TU

Grazm

Technische Universitat Graz

Fully and Semi-Automated Shape Differentiation in
NGSolve

P. Gangl, K. Sturm, M. Neunteufel, J. Schdberl

Berichte aus dem
Institut fir Angewandte Mathematik

Bericht 2020/5

Technische Universitat Graz

Fully and Semi-Automated Shape Differentiation in
NGSolve

P. Gangl, K. Sturm, M. Neunteufel, J. Schoberl

Berichte aus dem
Institut fur Angewandte Mathematik

Bericht 2020/5

Technische Universitat Graz

Institut fir Angewandte Mathematik
Steyrergasse 30

A 8010 Graz

WWW: http://wuw.applied.math.tugraz.at

© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

Fully and Semi-Automated Shape Differentiation in
NGSolve

Peter Gangl*, Kevin Sturm', Michael Neunteufel* and Joachim Schéberl®

April 14, 2020

Abstract

In this paper we present a framework for automated shape differentiation in the finite
element software NGSolve. Our approach combines the mathematical Lagrangian approach
for differentiating PDE constrained shape functions with the automated differentiation ca-
pabilities of NGSolve. The user can decide which degree of automatisation is required and
thus allows for either a more custom-like or black-box-like behaviour of the software.

We discuss the automatic generation of first and second order shape derivatives for un-
constrained model problems as well as for more realistic problems that are constrained by
different types of partial differential equations. We consider linear as well as nonlinear prob-
lems and also problems which are posed on surfaces. In numerical experiments we verify the
accuracy of the computed derivatives via a Taylor test. Finally we present first and second
order shape optimisation algorithms and illustrate them for several numerical optimisation
examples ranging from nonlinear elasticity to Maxwell’s equations.

Keywords: shape optimisation, automated differentiation, shape Newton method

1 Introduction

Numerical simulation and shape optimisation tools to solve the problems have become an in-
tegral part in the design process of many products. Starting out from an initial design, non-
parametric shape optimisation techniques based on first and second order shape derivatives can
assist in finding shapes of a product which are optimal with respect to a given objective func-
tion. Examples include the optimal design of aircrafts [28,29], optimal inductor design [16],
optimisation of microlenses [23], the optimal design of electric motors [10], applications from
mechanical engineering [2,19], multiphysics problems [9] or electrical impedance tomography
(EIT) in medical sciences to name only a few [13].

Shape optimisation algorithms are based on the concept of shape derivatives. Let .of € 2 (R?)
a set of admissible shapes and ¢ : .¢/ — R a shape function. Given an admissible shape 2 € .o/

*TU Graz, Steyrergasse 30, 8010 Graz, Austria, E-Mail: gangl(at)math.tugraz.at

TTU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria, E-Mail: kevin.sturm(at)tuwien.ac.at

*TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria, E-Mail: michael.neunteufel(at)tuwien.ac.at
$TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria, E-Mail: joachim.schoeberl(at)tuwien.ac.at

2 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

and a sufficiently smooth vector field V, we define the perturbed domain Q, := (Id + tV)(Q) for
a small perturbation parameter t > 0. The shape derivative is defined as

i 2R -5 (@)

t=0 N0 t

(1.1)

pr@)i=(1-00))

In most practically relevant applications, the objective functional depends on the shape of
a (sub-)domain via the solution of a partial differential equation (PDE). Thus, one is facing a
problem of PDE-constrained shape optimisation of the form

min J(Q,u)
(Qu)ed xX (12)

st. (Qu)e . xX :e(Qu,v)=0 forallveX.

Here, the second line represents the constraining boundary value problem posed on a Hilbert
space X, which we assume to be uniquely solvable for all admissible 2 € .«/. Denoting the
unique solution for a given 2 € ./ by ug, we introduce the notation for the reduced functional

Z(Q) :=J(Q,ug).

In order to be able to apply a shape optimisation algorithm to a given problem of this kind,
the shape derivative (1.1) has to be computed, see the standard literature [5,32] or [33] for
an overview of different approaches. In the following we focus on computing the so-called vol-
ume form of the shape derivative which in a finite element context is known to give a better
approximation compared to the boundary form; see [4,15].

The convergence of shape optimisation algorithms can be speeded up by using second order
shape derivatives. Given two sufficiently smooth vector fields V, W and an admissible shape
Qe .o, let Q, := (Id+sV + tW)(Q) the perturbed domain. Then, the second order shape
derivative is defined as

(1.3)

dZ
D2 H@WIW) = (15 (.0)

s,t=0

Second order information in Newton-type algorithms has been explored in the articles [1, 8,
22,24,31]. Since the computation of second order shape derivatives is more involved and er-
ror prone, several authors have employed automatic differentiation (AD) tools, see e.g. [27]
and [12] for two approaches based on the Unified Form Language (UFL) [3]. In [12], the au-
thors present a fully automated shape differentiation software which uses the transformation
properties on the finite element level. In [27] (see also the earlier work [26]) the automated
derivatives are computed using UFL. The strategy of [12] and [27] differ in that, for the latter,
the software computes an unsymmetric shape Hessian since it involves the term D _¢(Q)(dVW).
Optionally the software allows to make the shape Hessian symmetric by requiring dVW = 0.
Let us also mention [7] where automated shape derivatives for transient PDEs in FEniCS and
Firedrake are presented.

In this paper we present an alternative framework for AD of PDE constrained problems of
type (1.2). There exist several approaches for the rigorous derivation of the shape derivative of
PDE-constrained shape functionals, see [34] for an overview. The main idea, however, is always

Automated Shape Optimisation in NGSolve 3

similar. After transforming the perturbed setting back to the original domain, shape differentia-
tion in the direction of a given vector field reduces to the differentiation with respect to the scalar
parameter t which now enters via the corresponding transformation and its gradient. It is shown
in [33] that the shape derivative for a nonlinear PDE-constrained shape optimisation problem
can be computed as the derivative of the Lagrangian with respect to the perturbation parame-
ter. We will illustrate this systematic procedure for a number of different applications and utilise
symbolic differentiation provided by the finite element software package NGSolve [30] to obtain
the shape derivative for different classes of PDE-constrained optimisation problems. NGSolve
allows for a fast and efficient numerical solution of a large number of different boundary value
problems. The aim of this paper is to extend NGSolve by the possibility of semi-automatic and
fully automatic shape differentiation and optimisation.

Distinctly from previous approaches we cover the following two points:

e a fully automated setting requiring as input the weak formulation of the constraint and
the cost function,

e a semi-automated setting which offers a highly customizable user interface, but requires
mathematical background knowledge.

