag — \).
Using (3.14) and duality it is not difficult to show that DL(\) acts on functions
¢ € L?(X) and almost all z € R"\X as

DL(A) p(z) = J2<Bu,yG(A§x7 y))p(y)do(y).

Some further properties of DL()) are collected in the following lemma. In par-
ticular, the map DL(A) plays an important role to construct eigenfunctions of the
operator Bg defined in (1.6). For that, we investigate the correspondence of the
range of DL()) with all solutions f € H5(R™\X) of the equation

(P-Nf=0 inR\S and B,f; = B, f..
For this purpose we define for A € p(Ag) U 04isc(Ao) the set
(3.26) Ny = {pe HY2(Z): (0, B,f) = 0 Vf € ker(4g — \)}.

We remark that Ny = H'/2(X) for X € p(Ap). In analogy to Lemma 3.3 we have
the following properties of DL(\).

Lemma 3.5. Let DL(A), A € p(Ao) U 0disc(Ao), be defined by (3.25). Then the
following is true:

(i) The restriction of DL()) onto HY?(X) gives rise to a bounded operator
DL\ : HY2(5) — Hb(R™\)
and
DL(A)(Ny) @ ker(Ag — )
={fe Hp(R"\S) : B, fi = Bufe, (P=\)f =0 in R"\Z}.

(ii) Let B, be the conormal derivative defined by (3.8). Then for any ¢ €
HY2(X) the jump relations

Y(DL(A) p)e —¥(DL(A) )i = ¢ and B, (DL()X) ¢); — B, (DL(A) ¢)e = 0

hold.
(i) The map

(3.27)

is holomorphic in B(HY?(Z), H5(R™\X)).
Proof. The proofs of many statements of this lemma are analogous to the ones in
Lemma 3.3, so we point out only the main differences. Since G()) is a paramatrix for

P — ), the considerations in [28, equation (6.19)] and (3.13) imply for ¢ € H'/2(X)
that

(3.28) (P = MDL(\)¢ = —P\B*p on R™MX.
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In particular, P(DLg)i/e € L*(Qije). Next, we show that DL(A) : HY?(X) —
H3(R™X) is bounded. Using the last observation and the closed graph theorem it
is enough to verify

(3.29) DL(\)p € H'(R™X) for ¢e HY?(D);

cf. the proof of (3.16) for a similar argument. To prove (3.29) choose R > 0 such
that € is contained in the open ball B(0, R) of radius R centered at the origin
and a cutoff function xy € C*(R™) which is supported in B(0, R + 1) and satisfies
x | B(0,R) = 1. Moreover, let ¢ € H/?(X) be fixed. Then xDL(\)¢ € H(R™\X)
by [28, Theorem 6.11]. Furthermore, (1 — x)DL(\)¢ belongs to L?(R™) and by the
product rule we have

P(1=x)DL(A)¢ = (1 = x)PDL(N)¢

- [a1 (K (1 — X)) (8;DL(N)) + DL(A)p0y(a;jxd; (1 — x))
Gk=1

+ a;x(0;(1 = X)) (0 DL(A\)9)]

£ DL Ylad (1 — ) — a7, (1— )]
j=1

Since supp V(1 — x) = supp Vx < B(0, R + 1), we have again with the help of [28,
Theorem 6.11] that (Jx(1 — x))(d;DL(A)¢) € L?(R™) and thus with PDL(\)p €
L*(R") and aj,a;; € CP(R™) we obtain P(1 — x)DL(A)¢ € L?(R?). Therefore,
we conclude from elliptic regularity that (1 — x)DL(\)¢ € H?(R™). This implies
eventually that

DL(A)¢ = xDL(M)g + (1 — x)DL(A\)p € H'(R"\X)
and thus (3.29).

Next, item (ii) is shown in [28, Theorem 6.11]. Furthermore, the relation (3.27)
can be shown in the same way as (3.19) using (3.28) instead of (3.20).

In order to prove statement (iii), let Ao, A € p(Ap). Using the resolvent identity
we have

DL(A) = DL(Ao) = ((Ao — o) ™! — (4o = N)7")B}
= (Ao —N)(Ao— Xo) (Ao — N) B
Since (Ag — Xo) 1 (4o — A\)~! € B(H2(R"), H%(R™)) is continuous in A in this

topology, see Proposition 3.2, we conclude that DL()) : HY/2(X) — HA(R™Y) is
holomorphic. O

(3.30)

Two important objects associated to DL(A) are the hypersingular boundary in-
tegral operator R(A), which is defined by

(3.31) R\ : HY3(D) > H'2(X), R(\)p = -B,DL(\)p = —B,G(\) B},
and the operator
(3.32) T\ :HY2(Z) > HY2(E), T(Ne =7vDLA)g)i +v(DL(A)g)e.

It follows from Lemma 3.5 (i) and (3.7) that R(A) and 7 (\) are well-defined and
bounded. While 7 () has for a continuous density ¢ € C(X) and almost all z € X
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a representation as a strongly singular integral operator,
T\ ¢(z) = 2lim (BuyG(A;s2,9))e(y)do(y),
ENO IS\ B(z,e)

the hypersingular operator R(A) can be only written as finite part integral
RO (@) =~ | BBy GOim)ely)do(y).
S\B(z,¢)

see [28, Section 7] for details. However, for special realizations of P the duality
product (R(\)p, ) can be computed in a more convenient way, cf. e.g. [28, The-
orem 8.21]. Some further properties of R(A) and T()) are stated in the following
lemma:

Lemma 3.6. Let R(\) and T(X), A € p(Ao) U caisc(Ao), be defined by (3.31)
and (3.32), respectively. Then, the following is true:

(i) R(N) is a Fredholm operator with index zero and there exist a compact
operator C(\) : HY2(X) — H~Y/2(X) and a constant ¢(\) > 0 such that

Re (i, (R(N) + CN)) = e(N el Znre(sy

holds for all p € H'/?(X).
(ii) The maps

p(Ag) 3 A —R(A) and p(Ag) 3 X — T(N)

are holomorphic in B(HY?(X), H-Y2(X)) and B(HY?(X)), respectively.
(iii) For any ¢ € HY?(%)

HDLONP) = 5 (0 + T()g) and A(DLO). = 5(p+ T(N)e)

hold.
(iv) For all \,v € p(Ap) the difference T(A) — T (v) is compact.
(v) The relation
(0. TNY) = (T(N) ¢, ¥)
holds for all p € H™Y/2(X) and 1 € H/2(X).

Proof. Ttem (i) follows immediately from [28, Theorem 7.8]. Assertion (ii) is a
consequence of Lemma 3.5 (iii) and the mapping properties of v and B, in (3.1)
and (3.7). Next, the claim of item (iii) follows directly from Lemma 3.5 (ii) and
the definition of T(\).

To show statement (iv) assume that A # v € p(Ag). As in (3.30) we see that
DL(A) —DL(v) : L3(X) — H?(R") is bounded. Since H?(R") is boundedly embed-
ded in H(R"), we deduce with the mapping properties of v from (3.1) that

TA)=Tw) = (=274 —v) (Ao — N)'B

is bounded from L?(X) to H'/2(X). Since HY?(X) is compactly embedded in L?(%),
we conclude eventually that T(\) — 7 (v) is compact in H'2(X).

Finally, statement (v) is shown in [28, Chapter 7], since the operator T* in [28,
Chapter 7] coincides with T (\)’. O
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3.4. Characterization of discrete eigenvalues of Aj. In this section we show
how the discrete eigenvalues of Ag can be characterized with the help of the bound-
ary integral operators S(A), T(A), T(A\), and R(A). For that purpose we follow
closely considerations from [9], but we adapt the arguments to obtain a formula-
tion on more general hypersurfaces ¥ which is also more convenient for numerical
considerations.

We define for A € p(Ap) the operator
AN : HV2() x HY?(S) - HY?(2) x H~V2(D),
(3.33) 0 v(SL(\)¢ + DL(A)%),
AN (w) B (—Bl, (SL(\)y + DL(A)w)e) '

Due to the mapping properties of 7 from (3.1) and B, from (3.7) we get with
Lemma 3.3 (i) and Lemma 3.5 (i) that A(X) is well-defined and bounded. With
Lemma 3.4 (iv) and Lemma 3.6 (iii) we see that A(X) can be written as the block
operator matrix

S(\) (=1 +T(N)
(3.34) A = (;(1 —T(\)) R(N) )

Some basic properties of A()) are collected in the following lemma:
Lemma 3.7. Let A()\), A € p(Ap), be defined by (3.33). Then the following is true:

(i) The map p(Aog) 3 A — A(X) is holomorphic.
(ii) There exists a compact operator () and a constant c¢(\) > 0 such that

(cawron (7). (7))

holds for all p € H-Y2(X) and ¢ € H/?(X), where the duality product is
the one for the pairing HY/?(X) x H=Y2(X) and H-Y?(X) x H'/2(%).