Structure of the paper. In Section 2 we give a brief introduction on how to solve a PDE in
NGSolve and present its built-in auto-differentiation capabilities. The introduced syntax will
also lay the foundation for the following sections. In Section 3 we present a first unconstrained
shape optimisation problem and show how to solve it in NGSolve. For this purpose we show
how to compute the first and second order shape derivative in a semi-automated way. Section 4
extends the preceding section by incorporating a PDE constraint. The strategy is illustrated
by means of a simple Poisson equation. We also show how to treat the computation of shape
derivatives when the PDE is defined on surfaces. While the semi-automated shape differentiation
presented in Sections 3 and 4 requires mathematical background knowledge, in Section 5 we
show how the shape derivatives can be computed in a fully automated fashion. In the last section
of the paper we verify the computed formulas by a Taylor test, discuss optimisation algorithms
and present several numerical optimisation examples including nonlinear elasticity, Maxwell’s
equations and Helmholtz’s equation.

2 A brief introduction to NGSolve

In this section, we give a brief overview over the main concepts of the finite element software
NGSolve [30]. We first describe the main principles for numerically solving boundary value
problems in NGSolve before focusing on its built-in automatic differentiation capabilities. In the
subsequent sections of this paper, these ingredients will be combined to implement the shape
derivative of unconstrained and PDE-constrained shape optimisation problems in an automated
way.

[CRy—

~

10

12

4 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

2.1 Solving PDEs with finite elements in NGSolve

In this section, we illustrate the syntax of NGSolve using the python programming language
for the Poisson equation with homogeneous Dirichlet conditions as a model problem. We refer
the reader to the online documentation

https://ngsolve.org/docu/latest/

for a more detailed description of the many features.
The weak form of the model problem on a domain Q c R¢ reads

Find u € H)(Q) : /Vu-VW dx = /fw dx forall w e H}(Q). (2.1)
Q Q

We consider a ball of radius % in two space dimensions centered at the point (0.5,0.5)7, i.e.

Q =B((0.5,0.5)",0.5), and the right hand side is defined by f (x;, x,) = 2x,(1—x,)+2x;(1—x,).

We will go through the steps for numerically solving this problem by the finite element method.
We begin by importing the necessary functionalities and setting up a finite element mesh.

from ngsolve import x
from netgen.geom2d import SplineGeometry

geo = SplineGeometry ()

s| geo.AddCircle ((0.5,0.5) ,0.5,bc="circle")

mesh = Mesh(geo.GenerateMesh (maxh=0.2))
mesh . Curve (3)

The first line imports all modules from the package NGSolve. The second line includes the
SplineGeometry function which enables us to define a mesh via a geometric description, in our
case a circle centered at (0.5,0.5)" of radius 0.5. Finally the mesh is generated in line 7 and
in line 8 we specify that we want to use a curved finite element mesh for a more accurate
approximation of the geometry.

Next in line 9 we define an H! conforming finite element space of polynomial degree 3 and
include Dirichlet boundary conditions on the boundary of the domain Q2 (referenced by the
string ‘‘circle’’ that we assigned in line 5). On this space we define a trial function u in line
11 and a test function w in line 12. These are purely symbolic objects which are used to define
boundary value problems in weak form.

fes = Hl(mesh, order=3, dirichlet="circle")

u = fes.TrialFunction ()
w = fes.TestFunction ()

For a more compact presentation later on, we define a coefficient function X which combines
the three spatial components:

;5|X = CoefficientFunction ((x,y,2z))

Now, the left and right hand side of problem (2.1) can be conveniently defined as a bilinear or
linear form, respectively, on the finite elements space fes by the following lines.

https://ngsolve.org/docu/latest/

14

16

17

19

Automated Shape Optimisation in NGSolve 5

1.863e-82 2. 14%e-82 3.251e-82 4.315e-82 5. d@0e-g2

|':_|l:

Hetgen 6.2-dew

Figure 1: Solution of problem (2.1) by code fragments of Section 2.1 with 29 nodes, 40 (curved)
triangular elements and polynomial order 3.

L = LinearForm (fes)

1 = (25X[1]%(1=X[1]) +2+X[0]%(1=X[0]))

L += f1l % w x dx

a = BilinearForm (fes, symmetric=True)
a += grad (u) xgrad (w) xdx

We assemble the system matrix coming from the bilinear form a and the load vector coming
from L and solve the corresponding system of linear equations.

a.Assemble ()
L.Assemble ()

gfu = GridFunction (fes)
gfu.vec.data = a.mat.Inverse (fes.FreeDofs(), inverse="sparsecholesky") x L.vec

Draw (gfu, mesh, "state")

Here, gfu is defined as a GridFunction over the finite element space fes. The Dirichlet con-
ditions are incorporated into the direct solution of the linear system and the numerical solution
is drawn in the graphical user interface. The numerical solution is depicted in Figure 1.

6 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

2.2 Automatic Differentiation in NGSolve

In NGSolve, symbolic expressions are stored in expression trees, see Figure 2 for an example.
It is possible to differentiate an expression expr with respect to a variable var appearing in expr
into a direction dir by the command

expr.Diff (var, dir).

Mathematically this line corresponds to the directional derivative of g:=expr at x := var in
direction v := dir, that is,
Dg(x)(). (2.2)

When calling the Diff command for expr, the expression tree of expr is gone through node by
node, and for each node the corresponding differentiation rules such as product rule or chain
rule are applied. When a node represents the variable with respect to which the differentiation
is carried out, it is replaced by the direction dir of differentiation.

Figure 2 shows the differentiation of the expression expr= 2x*x+3y with respect to x into
the direction given by v:

v = Parameter (1)
eXpr = 2%xX*X+3x%y

o| dexpr = expr.Diff (x,v)

print (expr)
print (dexpr)

The output of print (expr) reads

coef binary operation ’+’, real
coef binary operation ’*’, real
coef scale 2, real
coef coordinate x, real
coef coordinate x, real
coef scale 3, real
coef coordinate y, real

which translates to 2x *x x 4+ 3y and corresponds to the expression tree depicted in Figure 2(a).
The output of print (dexpr) reads

coef binary operation ’+’, real
coef binary operation ’+’, real
coef binary operation ’*’, real
coef scale 2, real
coef Nbngfem28ParameterCoefficientFunctionE, real
coef coordinate x, real
coef binary operation ’*’, real
coef scale 2, real
coef coordinate x, real
coef Nbngfem28ParameterCoefficientFunctionE, real
coef scale 3, real
coef 0, real

»|w = fes.TestFunction () # symbolic object

a X

® 3

Automated Shape Optimisation in NGSolve 7

&) &)
*) @)) &

(@) (b)

Figure 2: Illustration of Diff command for example expr= 2x*x+3y. (a) Expression tree for
expr. (b) Expression tree for expression obtained by call of expr.Diff (x, dir).

which translates to (2v * x + 2x % v) + 3 % 0 and corresponds to the expression tree depicted in
Figure 2(b).