> o) (leldr-vaqsy + [l 2as)

Proof. Assertion (i) follows from Lemma 3.4 (iii) and Lemma 3.6 (ii), as S(A), T (X),
T(A), and R(X) are holomorphic. To prove item (ii) we compute

(00(2):(2)) = (g 270 " 20 ™) (2 (2))
= (SN)p.0) + ROV, W) + 5 ((5.0) — (,9))

+ 5 (TOW. ) — (. TOW)) + 3 (6, T — (T, 8)).
With Lemma 3.6 (v) we have
(o TOW) — (TOY'.0) = (. (T() = T())

and the operator 7(\) — T ()\) is compact by Lemma 3.6 (iv). Therefore, we get
with a compact operator K()\)

Re (A()\) (5) , (5) ) — Re (SO, 9) + (RO, ) + (¢, (T() = TON)))

> e (lel3m2m) + 9130 m) + Re (’CW @ | CZ))

which implies because of |z| = Re z for z € C the claimed result. O
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In the following theorem we characterize the discrete eigenvalues of Ay with
the help of the operator-valued function A. For that we define for a number Ag €
0disc(Ao)Up(Ag) = C\oess(Ao), for which there exists an € > 0 with B(Xg, €)\{ o} <
p(Ap), the map

(335) R.A()\o) = Ali)n)?\lo()\ - )\0)./4()\)

The proof of the following theorem follows closely ideas from [9, Theorem 3.2], but
the operator A(A) appearing in our formulation is easier accessible for numerical
applications as the map M () in [9] since it consists of explicitly computable integral
operators.

Theorem 3.8. A number Ay belongs to the discrete spectrum of Ag if and only if
Ao is a pole of A(N\). Moreover,

(3.36) ran R n) = {(7f. Buf) " ¢ f € ker(Ag — Xo)}

holds.

Proof. Let A\g ¢ 0ess(Ap). It suffices to show that (3.36) is true. Let u € C\R be
fixed and let Py, be the orthogonal projection in L?(R™) onto ker(Ag — A\g). We
claim first that

(337)  ker(Ao — Ao) = {Py,[SL(1)¢ + DL(w)¢] : o € HY2(%),9 e HY*(D)}.
To show this assume that f € ker(Ag — A\g) is such that

0 = (f, Pao[SL(1)# + DL(1)Y]) 1 gy = (fs SL()# + DL()E) 12 gy

holds for all ¢ € H'/2(X) and ¢ € H-'/2(X). Since f € ker(Ag — \g), we have
(Ag — )"t f = (Ao — @)1 f and thus, the definitions of SL(u) and DL(x) lead to

0= (f, (Ao — ) 77" ¢ + (Ao — )" BSW) 12 gy

= (’Y(AO - ﬁ)_lfa 50) + (BV(AO - ﬁ)_lfa ¢)
1
= B, f, ).
" _ﬁ[(vf, ¢) + (Buf. )]

Since this is true for all ¢ € HY?(X) and ¢ € H~'/?(¥), we conclude that vf =
B, f = 0. It follows from [8, Proposition 2.5] (this result and its proof are also true
for unbounded domains) that f = 0. Since for Mg ¢ 0ess(Ao) the set ker(Ag — o) is
finite-dimensional, (3.37) is shown.

We are now prepared to prove (3.36). By the spectral theorem the resolvent of
Ap can be written in a small neighborhood of A as

1 -
(Ag—p) ™' = \ Py, + F(n),

where F(u) is a locally bounded and continuous operator in p. Hence, we conclude
that R 4(»,) can be a nontrivial operator, only if Py, is nontrivial, and that

ran R a.x,) < {(7/, B,f)": feker(Ag — Xo)}-
To show the other inclusion in (3.36), let f € ker(Ag — Ao), fix u € C\R, and choose

o e H-Y2(X) and ¢ € HY?(X) such that f = Py,[SL(u)e +DL(1)v]; such a choice
is always possible by (3.37). Note that according to the spectral theorem we have



19

Py, g = limy_,x, (Ao — A)(Ag — A)~1g, where the limit is the one in L2(R™). Hence,
we find

(gff> - (z;) (Ao — 1)~ (Ao — 1) P, [SL(n) + DL ()]
= (Ao —n) <gy> (Ao — M)_lﬁ)\o [SL(p)e + DL(1)%]

= o= () (A=) Jim (o — (4o = A [SLGp + DLGL)]
Note that the mapping

<z37u) (Ao — )™ L2(R) — HY?(2) x HV(2)

is continuous. Hence, we conclude

(8) = Jm 00 =000 = () (=070 51000 + DL

)\Ho

= i o = N0 =) (2 ) (o =07 (o = 07 (o = )17 + B

Applying two times the resolvent identity, we find first for g € L?(R") that

(Ao =)™ (o =)™ (Ao = 1079 = =0 =)™ = (Ao =071 =)'y

- ﬁ(AO — - ﬁ[(AO =) = (4o =Ny

With a continuity argument this extends to all g € H=2(R"). Using this, we find
finally

() = 00 =000 () o =07 o =07 o =420

Py, (AO Z)\/\E(Z\';Q_ lu) <[;’yl/> [(AO B )\)717/*()0 + (AO - /\)71857/}]

- Ali»nxlo (Ao ()\/\2(2())2 H)A(A) (i) = ﬁRA(AO) <i) ;

which shows that also the second inclusion in (3.36) is true. This finishes the proof
of this theorem. (]

4. ELLIPTIC DIFFERENTIAL OPERATORS WITH §-POTENTIALS SUPPORTED ON
COMPACT LIPSCHITZ SMOOTH SURFACES

This section is devoted to the study of the spectral properties of the differential
operator which is formally given by A, := P + ady. First, we introduce A, in Sec-
tion 4.1 as an operator in L?(R™) and show its self-adjointness; in this procedure we
also obtain in Proposition 4.2 the Birman-Schwinger principle to characterize the
discrete eigenvalues of A, via boundary integral equations. Then, in Section 4.2 we
discuss how these boundary integral equations can be solved numerically by bound-
ary element methods. Finally, in Section 4.3 we show some numerical examples.
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4.1. Definition and self-adjointness of A,. As usual, ; ¢ R™ is a bounded
Lipschitz domain with boundary ¥ := 0§, Q. := R"\(, and v denotes the unit
normal to ;. Recall the definition of the elliptic partial differential expression P
from (3.2), the Sobolev space Hp (£;/.) from (3.6), and the weak conormal derivative
B, from (3.4) and (3.7). For a real valued function o € L*(X) we define in L?(R")
the partial differential operator A, by

(4.1)
Aaf =Pli®Pfe,

dom Ao :={f = i @ fe € Hp(Q) ® Hp(Qe) : /i = vfe, Bufe = Bufi = avf}.
With the help of (3.8) it is not difficult to show that A, is symmetric in L?(R™):

Lemma 4.1. Let o € L*(X) be real valued. Then the operator A, defined by (4.1)
is symmetric in L2(R™).

Proof. We show that (A f, f)r2@n) € R for all f € dom A,. Let f € dom A, be
fixed. Using (3.8) in € and €. and that the normal v is pointing outside of §; and
inside of €, we get

(Aaf, frzwry = (Pfis fi) L2 + (Pfe, fo) L2(au)
= (bQi[fia fl] - (Bl/fia’}/fi) + (I)Qe[fe, fe] + (Bufea’yfe)'

Since f € dom A, we have vf; = vf.. This implies, in particular, f € H*(R")
and hence ®q.[fi, fi] + o, [fi, fe] = Prn[f, f]. With the help of the transmission
condition for f € dom A, along ¥ we conclude

(Aozfa f)L2(]R") = Qg [fa f] + (Bufc - viiaf}/f) = (I)]R’"[fv f] + (a’)/fa fo)

Since the sesquilinear form ®g~ is symmetric and « is real valued, the latter number
is real and therefore, the claim is shown. (I

In the following proposition we show how the discrete eigenvalues of A, can
be characterized with the help of boundary integral operators. First, we deter-
mine the eigenfunctions in ker(A4, — A) © ker(Ap — A) with the Birman-Schwinger
principle for A,, where the linear eigenvalue problem for the unbounded partial
differential operator A, is translated to the nonlinear eigenvalue problem for a
family of boundary integral operators which are related to the single layer bound-
ary integral operator S(A). The eigenfunctions of A, in ker(A4, — A) nker(Ag — )
are characterized with the help of Theorem 3.8. To formulate the result below
recall for A € p(Ag) U 04isc(Ap) the definition of the single layer potential SL(\)
from (3.17), the set M, from (3.18), the single layer boundary integral operator
S(N) from (3.23), So(A) := S(A) | L*(X), and R4y, from (3.35). The following
result allows us later in Section 4.2 to apply boundary element methods to compute
all discrete eigenvalues of A, numerically.