By default NGSolve GridFunctions as well as trial and test functions do not depend on the
spatial variables x, y, z. While trial and test functions are purely symbolic objects, GridFunctions
represent functions in the finite element space. The code segments

u = fes.TrialFunction () # symbolic object

gf = GridFunction (fes)
gf.Set (x*x*y)

print ("Diff u wrt x", u.Diff(x))
print("Diff w wrt x", w.Diff(x))
print ("Diff gf wrt x", gf.Diff(x))

will give the following output:

Diff u wrt x: ConstantCF, val 0
Diff w wrt x: ConstantCF, val 0
Diff gf wrt x: ConstantCF, val = 0

3 Semi-automatic shape differentiation without constraints

We will illustrate the steps to be taken in order to obtain the shape derivative of a shape function
in a semi-automatic way for a simple shape optimisation problem. For Q ¢ R? bounded and open
and a continuously differentiable function f € C!(R?), we consider the shape differentiation of

8 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

the shape function

#(@)= / fx)dx. 3.1

Clearly the minimiser of _¢ over all measurable sets in RY is given by Q* = {x € R?: f(x) < 0}.
We also refer to [25] for the computations of first and second order variations of type (3.1)
where Q is a submanifold of RY.

3.1 First order shape derivative

Given a vector field V € C%1(R?)¢, we define the transformation
T.(x):=(d+tV)(x), x€R¢ t>0.

Definition 3.1. The first order shape derivative of a shape function ¢ at Q in direction V €
C%(R9)! is defined by
ST~ F(@)

i (3.2)
N0 t

DAE@(V) =1

3.1.1 Shape differentiation of unconstrained volume integrals

Using the transformation y = T,(x) and the notation F, := dT, =1 + tdV for the Jacobian of
the transformation T,, we get for _¢ as in (3.1),

2@)= [F6ax' = [(o T et () dx. (33)
Q, Q
Now let us explain how to compute the shape derivative of _¢. Denoting
6T, F) = [(f o T)) der(F (), (3.4
Q
the chain rule gives (formally)
d d dG dT, dG dFt)
—2(Q = —G(T,F =— +——t .
ac”) - dt (T, F.) =0 (th dt = dF, dt }|,_,

Using that %(x) =V(x) and %(x) = dV(x), we get for the shape derivative

(L4 2,5,)
~ \dT, dF,

@)= 5(0)

t=0 t=0

This is the form we use for defining the first order shape derivative in NGSolve. Note that a
Lipschitz vector field is differentiable almost everywhere and hence dV(x) is defined almost
everywhere and bounded.

Given the function f(x;,x,) = (x; —0.5)?/a® + (x, — 0.5)*/b> —R*> with a = 1.3, b = 1/a
and R = 0.5, we implement the transformed cost function (3.3) as follows:

40
41

42

46

47

49

Automated Shape Optimisation in NGSolve 9

f

((X[0]—=0.5) /1.3) %2+ (1.3%(X[1]—0.5)) #%2 — 0.5%%2

Id (2) # symbolic identity matrix

F =
|G f = f % Det(F) % dx # F only acts as a dummy variable

Here, we introduce the symbol F and assign to it the value of the identity matrix in line 42. This
allows us to differentiate with respect to F. Then we define the function G of (3.4) in line 43.
The shape derivative is a bounded linear functional on a space of vector fields. We introduce a
vector-valued finite element space VEC and define the object representing the shape derivative
dJOmega_f as a linear functional on VEC. In line 48, we differentiate with respect to the spatial
variables in the direction given by V. Note that X is the coefficient function we introduced in
line 13. In line 49, we deal with the differentiation with respect to F.

+|VEC = VectorH1 (mesh, order=1, dirichlet="") #vectorial FE space of order 1
;|V = VEC. TestFunction ()

dJOmega f = LinearForm (VEC)
dJOmega f += G_f.Diff (X, V)
dJOmega f += G _f.Diff (F, grad(V))

Remark 3.2. Defining &, := det(F,) and using %itltzo =divV, it holds

dG dF, dG dé&, dF, dG d&, dG ,
ot - —t = —L = = [fdivVdx.
dFt dt t=0 dgt dFt dt t=0 dgt dt t=0 dgt t=0 Q

Therefore, we obtain for the first order shape derivative the well-known formula

divV

D #(Q)(V)= / V£ -V + f divV dx.
Q
Finally if Q is smooth enough (for instance C!), then the shape derivative is given by
D#(Q)V)= fV-nds, (3.5)
o0

where n denotes the outward pointing normal along 9.

3.1.2 Shape differentiation of unconstrained boundary integrals

For Q and f as in the previous section we consider

() = /a FG)dx 3.6

Then we get
Fond () = o f(xNds = /m(f o T,)(x) det(F,(x))|F,(x) " n(x)|ds,, (3.7)

see e.g. [32, Prop. 2.47], with the outer unit normal vector n and | - | denoting the Euclidean
norm. Again, the shape derivative can be computed as the total derivative of this expression
with respect to the parameter t. In NGSolve, the only difference lies in the necessity to use the
trace of the gradient of a test vector field V.

5

0

SN
R

54

10 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

G f bnd = f % Det(F) * Norm(Inv(F).transxspecialcf.normal(2)) * ds

dJOmega f bnd = LinearForm (VEC)

531 dJOmega f bnd 4= G_f bnd. Diff (X, V) # no trace needed

dJOmega f bnd += G _f bnd.Diff (F, grad(V).Trace()) # trace needed

3.2 Second order shape derivatives

For second order shape derivatives, we consider perturbations of the form
T, (x)=(d+sV +tW)(x), x¢€ RY,
fors,t > 0 and define Q; , := T, ,(Q2).

Definition 3.3. The second order shape derivative of a shape function ¢ at Q in direction
(V,w) € C*(RY)4 x CO(R?)! is defined by

D@V = - g 3.8)

t=0

d

Remark 3.4. We remark that if ¢ is smooth enough, the second order derivative as defined in
(3.8) is symmetric by definition:

D% #(Q)(V)(W) = D? £ ()(W)(V). (3.9)

We stress that this derivative is not the same as the shape derivative obtained by repeated shape
differentiation, that is, it does not coincide with (see, e.g., [6, Chap. 9, Sec. 6])

D # (T (2))(V)—D #()(V)

t

(3.10)

& # (@Q)(V)(W) := lim

which is in general asymmetric. However, in NGSolve we compute directly the second derivative
as defined in (3.8). However, this derivative is only symmetric if VW = 0 since

4> £ (Q)(V)(W) =D? #(Q)(V)(W)+ D #(Q)(8VW). (3.11)

In NGSolve, when repeating the shape differentiation procedure introduced in Section 3.1, we
compute directly the second order shape derivative as defined in (3.8). Here, we exploit that
GridFunctions are independent of the spatial coordinates, see also Section 2.2.

Similarly to the computations of the first derivative, we use the notation F,, := 9T, =
I +s50V 4+ tdW. For the shape function defined in (3.1) we get

d? d?
Q = d
dsdtf(s,t) o dsdt Qs’tf(x) X L
d2

/Q (f o T,)(x) det(F, (x)) dx

= dsdt

s=t=0

Automated Shape Optimisation in NGSolve 11

Again, using the notation G(T;, F;,) = fQ(f T, .)(x) det(F; ,(x)) dx, we get

dz _ i dG de,t + dG dFs,t
~ ds\dT,, dt dF,, dt

2

 dsdt

A “) ——G(T;, F;,)

=t=0 s=t=0 s=t=0

Using that 2 = ds; =0 and 2 ds 2+ =0, we get further

d> _d(dG deui dG \ dF;,
wieo ds\dT,,) dt ds\dF,,) dt |__,

dsdtj(ﬂs’t)
d?G dT,, d*G dF,,\dT,, d*¢ dT,, d%G dF,,\dF,,
:(det ds " dF,dT., ds) dt +(de,tdFs,t ds dF? ds) dt
(3.12)

s=t=0

Formula (3.12) is used for the automatic derivation of the second order shape derivative in
det cht

NGSolve. Using “(x) V(x), 7(x) = W(x) and di’[(x) =0V(x), (x) = dW(x), we
get

dz
Q
dsdtj(s,t)

d*G d*G d?G d*G
= —=V+ oV |W + v+ 2 ov |aw
s=t=0 de,t dFs,ths,t de,tdFs,t d

Remark 3.5. We remark that the formula (3.13) can be evaluated explicitly and reads

s=t=0

(3.13)

D* ¢(Q)(V,W) :/szV-W+Vf-WdiVV+Vf -V divW + f divV diviW — fOV " : W dx.
Q

Formula (3.13) can be implemented in NGSolve as follows:

w
®

55| d2JOmega f = BilinearForm (VEC)
s|W = VEC. TrialFunction ()

d2JOmega f+=(G f.Diff (X, W)+G _f. Diff (F, grad (W))).Diff (X, V)
so| d2JOmega f+=(G_f.Diff (X, W)+G _f. Diff (F, grad (W))).Diff (F, grad(V))

Notice that since W is a trial function it is not affected by the differentiation with respect to X,
see Section 2.2. In the same fashion, second order derivatives of boundary integrals of the form
(3.6) can be computed.

bad S

d2JOmega f bnd = BilinearForm (VEC)

2| d2JOmega f bnd+=(G_f bnd.Diff (X, W)+G_f bnd.Diff (F, grad W) .Trace())).Diff (X, V)
3| d2JOmega f bnd+=(G _f bnd.Diff (X, W)+G _f bnd. Diff (F, grad (W) . Trace())).Diff (F, grad (V
). Trace())

4 Semi-automatic shape differentiation with PDE constraints
In this section, we describe the automatic derivation of the shape derivative for the following
type of equality constrained shape optimisation problems:

m1r1J(Q u) (4.1)
(Q,u)

12 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

subject to (2,u) € .« x X solves
e(Q,u) =0, (4.2)

where e : . x X — X* with e(Q,-) : X(Q2) — X(Q)* represents an abstract PDE constraint with
X = Ugqe X () being the union of Banach spaces X(£2) and .«/ a set of admissible shapes. For
any given Q2 € ./ we assume the PDE constraint (4.2) to admit a unique solution which we
denote by u,. Moreover, let _¢(Q2) := J(£,u,) denote the reduced cost functional. One way to
eliminate the constraint (4.2) is to introduce a Lagrangian

2(Q,u,p) :=J(Q,u)+ (e(Q,u),p). (4.3)

Now an initial shape is perturbed by a family of transformations T,, resulting in a new shape
Q, := T,(22). Transforming back to the initial shape Q2 leads to the Lagrangian:

G(t,u,p) :=2(T,(Q),®,(w), .(p)), u,peX(), (4.4)

where &, : X(Q2) — X(Q,) is a bijective mapping. Here the transformation ¢, depends on the
differential operator involved. For instance

e if X(Q)=H}(Q), then ,(u) =uoT, ",
e if X(Q) =H(curl,), then ®,(w) =0T, "(uo T,),
e if X(Q) = H(div, Q), then &,(u) = ma T,(uo T,).

Now the shape differentiability of (4.1)-(4.2) is reduced to proving that (see [34])
d
DZ(Q)(V)= EG(t,ut,O)If:o = 0,G(0,u, p), (4.5)

where u' := u, o T, and u, € X(Q,) solves e(Q,,u,) = 0. The verification of (4.5) can be ac-
complished by different methods, see e.g. [34] for an overview. However, we remark that (4.5)
holds for a large class of nonlinear PDE constrained shape optimisation; see [33].

The rest of this section is organised as follows: We introduce a model problem, which is
the minimisation of a tracking-type cost functional subject to Poisson’s equation in Section 4.1.
We illustrate how the first and second order shape derivative for this PDE-constrained model
problem can be obtained in NGSolve in Sections 4.2 and 4.3. Finally, we also briefly discuss the
extension to partial differentiation equations on surfaces.