Proposition 4.2. Let a € L*(X) be real valued and let A, be defined by (4.1).
Then the following is true for any A € p(Ag) U daisc(Ao):

(i) ker(Aq — A) ©ker(Ag — A) # {0} if and only if there exists 0 # ¢ € My N
L3(X) such that (I + aSy(\))¢ = 0. Moreover,

(4.2) ker(An,—\)Oker(Ag—A\) = {SL(\)¢ : ¢ € M, NLA(D), (I +aSs(N\)p = 0}.
(i) If A€ p(Ag), then X e op(Aq) if and only if —1 € o, (aSp(A)).
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(iii) ker(Ay, — A) N ker(Ag — A\) # {0} if and only if there exists (,9)" €
ran R 4(y,) such that ap = 0.

(iv) If A ¢ 0p(An) U a(Ap), then I + aSy(X) admits a bounded and everywhere
defined inverse in L*(X).

Proof. (i) Assume first that ker(A, — A\) © ker(Ag — A) # {0} and let f € ker(A4, —
A)Bker(Ag—A). Then by Lemma 3.3 (i) there exists ¢ € M such that f = SL(A)ep.
Since f € dom A, one has with Lemma 3.3 (ii)

a’Yf = Bufe - Bufi = BV(SL()‘)LP)e - BV<SL()‘)§0)1 = —p.

In particular, we deduce ¢ € L?(X) and with vf = S(A\)¢ = So()\)¢p this can be
rewritten as —p = aSy(A)¢. Moreover, the above considerations show

(4.3) ker(Aq — A) ©ker(4g — A) = {SL(A)p : o € My, (I + aSo(N))p = 0}.

Conversely, assume that there exists 0 # ¢ € My n L*(X) such that (I +
aSo(N))¢ = 0. Then f := SL(A\)p € Hp(R™\E) n H'(R") and it follows from
Lemma 3.3 (ii) that f is nontrivial. Using the jump properties of SL(\)¢ from
Lemma 3.3 (ii) we conclude further

B, fe =B, fi = —p = aSo(N)g = avf,

where it was used that ¢ belongs to the kernel of I + aSp()). Hence, f € dom A,,.
With Lemma 3.3 (i) we conclude, as ¢ € M, that

(Ao = A)f = (P = X(SLAN)@)i @ (P = A)(SL(M)g)e = 0,
which shows A € 0,(4,) and
(4.4) {SL(\)¢ : p € My, (I +aSp(A)p = 0} < ker(A, — ).
Note that (4.3) and (4.4) give (4.2). Hence, all claims in item (i) are proved.

Assertion (ii) is a simple consequence of item (i), as for A ¢ o(A4g) we have
ker(Ag — A\) = {0} and M, = H~V/2(%).

Statement (iii) follows from Theorem 3.8. Note that f € dom A, n dom Ag if
and only if f € H2(R") and ayf = B, f. — B, fi = 0. With Theorem 3.8 it follows
that f € ker(A, — ) nker(Ag— ) if and only if there exists (¢,9)" = (vf,B,f)" €
ran R 4(y) such that ap = 0.

(iv) Since Sp(A) is compact in L?(X) by Lemma 3.4 (i), it follows from Fredholm’s
alternative that I + aSp()) is bijective in L?(¥) and admits a bounded inverse, if
0¢ op(I+aSo(X)). According to item (ii) this is fulfilled, if A ¢ op(An)Uo(Ap). O

Now we are prepared to show the self-adjointness of the operator A,. In the
proof of this result we show also a Krein type resolvent formula, which allows us
to verify that the essential spectrum of A, coincides with the essential spectrum
of the unperturbed operator Ag. We remark that the resolvent formula in (4.5) is
well defined, as I + aSp()\) is boundedly invertible in L?(X) for A € p(A4g) N p(As)
by Proposition 4.2 (iv).

Proposition 4.3. Let o € L®(X) be real valued, let the operators Ay, SL(M),
and S(A), X € p(Ag), be given by (3.9), (3.17), and (3.23), respectively, and let
So(A) = S(\) | L3(X). Then the operator A, defined by (4.1) is self-adjoint in
L2(R™) and the following is true:
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(i) For A€ p(Ag) n p(Ay) the resolvent of A, is given by
(4.5) (Ao =N = (A= A) 71 = SLOV (I + aSo(N) " ay(Ag — A) 7%
(11) Uess(Aa) = O—ess(AO)'

Proof. In order to prove that A, is self-adjoint, we show that ran(A4,—\) = L*(R")
for A€ C\(0(A4p) U 0p(As)). Let f e L?(R™) be fixed and define

9= (Ag— A1 f = SLO(I + aSo(A) " av(Ag — A) L.

Note that g is well defined, as I + aSp()) admits a bounded inverse in L?(X) for
A ¢ 0(Ap) uop(Ay) by Proposition 4.2 (iv). We are going to show that g € dom A4,
and (A, — A\)g = f. This shows then ran(4, — \) = L?(R") and also (4.5).

Since (A9 — A\)~1f € H?(R") by Proposition 3.2, we conclude y(Ag — A\)~1f €
L?(¥) and further from Proposition 4.2 (ii) and Lemma 3.3 that

SLO) (I + aSo(N) "ay(Ao — A) L f € HA(R™\E) n H(R™).
Therefore, also g € Hs(R™\X) n H'(R"). Moreover, we have by Lemma 3.3 (ii)
Buge — Bgi — avg = (I +aSy(N) " av(Ag — N1 f —av(Ag — A f
+aSo(N) (I + aSo(N) ay(4g = N1 f =0,
which shows g € dom A,. Next, we have with ¢ := (I + aSo(A)) " tay(Ag — )1 f
(Aa=A)g = (P =X)(Ag = X) ' f = (P = X)(SL()i ® (P = M) (SL(N)p)e = f,

where (3.19) for A € p(Ap) was used in the last step. With the previous considera-
tions we deduce now the self-adjointness of A, and (4.5).

It remains to show assertion (ii). Let A € C\R be fixed. First, due to the mapping
properties of the resolvent of Ay from Proposition 3.2 and the mapping properties
of v from (3.1) the operator

’Y(AO — )\)—1 . LQ(Rn) N H3/2(E) PN Hl/Q(Z)

is bounded. Since H'/?(X) is compactly embedded in L?(X) this and Proposi-
tion 4.2 (iv) yield that

(I +aSo(N) lay(Ag = \) ' LA(RY) — L2(%)

is compact. As L?(X) is boundedly embedded in H~2(X) and SL(\) : H~'/2(Z) —
L?(R™) is bounded, we conclude that

(Ao — N7 = (A9 = A) ' = —SLO) (I + aSo(N) ™ an(4y — A~

is compact in L?(R™). Therefore, with the Weyl theorem we get oess(As) =
O'ess(Ao). |:|

By combining the results from Proposition 4.2 and Proposition 4.3 we can prove
now the following proposition about the inverse of the Birman-Schwinger operator
I + aSp(N), which will be of great importance for the numerical calculation of the
discrete eigenvalues of A, via boundary element methods.
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Proposition 4.4. Let a € L*(X) be real valued and let A, be defined by (4.1).
Then the map

p(Aa) A p(Ag) 3 A — (I +aSy(N) ™!
can be extended to a holomorphic operator-valued function, which is holomorphic
in p(Aa) with respect to the toplogy in B(L*(X)). Moreover, for Ao ¢ 0ess(Aa) =
Oess(Ag) one has ker(A, — \g) © ker(Ag — \o) # {0} if and only if (I + aSp(N))~*
has a pole at \g and

(4.6) ker(Aq—Xo)Oker(Ag—XAg) = {SL(Xo)¢ : /\linio()\—)\o)(l—i—aSo()\))—le # 0}.