4.1 PDE-constrained model problem

We will illustrate the derivation of the first and second order shape derivative for the minimi-
sation of a tracking-type cost functional subject to Poisson’s equation on the unknown domain
Q.Letd =2or3, f,u; € H'(RY) and ./ ¢ 2(R?) a set of admissible shapes. We consider the
problem

min J(Q,u) = / lu—uy|?* dx (4.6a)
(Q,u) Q

Automated Shape Optimisation in NGSolve 13

subject to (22, u) € .&/ x H}(£) solve

(e(Q2,u),y) :Z/QVu-VQ,bdx—/ﬂf@bdx:O for all ¢ € Hy(€). (4.6b)

The Lagrangian is given by
2@.0.9)i= [lo—uldx+ [Vo vipdr— [fiax 47
Q Q Q

Given an admissible shape , a vector field V € C*'(R?)? and t > 0 small, let Q, := (Id+tV)(2)
the perturbed domain. Therefore the parametrised Lagrangian is given by

G(t,p,9) =2L(T(Q,po T, ,YpoT ™), ¢, €H(Q). (4.8)
Changing variables yields
G(t,p,) = / | —ulj|*det(F,)dx + /(F;Tw) -(F7 V) det(F,)dx —/f%,b det(F,)dx
Q Q Q

(4.9)
= G(TUFU ()01 ”ﬁb):
where uf, =u, 0T, and f' = f oT,. Recall that, for a given Q2 € .¢/, ug, denotes the corresponding
unique solution to (4.6b) and ¢ (2) the reduced cost functional, #(Q) := J(Q,ug). Let u* €
Hé(ﬂ) the solution of the perturbed state equation brought back to the original domain €, that
is, u’ € H}(€2) is the unique solution to
9,G(t,u’,0)(y)=0 forall+p € H)(Q). (4.10)
Note that, for u* defined by (4.10), it holds #(2,) = G(t,u’,) for all yp € H,(£2) and therefore
also D_#(2)(V) = £G(t,u’,) for all yp € H}(Q).

It can easily be shown that (4.5) holds and thus the shape derivative in the direction of a
vector field V € C%'(R)? is given by

D #(Q)(V) = 2,G(0,u,p),
where p € H)(£2) denotes the adjoint state and is defined as the unique solution p € H}(2) to
9,G(0,u,p)(p)=0 forall p € H)(Q), (4.11)

or explicitly

/Vgﬁ -Vpdx = —2/(u—ud)c,5 dx forall ¢ € Hj(R). (4.12)
Q Q

14 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

4.2 First order shape derivative

By the discussion above, the first order shape derivative is given by 9,G(0,u, p) with G defined
in (4.9) and u and p the unique solutions to the boundary value problems (4.6b) and (4.12),
respectively.

Writing G(T,,F,) := G(T,,F,,u,p) = G(t,u,p) we obtain in analogy to the unconstrained
problem

DW= & g(0)

dG dG
= —=Vv+-——2ov
—o \dT, " dF,

t=0

We can compute explicitly

j—lfhzoav = / div(V)(u—uy)?*— 8V + V") Vu-Vp —div(V)Vu- Vp — fpdiv(V) dx,
t Q
(4.13)
dG
—|t=0V=/—Z(u—ud)Vud-V—Vf-Vp dx. 4.14)
dT, Q

Now we are in a position to compute the first order shape derivative for the PDE-constrained
shape optimisation problem (4.6) in NGSolve. After solving the state equation as shown in
Section 2.1, the adjoint equation can be solved as follows.

We can now define the Lagrangian (4.9) such that the shape derivative can be obtained by the
same procedure as in the unconstrained setting. Note that lines 82-83 coincide with lines 48-49.

Automated Shape Optimisation in NGSolve 15

4.3 Second order shape derivative

Let us introduce the notation

Go(s. t,0,) = / (FTV9)- (FT V) det(F,) dx — / foT, pdet(F,)dx (4.15)
(EVW(St)#”l’

/ o~y o T, den(s, i 4.16)

= va(s t)

where T, (x) = x +sV(x) + tW(x) and F;, := T, ,. We observe that

L(T, (Q) = Gy (s, t,u>, p® 9 (4.17)
with (u*, p>*) € H} () x H} () being the solution to

3,Gyw(s, t,u™",0)(p)=0 forall p € H)(Q),

4.18
3,Gyw(s, t,u™,p>)(P)=0 forall ¢ € H}(Q) (4.18)

for s,t > 0. In case t = 0 we write u* := u*'|,_, and p* := p*'|,_, and similarly for t =s =0
we write u := u*|,_,_, and p := p>'|,_,—,. Therefore, consecutive differentiation of (4.17) first
with respect to t at zero and then with respect to s at zero yields

2

d d
D f(ﬂ)(V)(W)— GVW(S t,u” 7p5t)|s t=0 = atGV,W(SJO:us:pS)lszo

= 358tG‘4W(0, 0,u,p)+ auath,W(Oc,i(S), u, p)(8,u®) + 8,0,Gy, (0,0,u,p)(3,p"),
(4.19)
where d,u’ € H,(2) solves the material derivative equation
3,8,Gy(0,0,1,0)(y)(u’) = —8,8,Gyw (0,0,u,0)(vp) for all o) € Hy(€), (4.20)
or equivalently
(8,Eyw(0,0)(8,u’),) = —(0,Ey(0,0)u,vp) for allyp € H) (). (4.21)

Similarly the function 9,p° € H,(£2) solves the material derivative equation

ap auGV,W(OJ O, u, P)(Eb)(aspo) = _auzGV,W(O’ 0,u, P)(¢)(asu0) - as auGV,W(OJ 07 u, P)(l,b) (422)

forally € HS(Q). Formally (4.20) and (4.22) can be written as an operator equation

32Gyw(0,0,u,p) 9,0,Gyw(0,0,u,p)) (3u’ _ (36,Gyw(0,0,u,p) (4.23)
3,8,Gyw(0,0,u,p) 0 ap°)~ \8,8,Gyu(0,0,u,0)) '

S

So to evaluate the second derivative (4.19) in some direction (V, W) we have to solve the system
(4.23).

This is realised in NGSolve by setting up a combined finite element space which we denote
by X2. We define trial and test functions as well as grid functions representing the deformation
vector fields V and W, which we initialise with some functions.

P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

We define a 2x2 block bilinear form as well as a 2x1 block linear form which will represent the
left and right hand sides of (4.23), respectively. The operator equation in (4.23) can be conve-
niently defined by differentiating the Lagrangian with respect to the corresponding variables.

We can solve this combined system for d,u’ and 9,p° and access and visualise the two compo-
nents in the following way:

In order to obtain the second order shape derivative in the direction given by (V, W), it remains
to evaluate the term (4.19). We define the three terms of (4.19) as bilinear forms, assemble
them and perform vector-matrix-vector multiplications:

Automated Shape Optimisation in NGSolve 17

shapeHess11l += (G_pde.Diff (F, grad W))+G pde. Diff (X, W)) . Diff (X, V)

| shapeHess11 . Assemble ()

shapeHess12 = BilinearForm (trialspace = fes, testspace = VEC)

)| shapeHess12 += (G_pde.Diff (F, grad(V)) + G pde.Diff (X, V)).Diff (gfu,wl)

shapeHess12.Assemble ()

o| shapeHess13 = BilinearForm (trialspace = fes, testspace = VEC)

shapeHess13 += (G _pde.Diff (F, grad(V)) + G pde.Diff (X, V)).Diff(gfp,ql)
shapeHess13 . Assemble ()

»lav = gfV.vec.CreateVector ()

av.data = shapeHess1ll.mat * gfV.vec

sl adsu = gfV.vec.CreateVector ()

adsu.data = shapeHess12.mat x gfdsu.vec

w|adsp = gfV.vec.CreateVector ()

adsp.data = shapeHess13.mat * gfdsp.vec

{d2J = InnerProduct(gfW.vec, av) + InnerProduct(gfW.vec, adsu) + InnerProduct (gfW.

vec, adsp)

4.4 PDEs on surfaces

The automated shape differentiation is not restricted to partial differential equations on domains
Q, but is readily extended to surface PDEs. We consider a two dimensional closed surface M C R®
and denote by n the normal field along M. Let u; € H'(R?) be given and define

J(M,u):/ lu—uy|?*ds, (4.24)
M
where u € H'(M) solves the surface equation
/VMu-VMcp+ucp ds=/fcp ds forall p € H'(M), (4.25)
M M

where VM denotes the tangential gradient of ¢; see [6, p.493, Def.5.1]. We assume that the
function f € H'(R?) is given. The Lagrangian is given by

LM, p,v) :=/ |tp—ud|2ds+/ VM - My + o ds—/fw ds. (4.26)
M M M

As in the previous section we fix an admissible shape M and let M, := (Id + tV)(M) be a small
perturbation of M by means of a vector field V € C!(R?)¢ for t > 0 small. The parametrised
Lagrangian is given by

G(t, 0, ¥) = 2L(T(M),po T, poT7Y), v, €H'(M). (4.27)
Define the density w(F,) := det(F,)|F ;Tnl. Changing variables and using
F;Tn F;Tn)

— FT (4.28)
|F7Tn| — |F7Tn|

t

(thSO) oT, = B(Ft)vM((P ° Tt)) B(Ft) = (I

18 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

yields

G(t, 0,) = /M o —ul P o(E,) ds

(4.29)
+ [@RIV BEIVE+ e o) ds— [Fyr)ds
M M
where u, =u;0T, and f'=f o T,.
Writing G(T,, F,) := G(t,u, p) we obtain in analogy to the domain case
dG dG
D#Q)(V)=|—V+—0V .30
s@w= (G gev) (4:30)
We can compute explicitly
§_§|t=ov = / div(V)(u—uy)? —(dMV + aMv) vMu - vMp
t M
+div(V)(VMu - VMp +up) — fp divM(V) ds, (4.31)
d—GIt:()aV:/ —2(u—uy)Vu,y-V—Vf - -Vpds, (4.32)
dT, M

where 2V denotes the tangential Jacobian of V and div (V) := ™V : I the tangential diver-
gence, which is defined as the trace of the tangential Jacobian; see [6, p.495].

The implementation is analogous to the previous sections. We will only illustrate first order
derivatives here. We first define the geometry of the unit sphere, create a surface mesh and
define a finite element space on the surface mesh:

;| from netgen.csg import

from netgen.meshing import x*

s| from ngsolve.internal import visoptions

from ngsolve import =

s| geo_surf = CSGeometry ()

sphere = Sphere (Pnt(0,0,0),1).bc("outer")

geo_surf.Add(sphere)

mesh _surf = Mesh(geo surf.GenerateMesh(perfstepsend=MeshingStep . MESHSURFACE,
optsteps2d=3,maxh=0.2))

s2| mesh_surf. Curve (3)
ss| fes _surf = Hl(mesh surf,order = 3)

Next we define the transformed cost function and partial differential equation needed for setting
up the Lagrangian (4.29). Here, we again make use of a symbolic object F to which we assign
the identity matrix. We define the tangential determinant «w and the matrix B defined in (4.28)
as functions of the deformation gradient F,.

X = CoefficientFunction ((x,y,z))
func = CoefficientFunction (X[0]*X[1]*X[2])

|F = 1d (3)

tangDet = Det(F) % Norm(Inv(F).transkxspecialcf.normal(3))

s|Bmat = (Id(3) — 1/Norm(Inv(F).transxspecialcf.normal(3))*%2 % OuterProduct(Inv(F).

transxspecialcf.normal(3), Inv(F).transkxspecialcf.normal(3))) % Inv(F).trans

159

160

161

162

164

165

166

168
169
170

17

Automated Shape Optimisation in NGSolve 19

def Equation_ surf(u,w):
return ((Bmatxgrad(u).Trace()) * (Bmatkxgrad(w).Trace()) + uxw — func *x w) x
tangDet * ds

2| def Cost_surf(u):

return ux*2 x tangDet * ds

Now we can define the bilinear form and solve the state equation. Here, the right hand side of
the equation is included in the bilinear form and the boundary value problem — although linear
— is solved by Newton’s method (which terminates after only one iteration) for convenience.

#set up and solve state equation
u_surf, w_surf = fes surf.TnT()

7la = BilinearForm (fes_ surf)

a += Equation_surf(u_surf, w_surf)

gfu surf = GridFunction (fes surf)
solvers.Newton(a, gfu surf, printing = False)
Draw(gfu surf, mesh surf, "gfu surf")

The adjoint equation is solved as usual:

#solve adjoint equation

Ifcost surf = LinearForm(fes_ surf)

lfcost surf += Cost surf(gfu surf).Diff(gfu surf, w_surf)
lfcost_surf.Assemble ()

|inva = a.mat.Inverse (fes surf.FreeDofs(), inverse="sparsecholesky")

gfp _surf = GridFunction (fes_surf)
gfp surf.vec.data = —inva.T % lfcost_surf.vec
Draw(gfp surf, mesh surf, "gfp surf")

The shape derivative is obtained as in the case of PDEs posed on volumes by the evaluation of
(4.30):

G_surf = Cost_surf(gfu_surf) + Equation_surf(gfu_surf, gfp surf)

2| VEC3d = VectorH1 (mesh surf, order=1)
3| V3d = VEC3d. TestFunction ()

dJOmega surf = LinearForm (VEC3d)

s| dJOmega surf += G_surf.Diff (X, V3d) + G_surf.Diff(F, Grad(V3d).Trace())

5 Fully automated shape differentiation

In the previous sections we used the automatic differentiation capabilities of NGSolve to alle-
viate the shape differentiation procedure. However, so far we still had to include some knowl-
edge about the problems at hand. So far, it was necessary to define the objective function or
Lagrangian G in the correct way, accounting for the correct transformation rules between per-
turbed and unperturbed domain. In this section, we will show that also this step can be auto-

18¢

190

191

192

193

20 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

mated since all necessary information is already included in the functional setting. The fully
automated shape differentiation is incorporated by the command

DiffShape(...).