Proof. The proof is split into 4 steps.
Step 1: Define the map
[B.]: Hp(RME) — HVA(E), [Bsf = Bufi = Bufe,
and let A € p(Ay) N p(Ao) be fixed. We show that
(4.7) (I+aSW\) ™" = [By]n(Aa — A) 1y
Note that (I+aS(X)) ™! is well defined by the same reasons as in Proposition 4.2 (iv),
as aS(\) € B(H/2(), L*(X)) is compact in H~/?(X). In particular, this implies
that [B,]s(Aa — \)"'y* € B(H~Y?(X)). To show (4.7) we note first that (4.5)
implies
Y Aa =N = (A =N =S +aSO)) (Ao — N7,

which implies, after taking the dual,

(Ao — N)71y* = SL(A) = SL(N) (I + S(A)a)

-1

S(A).
Using
oI + S()\)a)_l - (I+ aS()\))_la
— (T +aSW) [T+ aSA\)a—a(l +SN)a)|(T+SA)a) " =0,
we can simplify the last expression to
(A — A)7'9* = SL(A) = SLO) (I + aS(\)) ""aS(A)

= SLO) (I +aSN) T [(I +aS(\) — aS(V)]
— SLO(I +aS(\) .

In particular, by Lemma 3.3 the right hand side belongs to B(H~Y2(%), H:(R™\X))

and thus, the same must be true for (A, — A\)~!y*. Therefore, we are allowed to

apply [B,]s and the last formula shows, with the help of Lemma 3.3 (ii), the
relation (4.7).

Step 2: We show that [B,]x(As — A)~'7* € B(H~Y?(X)) for any X € p(A,) and
that p(A4,) 3 A [B,]s(Aa — ) 71v* is holomorphlc in B(H-'2(%)).

First, we note that dom A, < Hl(R”) N H}(R™\X) implies that

(Ag — Nt e B(L2(R™), H'(R™)) and (A, —\)"' e B(L*(R™), HH(R™\X)),
see (3.16) for a similar argument. Hence, by duality also

(Aq — N7t e BLHTYR™), L*(R™)).
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With the resolvent identity this implies for any Ao € p(Ay) and A € p(Ay) N p(Ao),
in a similar way as in the proof of Proposition 3.2, first that

[Bu]E(Aa - /\0)717* - [BV]E(Aa - )‘)717*
= (Ao = N[Bo]n(Aa = Xo) " (Aa = A) 1%,

which yields first with (4.7) that [B,]s(As — Ao)~'v* € B(HV/2(¥)) and in a
second step, that [B,]s(Aq —Ao)~"y* is holomorphic in B(H ~1/2(X)), which shows
the claim of this step.

Step 3: With the help of (4.7) and the result from Step 2 we know that (I +
aS(N))~! can be extended to a holomorphic map in B(H~'/?(X)) for A € p(A,). By
duality we deduce that (I +aS(\))~" is holomorphic in B(H'/2(X)) for A € p(Aqy).
Finally, by interpolation we conclude that (I + aS()\))~! is also holomorphic in
B(L?(%)) for X € p(Ay).

Step 4: Finally, it follows from Proposition 4.2 (i) that ker(A, — Ag) © ker(4y —
Ao) # {0} if and only if there exists ¢ € My, such that (I + aSo(Ao))p =0, i.e. if
and only if A — (I +aSp(\))~! has a pole at \g. This shows immediately (4.6). O

4.2. Numerical approximation of discrete eigenvalues of A,. For the nu-
merical approximation of the discrete eigenvalues of A, and the corresponding
eigenfunctions we consider boundary element methods. These require the knowl-
edge of an explicit integral representation of the paramatrix G(A) of P — A or
at least a good approximation of the boundary integral operator So(A). This is
for example the case when P has constant coefficients. We restrict ourselves to
three-dimensional domains Q; < R3 in order to keep the presentation simple. The
presented procedure and the obtained convergence results can be straightforwardly
transfered to domains with general space dimensions. The discrete eigenvalues of
A, split into the eigenvalues of the nonlinear eigenvalue problem

(4.8) (I +aSy(N)p =0

in p(Ap) and into distinct discrete eigenvalues of Ag, which can be characterized
on the one hand as poles of the operator-valued functions .A(-) having the property
specified in Proposition 4.2 (iii) and on the other hand as poles of [I + aSy(:)]~*
lying in oqisc(Ap)-

In the following we will first consider the case that there are no discrete eigen-
values of Ag, that means that all discrete eigenvalues can be characterized as eigen-
values of the nonlinear eigenvalue problem (4.8). This is for example the case
when P has constant or periodic coefficients. Afterwards the general case will be
treated. For both cases we will present convergence results of the boundary element
approximations of the discrete eigenvalues of A,. In the first situation a complete
numerical analysis is provided, whereas in the general case for the approximation of
the eigenvalues in ogisc(Ap) the convergence theory of Section 2 can not be applied.
In addition we will address the numerical solution of the discretized problems which
results in the determination of the poles of matrix-valued functions. For that the
so-called contour integral method is suggested [10] which is a reliable method for
finding all poles of a meromorphic matrix-valued function inside a given contour in
the complex plane.



25

4.2.1. Approzimation of discrete eigenvalues of A, for the case cqisc(Ag) = @. If
oaisc(Ao) = &, then, by Proposition 4.2 (ii), Ag € C\oess(Aa) is a discrete eigenvalue
of A, if and only if it is an eigenvalue of the nonlinear eigenvalue problem (4.8). Any
conforming Galerkin method for the approximation of the eigenvalue problem (4.8)
is according to the abstract results in Section 2 a convergent method since p(A4g) 2
A (I +aSy(N)) is by Lemma 3.4 (iii) holomorphic in B(L?(X)) and (I + aSp(N))
satisfies for A € p(Ag) Garding’s inequality of the form (2.1) because aSp(\) :
L3(X) — L*(X) is compact, see Lemma 3.4 (i).

For the presentation of the boundary element method for the approximation of
the discrete eigenvalues of A, we want to consider first the case that Q; — R3
is a bounded polyhedral Lipschitz domain. The general case is commented in
Remark 4.6. Let (Ty)nen be a sequence of quasi-uniform triangulations of the
boundary ¥ of €, see e. g. [31, Chapter 4] or [33, Chapter 10], such that

n(N)
(4.9) TN:{TfV,...,TﬁN)} and X = U TJN,

=1
where we assume that for the mesh-sizes h(N) of the triangulations Ty the relation
h(N) — 0 holds as N — co. We choose the spaces of piecewise constant functions
So(Twn) with respect to the triangulations Ty as spaces for the approximations of
eigenfunctions of the eigenvalue problem (4.8). For a finite-dimensional subspace
V < H5(X), s € [0,1], we have the following approximation property of So(7x)
with respect to || - |2(xy [33, Thm. 10.1]:

(4.10) 6L2(g)(‘/7 SO(TN)) = sup inf HU — (PNHL2(E) = O(h(N)s)
o] vzeV . »NESo(TnN)
VL2 =

The Galerkin approximation of the eigenvalue problem (4.8) reads as: find eigen-
pairs (Ay, pn) € C x So(Tn)\{0} such that

(4.11) ((I + OéSo()\N))gON,iﬁN) =0 V¢N € SO(TN)-

All abstract convergence results from Theorem 2.1 can be applied to the approxi-
mation of the eigenvalue problem (4.8) by the Galerkin eigenvalue problem (4.11).
In the following theorem we only state the asymptotic convergence order of the
approximations of the eigenvalues and the corresponding eigenfunctions.