In particular, in the fully automated setting it is enough to set up the cost function or Lagrangian
for the unperturbed setting. For a shape function of the type (3.1) we can define the shape
derivative of the cost function in the following way:

|G fO0=1f % dx

dJOmega f 0 = LinearForm (VEC)

s|dJOmega f 0 += G _f 0.DiffShape (V)

Note that there is no term of the form Det (F) showing up in line 186. Here, the transformation
of the domain is taken care of automatically. It can be checked that this really gives the same
result as dJOmega_f defined in lines 48—49.

dJOmega f.Assemble ()

dJOmega f 0.Assemble ()

differenceVec = dJOmega f.vec.CreateVector ()
differenceVec.data = dJOmega f.vec — dJOmega f 0.vec
print (" |dJOmega f — dJOmega f 0| = ", Norm(differenceVec))

The above code gives the output
|dJOmega_f - dJOmega_f_0| = 1.571008573810619e-17

which confirms our claim. The same holds true for second order shape derivatives. The lines
58-59 can be replaced by a repeated call of DiffShape(...):

d2JOmega f 0 = BilinearForm (VEC)

05| d2JOmega f 0 += G_f 0.DiffShape (V) .DiffShape (W)

Again, it can be verified that d2J0mega_f _0 coincides with the previously defined quantity
d2J0mega_£. Note that slightly different results may occur due to different integration rules
used. This can be cured by enforcing an integration rule of higher order for G_£, i.e. by replacing
the symbol dx in the definition of G_f with dx (bonus_intorder=2).

In the more general setting of PDE-constrained shape optimisation, the procedure is very
similar. Here the idea exploited in the implementation of the command DiffShape(...) isto
just differentiate the general expression (4.4) with respect to the parameter t. The transforma-
tions ®, appearing in (4.4), which depend on the functional setting of the PDE, are identified
automatically from the finite element space from which the corresponding functions originate.
The shape derivative of lines 82-83 can be obtained by the following code.

| def Cost_0(u):

return (u—ud)**2 * dx

def Equation 0 (u,w):
return (grad(u) * grad(w) — flsxw) *xdx

G pde 0 = Cost_0(gfu) + Equation 0(gfu, gfp)

Automated Shape Optimisation in NGSolve 21

204 dJOmega pde 0 = LinearForm (VEC)
25| dJOmega _pde 0 += G_pde 0.DiffShape (V)

206

207

208
209

210

216

Here, gfu and gfp represent the solutions to the state and adjoint equation, respectively, and
must have been computed previously. The bilinear form shapeHess11 used in Section 4.3 (see
lines 121-122) can be obtained similarly:

shapeHess11l 0 = BilinearForm (VEC)
shapeHess1ll 0 += G _pde 0.DiffShape (W) .DiffShape (V)

The same holds true for boundary integrals

G f bnd 0 = f % ds
dJOmega f bnd 0 = LinearForm (VEC)
dJOmega f bnd 0 += G _f bnd 0.DiffShape (V)

and surface PDEs

def Cost_surf 0(u):
return uxx2 *x ds

;| def Equation_surf 0 (u,w):

return (grad(u).Trace()*grad (w).Trace() + usxw — func % w) * ds

5| G_surf 0 = Cost_surf 0(gfu surf) + Equation surf 0(gfu surf, gfp surf)

dJOmega surf 0 = LinearForm (VEC3d)
dJOmega surf 0 += G_surf 0.DiffShape (V3d)

as well as their respective second order derivatives.

Remark 5.1. We remark that the fully automated differentiation using DiffShape(. . .) should
be seen to complement the semi-automated shape differentiation techniques introduced in Sec-
tions 3 and 4 rather than to replace them. Using the semi-automated differentiation, the user has
the possibility to, on the one hand, keep control over the involved terms, and on the other hand
also to adjust the shape differentiation to their custom problems which may be non-standard. As
an example where the semi-automated differentiation may be beneficial compared to the fully
automated differentiation we mention the case of time-dependent PDE constraints considered
in a space-time setting when a shape deformation is only desired in the spatial coordinates. Of
course, when one is interested in the shape derivative for a more standard problem, the fully
automated way appears to be more convenient and less error prone.

6 Numerical Experiments

6.1 Code verification

We verify the expressions that we obtained in a semi-automatical or fully automatical way for
the first and second order shape derivatives by looking at the Taylor expansions of the perturbed
shape functionals. We illustrate our findings in two examples in R?. On the one hand, we con-
sider a shape function as introduced in (3.1) with an additional boundary integral as in (3.6),
henceforth denoted by _¢;; on the other hand, we consider the PDE-constrained shape optimi-
sation problem defined by (4.6), the reduced form of which will be denoted by _#,(€2). More

22 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

precisely, we consider
£@= [f@ar+ [feoa, 6.1
Q oN

Z,(Q) = / lug —uy|* dx where ug, solves (4.6b). (6.2)
Q

In the case of ¢;, we used the function f(x;,x,) = (0.5 +4/x]+ xg)Z (0.5 — /X3 + x§)2 and
for #,, we used uy(x1,x5) = x1(1—x;)x,(1 —x,) and f(x, x5) = 2x,(1 —x,) + 2x;(1 —x;) for
the function f in the PDE constraint (4.6b).

For the test of the first order shape derivatives D_#,(2)(V) we choose a fixed shape Q2 and a
vector field V € C%(R?)? and observe the quantity

6,(%, 1) == 14((ld + tV)(Q)) = #(Q) —t D Z(2)(V)I, (6.3)

for t \, 0. Likewise, for the second order shape derivative, we consider the remainder
1
62(F, 0) = | A ((d + tV)(Q) = £(Q) — £ DA(V) = S D" A(Q(VI(V) (6.4)

as t \, 0. By the definition of first and second order shape derivatives, it must hold that
5:(£, t)=0(t*) and 6,(%,t)=0(t>) ast\,0. (6.5)

This behavior can be observed in Figure 3(a) for ¢, and in Figure 3(b) for _#,, where we used
V(xy,x,) = (x3x,e*2, x2x,€*1) in both cases.