Theorem 4.5. Let D c p(Ag) be a compact and connected set in C such that 0D

is a simple rectifiable curve. Suppose that A € D is the only eigenvalue of I+ aSy(-)
in D and that ker(I + aSo(X)) < H*(X) for some s € (0,1]. Then there exist an
Ny € N and a constant ¢ > 0 such that for all N = Ny we have:

(i) For all eigenvalues Ay of the Galerkin eigenvalue problem (4.11) in D
(4.12) A= An| < e(h(N))Hs

holds.
(ii) If (Aw,un) is an eigenpair of (4.11) with Ay € D and |pn|r2(xy = 1, then

inf - <c(An — Al + (R(N))*).
wEker(IlI-&aSO()\)) H‘P QONHL2(2) C(l N |+( ( )))

Proof. The error estimates follow from the abstract convergence results in The-
orem 2.1, the approximation property (4.10) of So(7n), and the fact, that the
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eigenfunctions of the adjoint problem are more regular than those of (I + aSy(+)).
To see the last claim, we note that a solution of the adjoint eigenproblem

(I +aSo(N)*¢ = (I +So(Na)p =0
belongs by Lemma 3.4 (i) to H'(X) and hence, by (4.10)
5[]2(2)(1{81‘(([ + CYSO(A))*7 SO(TN)) < Ch(N)
holds. O

Remark 4.6. If Q is a bounded Lipschitz domain with a curved piecewise C?-
boundary the approximation of the boundary by a triangulation with flat triangles
as described in [31, Chapter 8] still guarantees convergence of the approximations
of the eigenvalues and eigenfunctions with the same asymptotic convergence order
as in Theorem 4.5. This can be shown by using the results of the discretization of
boundary integral operators for approximated boundaries [31, Chapter 8] and the
abstract results of eigenvalue problem approximations [21,22].

The Galerkin eigenvalue problem (4.11) results in a nonlinear matrix eigen-
value problem of size n(N) x n(NN), which can be solved by the contour integral
method [10]. The contour integral method is a reliable method for the approxi-
mation of all eigenvalues of a holomorphic matrix-valued function M (-) which lie
inside of a given contour in the complex plane, and for the approximation of the
corresponding eigenvectors. The method is based on the contour integration of the
inverse function M(-)~! and utilizes that the eigenvalues of the eigenvalue prob-
lem for M () are poles of M(-)~1. By contour integration of the inverse M(-)~! a
reduction of the holomorphic eigenvalue problem for M (-) to an equivalent linear
eigenvalue problem is possible such that the eigenvalues of the linear eigenvalue
problem coincide with the eigenvalues of the nonlinear eigenvalue problem inside
the contour. For details of the implementation of the method we refer to [10].

4.2.2. Approximation of discrete eigenvalues of A, for the case oqisc(Ag) # @. If
odisc(Ag) # @, then Proposition 4.2 and Proposition 4.4 show that the discrete
eigenvalues of A, are poles of [I + aSy(-)]™! or the poles of A(-) satisfying the
property specified in Proposition 4.2 (iii). The boundary element approximation of
the discrete eigenvalues of A, are based on these characterizations.

First we want to consider the approximation of the poles of (I + aSy(+))~!. For
those poles of (I + aSy(+))~! which lie in p(Ag) the abstract convergence results of
Section 2 can be applied with the same reasoning as in the case cqisc(Ao) = &, since
(I4+aS(+)) is holomorphic in p(Ag) and the poles of (I+aSy(+)) ™! in p(Ag) coincide
with the eigenvalues of the eigenvalue problem for (I + aSy(+)) in p(Ag). If Ap is a
pole of (I + aSy(+))~! which lies in ogisc(Ap), then (I + aSy(+)) is not holomorphic
in \gp and therefore the convergence results of Section 2 are not applicable for the
boundary element approximation of A\yg. To the best of our knowledge a rigorous
numerical analysis of the Galerkin approximation of such kind of poles of Fredholm
operator-valued functions for which the inverse is not holomorphic at the poles
have not been considered so far in the literature. However, we expect similar
convergence results also of such kind of poles. If this holds, then this kind of
poles of (I + aSp()\))~t, which is holomorphic in p(A,) by Proposition 4.4, are
appropriately represented as poles of the discretized problem and will be identified
by the contour integral method.
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Finally, we want to discuss the approximation of the discrete eigenvalues of
A, which are not poles of [I + aSy(-)]7!. If \g is such an eigenvalue, then, by
Proposition 4.2 (iii), it is a pole of A(:) such that a pair (¢, ) € ran R 4(»,) defined
by (3.35) exists with ag = 0 or equivalently that (X, p,%), (p,%) # (0,0), satisfies

(4.13) AN <:ﬁ> = <8) and  ap=0.

The characterization in (4.13) can be used for the numerical approximation of the
discrete eigenvalues of A, which are not poles of [I + aSy(-)]~!. For the boundary
element approximation of the eigenvalue problem in (4.13) we need in addition
to the space of piecewise constant functions So(7x) the space of piecewise linear
functions S1 (7). Formally, the Galerkin eigenvalue problem

(4.14) (A(A)l (W) : (JN» =0 forall @x) € S1(Twn) x So(Tw)

on) \@n

is considered. However, if the contour integral method is used for the computations
of the eigenvalues of the Galerkin eigenvalue problem (4.14), then A(-)~! has not
to be computed, since the contour integral method operates on its inverse A().
The abstract convergence results of Section 2 can be applied to the approximation
of those eigenvalues )\ of the eigenvalue problem (4.13) for which A(-)~! is holo-
morphic. In general it is possible that \g is a pole of A(-) and of A(-)~!. In this
case, as mentioned before, a rigorous analysis of the Galerkin approximation has
not been provided so far.

4.3. Numerical examples. We present two numerical examples for P = —A. In
this case Ay is the free Laplace operator and o(Ag) = 0ess(Ao) = [0,00), and the
fundamental solution for P — X is given by G(X; z,y) = eV =¥l (4x |z —y|) 1 [28,
Chapter 9]. In particular, the operator A has no discrete eigenvalues and therefore
the eigenvalues of A, coincide with the eigenvalues of the eigenvalue problem for
I+ aSp(+). The Galerkin eigenvalue problem (4.11) is used for the computation of
approximations of discrete eigenvalues of A, and corresponding eigenfunctions. In
all numerical experiments the open-source library BEM++ [32] is employed for the
computations of the boundary element matrices.

4.3.1. Unit ball. As first numerical example we consider as domain 2; the unit
ball and a constant a. The eigenvalues of A, for constant a have an analytical
representation [2, Theorem 3.2] which are used to show that in the numerical ex-
periments the predicted convergence order (4.12) is reflected. Let | € Ny be such
that 21 + 1 < —a. Then A is an eigenvalue of A, of multiplicity 21 + 1 if

L+adiyiy (m)Klﬂ/z (m) =0,

where I;,y/5 and K,/ denote modified Bessel functions of order I + 1/2. Con-
versely, all eigenvalues of A, are of the above form.

For the numerical experiments we choose a = —6. In Table 1 the errors of
the approximation of the eigenvalues of A, with a = —6 for three different mesh
sizes h are given. For multiple eigenvalues A\, [ = 1,2, we have used the mean
value of the approximations, denoted by Xg), for the computation of the error. The
experimental convergence order (eoc) reflects the predicted quadratic convergence
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order (4.12). In Figure 1 plots of computed eigenfunctions of A, in the zy-plane are
given where for each exact eigenvalue one approximated eigenfunction is selected.

|/\;9)_/\<o>‘ ‘:\f)—k“w ‘j\(h%_,\(z)‘
h W €0cC W €eocC W eoc
0.2 1.203e-2 - 2.837e-2 - 1.666e-1 -
0.1 2.473e-3 2.28 6.968e-3 2.02 3.969%¢e-2  2.07

0.05 4.344e-4  2.48 1.781e-3 1.95 9.593e-3  2.06

TABLE 1. Error of the approximations of the eigenvalues of A,

«a = —06, of the unit sphere for different mesh-sizes h.
x10° x10° x10°
) I ) IZ i I_s
1
5 1
! ! ! -~ 05
0 0 Q o o N
-1 1° -1 R -1 - -0.5
2 2 » 2 -1
-15 -1.5
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
FicUure 1. Computed eigenfunctions of A,, o = —6, in the xy-

plane for the unit ball.

4.3.2. Screen. For the second numerical example we have chosen a d-potential sup-
ported on the non-closed surface I' := [0,1] x [0,1] x {0} = R3, which is referred
to as screen. The interaction strength « is defined by a = —15xr, where xr is the
characteristic function on I" given as

(2) 1, forxzel,
x) =
T 0, else.

Such a problem fits in the described theory of this section. Take for example as
domain §2; the unit cube, as we have done in our numerical experiments, then I is
identical with one of the faces of ¥ = 0€);.

In the numerical experiments we have chosen as contour the ellipse g(t) = ¢ +
acos(t) +ibsin(t), t € [0, 2], with ¢ = —15.0, a = 14.99 and b = 0.01. We have got
four eigenvalues of the discretized eigenvalue problem inside the contour, namely
A = —43.02, AP = —23.93, AY) = —23.88, and A = —5.59 for the mesh-size
h = 0.0125. Plots of the numerical approximations of the eigenfunctions in the
xy-plane are given in Figure 2.

5. ELLIPTIC DIFFERENTIAL OPERATORS WITH ¢’-INTERACTIONS SUPPORTED ON
COMPACT LIPSCHITZ SMOOTH SURFACES

In this section we study the spectral properties of the partial differential operator
which corresponds to the formal expression Bg := P + ((d%, )0’ in a mathemat-
ically rigorous way and study its spectral properties. The considerations are very
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FIGURE 2. Computed eigenfunctions of A, in the zy-plane for
a = —15x10,1]x[0,1]x {0} -

similar as for A, in Section 4. First, in Section 5.1 we show the self-adjointness of
Bg in L*(R") and obtain the Birman-Schwinger principle to characterize the dis-
crete eigenvalues of Bg via boundary integral operators in Proposition 5.2. Then,
in Section 5.2 we discuss how these boundary integral equations can be solved nu-
merically by boundary element methods. Finally, in Section 5.3 we show some
numerical examples.

5.1. Definition and self-adjointness of Bg. For a real valued function 8 with
B~1 e LP(X) we define in L?(R") the partial differential operator Bg by
(5.1)
Bgf:=Pfi@Pfe,
dom By := {f = i® fo € H5(%) ® H5(Q) : Bo fi = By fo, vfe —vfi = BB, f}.
With the help of (3.8) it is not difficult to show that Bs is symmetric in L?(R"™):

Lemma 5.1. Let 3 be a real valued function on ¥ with 371 € L*(X). Then the
operator Bg defined by (5.1) is symmetric in L*(R™).

Proof. We show that (Bgf, f)r2@n) € R for all f € dom Bs. Let f € dom Bg be
fixed. Using (3.8) in ; and Qe and that the normal v is pointing outside of €2; and
inside of €2, we get
(Bsf, f)r2mny = (Pfi, fi) L2 + (Pfes fo) 200
= (I)Qi[fivfi] - (Bl/fh’}/fi) + (I)Qc[vafe] + (vim'yfe)'
Since f € dom Bg we have B, fi = B, fe and 8B, f = (vfe — vfi). Therefore, we
conclude
(Bﬁfa f)LZ(]R") = q)Qi [fia fl] + (I)Qe [fea fe] + (Bufa 7fe - r}/fl)
= Oq,[fi, il + Pa.[fe, fe] + (Buf, BB f).

Since the sesquilinear forms ®q,  are symmetric, the latter number is real and
therefore, the claim is shown. O

The following proposition is the counterpart of Proposition 4.2 to characterize
the discrete eigenvalues of Bg via boundary integral operators. It is the theoretic
basis to compute these eigenvalues with the help of boundary element methods in
Section 5.2. To formulate the result below recall for A € p(Ap) U daisc(Ap) the defi-
nition of the double layer potential DL(\) from (3.25), the set Ny from (3.26), the
hypersingular boundary integral operator R(A) from (3.31), and R 4(»,) from (3.35).

Proposition 5.2. Let 3 be a real valued function on ¥ with 3~ € L®(X) and let
Bg be defined by (5.1). Then the following is true for any A € p(Ag) U 0disc(Ao):
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(i) ker(Bg—\)©ker(Ag— \) # {0} if and only if there exists 0 # ¢ € Ny such
that (371 + R()\))¢ = 0. Moreover,

(5.2)  ker(Bg — ) ©ker(Ag — \) = {DL(N)p : p e Ny, (B~ + R(A\))p = 0}.
(ii) If A€ p(Ayg), then X € o, (Bg) if and only if 0 € o, (B~ + R(N)).
iii) ker(Bg — A) N ker(Ag — \) # {0} if and only if there exists (p,9)" €
B
ran R 4(»,) such that ¢ = 0.
(iv) If A ¢ 0p(Bg) U o(Ap), then 71 + R(\) : HY?(X) — H~Y2(Z) admits a
bounded and everywhere defined inverse.

Proof. (i) Assume first that ker(Bg — A) © ker(Ag — \) # {0} and let f € ker(Bg —
A)©ker(Ag—A). Then by Lemma 3.5 (i) there exists ¢ € Ay such that f = DL())¢.
Since f € dom Bg one has with Lemma 3.5 (ii)

BB, f =7fe —7fi = V(DL(A)g)e — v(DL(A)p)i = ¢.

With B, f = —R(A\)¢ this can be rewritten as 37 1p = —R()\)p. Hence, the above
considerations show

(5.3)  ker(Bg — ) Oker(4g — ) = {DL(A\)¢ : ¢ € N, (B~ + R(N))¢ = 0}.

Conversely, assume that there exists ¢ € N such that (871 + R(\))¢ = 0.
Then f := DL(A\)¢ € Hp(R™\X) is nontrivial by Lemma 3.5 (ii). Using the jump
properties of DL(A)¢ from Lemma 3.5 (ii) we conclude further B, f; = B, f, and

Yfe —7fi = Y(DLA)g)e — v(DL(N)p); = ¢ = =BR(N)¢ = BB, f,

where 71T + BR()\))¢ = 0 was used. Hence, f € dom Bg. With Lemma 3.5 (i)
we conclude with ¢ € N eventually

(Bg = A)f = (P = A)(DL(A)e)i @ (P — A)(DL(A)g)e = 0,
which shows A € o,(Bg) and
(54)  {DL(\)g:peNy, (B~ +R(N)p =0} < ker(Bg — ) © ker(Ag — A).

Note that (5.3) and (5.4) give (5.2). Hence, all claims in item (i) are proved.

Assertion (ii) is a simple consequence of item (i), as for A ¢ o(A4p) we have
ker(Ag — A) = {0} and N\ = HY2(%).

Statement (iii) follows from Theorem 3.8. Note that f € dom Bg ndom Ay if and
only if f € H2(R") and B, f = 8~ (vf. — vf;) = 0. With Theorem 3.8 it follows
that f € ker(Bs —\) nker(Ag— \) if and only if there exists (p,1)" = (vf, B, f)T €
ran R 4(5,) such that ¢ = 0.

(iv) First, we note that the multiplication with the function 3= € L* () gives
rise to a bounded operator from H'/2(X) to L?*(X) and as L?(¥) is compactly em-
bedded in H~/2(X), the operator f~* : H/?(X) — H~Y?(%) is compact. There-
fore, we deduce from [28, Theorem 2.26] that S~' + R(\) : HY/?(2) — H/2(%)
is a Fredholm operator with index zero, as R(\) is a Fredholm operator with in-
dex zero by Lemma 3.6 (ii). Since A is not an eigenvalue of Bg by assumption,
we deduce from (ii) that 371 + R()) is injective and hence, this operator is also
surjective. Therefore, it follows from the open mapping theorem that 3=! + R()\)
has a bounded inverse from H~Y2(X) to H'/?(%). O
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In the following proposition we show the self-adjointness of Bg and a Krein type
resolvent formula for this operator. We remark that the resolvent formula in (5.5)
is well defined, as 8~ + R(\) : H/2(X) — H~Y/2(¥) is boundedly invertible for
A € p(Ag) n p(Bg) by Proposition 5.2 (iv).

Proposition 5.3. Let 3 be a real valued function on ¥ with 3~ € L®(X) and let
the operators Ag, DL(X), and R(X), A € p(Ap), be given by (3.9), (3.25), and (3.31),
respectively. Then the operator Bg defined by (5.1) is self-adjoint in L*(R") and
the following is true:

(i) For X € p(Ao) n p(Bg) the resolvent of Bg is given by
(5.5) (Bg—A)"'=(Ag—A)""+ DL\ (B + R(/\))_lB,,(AO - N

(ii) Oess(Bg) = 0ess(Ao)-
Proof. In order to show that B is self-adjoint, we show that ran(Bg —\) = L*(R")
for A € C\(c(4p) U 0p(Bg)). Let f e L*(R™) be fixed and define

g:= (Ao = N7 f + DL (571 + R(N) T By (Ao — NS,
Note that g is well defined, as 7' +R(\) : HY/?(X) — H~/2(X) admits a bounded
inverse for A ¢ 0(Ao) U op(Bg) by Proposition 5.2 (iv). We are going to show that
g € dom Bg and (Bg — A)g = f. This shows then ran(Bs — \) = L?(R") and
also (5.5).
Since (Ag—A)~1f € H?(R™) by Proposition 3.2 implies B, (Ag—\) "1 f € L*(¥)
H~'/2(%), we conclude from Proposition 5.2 (iv) and Lemma 3.5 that
DL (87" + R(A) "B, (Ao — \) "L f € HA(R™\X).

Therefore, also g € Hp(R™\X). Moreover, we get with the help of Lemma 3.5 (ii)
that B,ge = B,gi. Applying once more Lemma 3.5 (ii) we conclude

_ (e ~1 _ _

B (19 —791) = Bug = BT (87T + R(N)) ™ Bu(Ao = N7 = By(Ag = N7 f
+ RO (B +R() B (49— AL =0,
which shows g € dom Bg. Next, we have with ¢ := (871 + R(A\))"*B,(Ag — \) 71 f
(Bs = A)g = (P =N)(Ag = )" f + (P = M)(DL(V)g); @ (P — )(DL(\)¢)e = f,

where (3.27) was used in the last step. With the previous considerations we deduce
now the self-adjointness of Bg and (5.5).

It remains to show assertion (ii). Let A € C\R be fixed. Due to the mapping
properties of the resolvent of Ay from Proposition 3.2 and the mapping properties
of B, from (3.7) the operator

B,(4g— N L L2(R") - L) — HY2(%)
is bounded. Hence, Proposition 5.2 (iv) yields that
(B +R\N) B, (Ag— AL LA(R™) — HY2(S)

is bounded. As H'/2(¥) is compactly embedded in L?(X) we conclude that the
latter operator is compact from L?(R™) to L?(X). Since DL()) : L?(X) — L?*(R™)
is bounded by (3.25), we find eventually that

(Bs— A1 = (49 = A) 7 =DLA) (B + R(A) T Bu(4g — A) !
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is compact in L?(R™). Therefore, we get with the Weyl theorem o0ess(Bg) =
Uess(AO)- |:|

The following result is the counterpart of Proposition 4.4 on the inverse of the
Birman-Schwinger operator 371! + R()), which will be of great importance for
the numerical calculation of the discrete eigenvalues of B via boundary element
methods.

Proposition 5.4. Let 3 be a real valued function with 71 € L*(X) and let Bg be
defined by (5.1). Then the map

p(Bs) n pl(do) 3 A > (87 + R(Y))

can be extended to a holomorphic operator-valued function, which is holomorphic
in p(Bg) with respect to the toplogy in B(H~Y2(X), HY2(X)). Moreover, for Ao ¢
Oess(Bg) = 0Oess(Ag) one has ker(Bg — Ao) © ker(Ag — Xo) # {0} if and only if
(B~ + R(N)™! has a pole at \g and

(5.6) ker(Bg—Xo)Sker(Ag—Ao) = {DL(Xo)p : AILII)%O(A—AO)(ﬁ*1+R(A))*1S0 # 0}.

-1

Proof. The proof is similar as the proof of Proposition 4.4 and split into 3 steps.
Step 1: Define the map

[z : Hp(RME) — H2(2),  [lsf :=vfe —fs
Let A € p(Bg) n p(Ap) be fixed. We show that

(5.7) (57 +RM) ™ = [le(Bs = N1k
In particular, with Proposition 5.2 (iv) this implies that [v]s(Bg—\)~![v]x belongs
to B(H-'/2(X), HY/?(X)). To show (5.7) we note first that [y]sf = 8B, f holds for
f € dom Bg and hence (5.5) implies
[Vs(Bs =N~ = BB, (Bs —A)~!

= BB, (Ao =N = ROV~ + R(V) ™ Bu(Ao — )"

= B[ +RO) = RM](B™ + R(M) B, (Ao = 1)

= (B +RO)) ' Bu(Ag - N7,
which implies, after taking the dual,

(Bs =N [7]& =DLA) (B~ + R(N))
In particular, by Lemma 3.5 and Proposition 5.2 (iv) the right hand side belongs
to B(HY/2(X), H5(R™\X)) and thus the same must be true for (B — A\)~![]%.
Therefore, we are allowed to apply [v]s and the last formula shows, with the help
of Lemma 3.5 (ii), the relation (5.7).

Step 2: We show that [y]s(Bs — N\)"'[]% € B(H-Y2(X), H/?(X)) for any
A € p(Bg) and that the mapping p(Bg) 3 A — [v]s(Bs — A)~![7]% is holomorphic
in B(H-'2(%), H/2(%)).

First, we note that dom Bz < Hj(R™\X) implies that

(Bg =\~ e B(L*(R™), Hp(R™\X)),

-1
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see (3.16) for a similar argument. Hence, by duality also
(Bs —A) 7" e B(Hp(RMX))*, L*(R")).

With the resolvent identity this implies for any Ao € p(Bg) and A € p(Bg) n p(Ao),
in a similar way as in the proof of Proposition 3.2, that

Vs(Bs = X0) ' g — [Yl=(Bs — A) 1%
= (Ao — N[V](Bs — Xo)H(Bs — A) [,

which shows first with (5.7) that [v]s(Bg — o) " [V]% € B(HV2(%), HY/2(X)) and
in a second step, that [y]s(Bs—A)"*[7]% is holomorphic in B(H~V/2(%), H'/2(%)),
which shows the claim of this step.

Step 3: Finally, it follows from Proposition 5.2 (i) that ker(Bg — Ag) © ker(A4o —
Xo) # {0} if and only if there exists ¢ € N, such that (371 + R(M\g))¢ = 0, i.e. if
and only if A — (871 +R()\))~! has a pole at \g. This shows immediately (5.6). [

5.2. Numerical approximation of discrete eigenvalues of Bz. The approx-
imation of the discrete eigenvalues of Bg by boundary element methods is based
on the same principles as those for the discrete eigenvalues of A, described in Sec-
tion 4.2. In order to apply boundary element methods for the approximation of the
discrete eigenvalues of Bpg it is necessary to have an integral representation of the
paramatrix G(A) of P — X or at least a good approximation of the boundary inte-
gral operator R(A). We use the characterization of the discrete eigenvalues of Bs in
terms of boundary integral operators given in Proposition 5.2 and Proposition 5.4.
The discrete eigenvalues split into the eigenvalues of the nonlinear eigenvalue prob-
lem

(5.8) BT+ R\ =0

in p(A4p) and into distinct discrete eigenvalues of Ay which are either the poles of
A(-) satisfying the properties specified in Proposition 5.2 (iii) or poles of (37! +
R('))_l iIl O'diSC(Ao).

In the following presentation of the boundary element method we want to con-
sider first the case that 0qisc(Ag) = @ and then the general case. If o4isc(Ag) = &,
then the discrete eigenvalues of By coincide with the eigenvalues of the nonlinear
eigenvalue problem (5.8) in p(Ag) as shown in Proposition 5.2 (ii). In this situation
a complete convergence analysis is provided by the theory of Section 2. For the
general case the convergence of the approximations of the discrete eigenvalues of
Bg which lie in 04isc(Aop) is an open issue.

The discretized problems for the approximation of the discrete eigenvalues of Bg
which result from the approximations of the boundary integral operators by bound-
ary element methods are problems for the determination of poles of meromorphic
matrix-valued functions. For this kind of problems we suggest the contour integral
method [10], which was discussed in Section 4.2.1.

5.2.1. Approzimation of discrete eigenvalues of B, for the case ogisc(4o) = 9.
For oqisc(Ag) = @ the discrete eigenvalues of Bg coincide, according to Propo-
sition 5.2 (ii), with the eigenvalues of the eigenvalue problem for (3= + R(:)).
Lemma 3.6 (iii) shows that the map p(A4g) 3 A — (871 + R(\)) is holomorphic
in B(H'?(2), H~'/2(X)). Moreover, by Lemma 3.6 (i) the operators 5~ + R()\)
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satisfy for A € p(A4p) Garding’s inequality of the form (2.1). Hence, any conform-
ing Galerkin method for the approximation of the eigenvalue problem (5.8) is a
convergent method, which follows from the theory in Section 2.

For the boundary element approximation of the eigenvalue problem (5.8) we first
assume that €); is a polyhedral Lipschitz domain. The case of general Lipschitz do-
mains is addressed in Remark 5.6. Let (7n)nen be a sequence of quasi-uniform
triangulations of {; with the properties specified in (4.9). As approximation space
for the approximation of the eigenfunctions of the eigenvalue problem (5.8) we
choose the space S*(Ty) of piecewise linear functions with respect to the triangu-
lation 7. The approximation property of S1(7y) depends on the regularity of the
functions which are approximated. In order to measure the regularity of functions
defined on a piecewise smooth boundary ¥, partitioned by open sets ¥q,...,%;
such that

J
Z:Uij, ijEizgfori;éj,
j=1

so-called piecewise Sobolev spaces of order s > 1 defined by
HS (D) :={ve H(X) : v | &€ H¥(S;) for j=1,...,J}
are used, see [31, Definition 4.1.48]. For s € [0,1] the space H,,(¥) is defined by

Hy (%) := H*(X). If W is a finite dimensional subspace of HI%VQJFS(E) for s € (0, 2],
then
(5.9) 5H1/2(2)(VVa S1(Tn)) = sup inf lw — wNHHlﬂ(Z) = O(h(N)?)

weW YneS1(TN)
HwHH1/2(E)=1

holds [31, Proposition 4.1.50].

The Galerkin approximation of the eigenvalue problem (5.8) reads as follows:
find eigenvalues Ay € C and corresponding eigenfunctions ¢y € S1(7x)\{0} such
that

(5.10) (B + ROAN)UN,xN) =0 Vxn € S1(Tw).

We can apply all convergence results from Theorem 2.1 to the Galerkin eigenvalue
problem (5.10). In the following theorem the asymptotic convergence order of
the approximations of the eigenvalues and the corresponding eigenfunctions are
specified.

Theorem 5.5. Let D < p(Ayp) be a compact and connected set in C such that 0D 1is
a simple rectifiable curve. Suppose that A € D is the only eigenvalue of (B~1+R())
in D and that ker(8~! + R(\)) H,}{,,“S(E) for some s € (0,3]. Then there exist
an Ny € N and a constant ¢ > 0 such that for all N = Ny we have:

(i) For all eigenvalues An of the Galerkin eigenvalue problem (5.10) in D

(5.11) |)\ — )\N| < C(h(N))QS
holds.
(ii) If (AN, un) is an eigenpair of (5.10) with Ax € D and [Yn| g2y = 1,
then
12 - B e
o1 ¢EkCr(51£ll+R(>\)) [ =Nl < ey | + (R(N))?)
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Proof. We have shown in Lemma 3.6 (iii) that the map p(A4g) 3 X — (B~ +R(N)) is
holomorphic in B(HY?(¥), H/2(X)). Moreover, by Lemma 3.6 (i), the operators
B~ + R(N) satisfy for A € p(A4y) Garding’s inequality of the form (2.1). The
Galerkin approximation (5.10) of the eigenvalue problem for (87! + R(:)) is a
conforming approximation since S*(7y) is a subspace of HY?(¥). Hence, we can
use Theorem 2.1. The error estimates follows from the approximation property (5.9)
of S*(Tx) and the fact, that the eigenfunction of the adjoint problem are as regular
as for (871 + R(")). O

Remark 5.6. If © is a bounded Lipschitz domain with a curved piecewise C2-
boundary the approximation of the boundary by a triangulation with flat triangles
as described in [31, Chapter 8] reduces the maximal possible convergence order s
for the error of the eigenvalues in (5.11) and for the error of the eigenfunctions
in (5.12) from s = 3 to s = 1. This follows from the results of the discretization of
boundary integral operators for approximated boundaries [31, Chapter 8] and from
the abstract results of eigenvalue problem approximations [21,22].

5.2.2. Approzimation of discrete eigenvalues of B, for the case caisc(Ao) # @. If
odisc(Ao) # &, then Proposition 5.2 and Proposition 5.4 imply that the discrete
eigenvalues of By are poles of (371 +R(+)) ™! or poles of A(-) with the property given
in Proposition 5.2 (iii). These characterizations are used for the approximation of
the discrete eigenvalues of Bg. We will separately discuss both cases.

Let Ao be a discrete eigenvalue of B and in addition be a pole of (871 +R(+)) 1.
Then (87! + R(-)) is either holomorphic in g, which is the case for A\g € p(4y), or
Ao is a pole of (371 +R(:)). A pole \g € p(Ag) of (871 +R(-))~! can be considered
as an eigenvalue of the eigenvalue problem for the homomorphic Fredholm operator-
valued function (37! +R(+)) in p(Ag) and the convergence results of Section 2 can
be applied with the same reasoning as in the case of c4isc(Ag) = &. If A\g € daisc(Ao)
is a pole of (371 +R(+)), then the convergence theory of Section 2 is not applicable
for A\g. We expect convergence of the approximations for this kind of poles of
(871 + R(:))7!, but a rigorous numerical analysis has not established so far.

The approximation of a discrete eigenvalue Ao of Bg which is not a pole of
(B~ +R(-))~! is based on the following characterization from Proposition 5.2 (iii):
Ao is a pole of A(-) and there exists a pair (0,0) # (¢, @) € HY?(X) x H-1/2(%)
such that

(5.13) AN (zﬁ) - (8) and ¥ —0.

For the approximation of the eigenvalues of the nonlinear eigenvalue problem in (5.13)
formally the Galerkin problem in S(7x) x S°(Tx) as given in (4.14) is considered.
If the contour integral method is used for the computations of the approximations
of the eigenvalues for A(-)~!, then A(-)~! does not have not be computed, but
instead its inverse A(-). The convergence theory of Section 2 can be applied to
the approximation of those eigenvalues of A(-)~! for which A(-)~! is holomorphic.
If o is a pole A(-) and of A(-)~!, we again expect convergence, but a numerical
analysis for such kind of poles has not been provided so far.

5.3. Numerical examples. For the numerical examples of the approximation of
discrete eigenvalues of Bg we choose P = —A. In this case 0ess(Ag) = [0,0),
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aise(Ag) = @, the fundamental solution is given by G(\;z,y) = eVAe=vl(4x |z —
y[)~1, and the discrete eigenvalues of Bs coincide with the eigenvalues of the non-
linear eigenvalue problem for (37! +R(-)). The Galerkin eigenvalue problem (5.10)
is used for the computation of approximations of discrete eigenvalues of Bz and
corresponding eigenfunctions.

5.3.1. Unit ball. We consider for the first numerical example as domain €); again the
unit ball. Analytical representations for the discrete eigenvalues of B are known
in this case [2, Section 6] and are used to compute the errors of the approximations
and to check the predicted asymptotic error estimate (5.11). The errors of the
approximations of the eigenvalues of Bz with 37! = —1.5 which lie inside the
contour ¢(t) = ¢ + acos(t) + ibsin(t), ¢t € [0,2x], with ¢ = —6.0, a = 5.99 and
b = 0.01 are given in Table 2 for three different mesh sizes h. We denote by Xg),
| = 1,2, the mean value of the approximations of the multiple eigenvalues A(V. A
quadratic experimental convergence order (eoc) can be observed which is according
to Remark 5.6 the best possible convergence order if flat triangles are used for the
triangulation of a curved boundary as it has been done in our experiments. In
Figure 3 plots of computed eigenfunctions of Bg in the zy-plane are given where
for each exact eigenvalue one approximated eigenfunction is selected.

|/\;9)_,\<o>‘ ‘X(hl)_k(l)| ‘j\(h%_,\(z)‘
h W €ocC W eoc W eoc
0.2 3.232e-3 - 1.885e-3 - 6.745e-3 -
0.1 7.099e-4 2.19 3.926e-4 2.26 1.406e-3 2.26

0.05 1.635e-4 2.11 8.958e-5 2.13 3.054e-4  2.20

TABLE 2. Error of the approximations of the eigenvalues of Bg,
B~1 = —1.5, of the unit ball for different mesh-sizes h.

20
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FIGURE 3. Computed eigenfunctions of Bg, 371 = —1.5, in the
zy-plane for the unit ball.

5.3.2. L-shape domain. In the second numerical example we have chosen as domain
Qi a so-called L-shape domain with ; = (—1,1)3\([0,1]? x [~1,1]) and we have
set 37! = —0.75. In the numerical experiments the ellipse g(t) = ¢ + acos(t) +
ibsin(t), t € [0,2x], with ¢ = —4.0, a = 3.99 and b = 0.01, is taken as contour
for the contour integral method. We have got three eigenvalues of the discretized
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-1.5 | -4

FIGURE 4. Computed eigenfunctions of Bg, 37! = —0.75, for the
L-shape domain ©; = (—1,1)%\([0,1]? x [—1,1]) in the zy-plane.

eigenvalue problem inside this contour, namely )\ELO) = —5.54, )\S) = —4.41 and
)\22) = —2.94 for the mesh-size h = 0.1. Plots of the numerical approximations of

the eigenfunctions in the xy-plane are given in Figure 4.
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