107 100
p
102 l
........ Pl Rt
T S —— - ,
.......... i
--------- P *
6L e - P
078 e ’ - /.‘“,...
........ o i
- .
e P
Se >
1 o
P T — =01(J>,t)
1010 2% = =53(Jn,1)]]
& . e 2
.......... 3
10-12 L L
107 1072 107"
t

Figure 3: Taylor test for functions ¢, and _g,.

The experiments for shape function _¢;, was conducted on a mesh consisting of 13662 vertices,
26946 elements and with polynomial order 2 (resulting in 54269 degrees of freedom), and the
experiment for ¢, with 95556 vertices and 190062 elements and polynomial degree 1 (95556
degrees of freedom). We conducted these experiments for a number of different problems with
different vector fields V, in particular with different PDE constraints and boundary conditions,
and obtained similar results in all instances provided a sufficiently fine mesh was used.

Automated Shape Optimisation in NGSolve 23

6.2 Optimisation algorithms

In this section we discuss how to use optimisation algorithms in conjunction with the automated
shape differentiation explained in the previous sections. The starting point of our discussion is
a fixed initial shape Q2. Then we consider the mapping

Vi g(V):=_2((Id+V)(Q2)) (6.6)

defined on a suitable space of vector fields © c C%!(D)?. Since the mapping g is defined on an
open subset © of the Banach space C%!(D)? we can employ standard algorithms to minimise
g over ©. The only constraint we must impose is that Id + V remains invertible, which can be
difficult in practice. We observe that for V, W € © we have

dg(V)(W)=D_#((Id+ V) Q)W o (Ild+V)™). 6.7)

6.2.1 Gradient computation

The gradient of 8 g(V) in a Hilbert space H ¢ C%!(D)? is defined by
ag(VY(W)=(Vig(V),W), forallW eH. (6.8)

Typical choices for H are

H=H}(D), (W,V)sz/aW:av+V-de, (6.9)
D

H=H}(D), (W,V),:= / e(W):e(V)+V - -Wdx, (V) := %(av +0Vh), (6.10)

D
H=H}(D)’, (W,V)H:z/Dg(W):e(V)+V-W+yCR93V-%W dx, where y.; > 0 and
(6.11)

B = (_aax Sy). (6.12)

y X
The last choice corresponds to a penalised Cauchy-Riemann gradient and results in a gradient

which is approximately conformal and hence preserves good mesh quality. We refer to [17] for
a detailed description.

6.2.2 Basic algorithm

Let Q be an initial shape and let H ¢ C%!(D)? be a Hilbert space. Then a basic shape optimisation
algorithm reads as follows.

24 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

Algorithm 1 gradient algorithm
1: Input: domain Qy, n=0,N,,,,., >0,¢>0,y >0
2: Output: optimal shape Q*
3: while n <N, and [V £(Q,)| > e do
if #((1d—aV_2(2,))(€,) < £(Q,)—ralV #(Q,) then
Qs — (Id—av_g(Q2,))(Q,)
ne—n+1
increase a
else
reduce a
10: end if
11: end while

R NI h

We present and explain the numerical realisation of Algorithm 1 in NGSolve for the case
of a PDE-constrained shape optimisation problem in two space dimensions. The simpler case
of an unconstrained shape optimisation problem or the case of three space dimensions can be
realised by small modifications of the presented code.

First of all, we mention that we realise shape modifications in NGSolve by means of de-
formation vector fields without actually modifying the coordinates of the underlying finite el-
ement grid. Recall the vector-valued finite element space VEC over a given mesh as intro-
duced in code line 44. We define a vector-valued GridFunction with the name gfset which
will represent the current shape. We initialise it with some vector-valued coefficient function
V(xy,x,) = (x2x,,x2x;)" and obtain the deformed shape (Id + V)(£2) by the command
mesh.SetDeformation(gfset):

25| gfset = GridFunction (VEC)
10| Draw (gfset , mesh, "gfset")

SetVisualization (deformation=True)
gfset.Set ((X[0]«X[0]+X[1],X[1]*X[1]*X[0]))
ol mesh. SetDeformation (gfset)

223| Redraw ()

Any operation involving the mesh such as integration or assembling of matrices is now carried
out for the deformed configuration. The deformation can be unset by the command
mesh.UnsetDeformation (). Integrating the constant function over the mesh in the perturbed
and unperturbed setting,

N

CEEENY
DN N
G

[

print (Integrate (1, mesh))
mesh . UnsetDeformation ()
print (Integrate (1, mesh))

gives the output

1.7924529046862627
0.7854072970684544

respectively.

In the course of the optimisation algorithm the state equation as well as the adjoint equation
have to be solved for every new shape. We define the following function, which computes the
state and adjoint state for a linear PDE constraint:

Automated Shape Optimisation in NGSolve

The shape derivative d JOmega for some problem at hand can be defined as illustrated in Sections
4.1 and Section 5. Finally, we need to define the shape gradient, which is the solution to a

boundary value problem of the form (6.8). We choose the bilinear form defined in (6.11) with
Yer = 10:

Now we can run Algorithm 1 for problem (4.6):

26 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

gfsetTemp.vec.data = gfset.vec — alpha x gfX.vec
mesh. SetDeformation (gfsetTemp)
solvePDE ()
Jnew = Integrate (Cost(gfu), mesh)
mesh. UnsetDeformation ()
if Jnew < Jold — gamma % alpha * currentNormGFXx*2 :
Jold = Jnew
gfset.vec.data = gfsetTemp.vec
alpha *= alpha incr factor
break
else:
alpha = alpha / 2
Redraw (blocking=True)

Mesh movement and mesh optimisation As an alternative to realizing the deformations via
mesh.SetDeformation(...), where the underlying mesh is not modified, one could also

just move every mesh node in the direction of the given descent vector field by changing its

coordinates. This can be realised by invoking the following method:

5| def moveNGmesh2D(displ, mesh):

for p in mesh.ngmesh.Points () :
mip = mesh(p[0],p[1])
v = displ (mip)
p[0] += v[0]
p[1] += v[1]
mesh . ngmesh . Update ()

Here, the displacement vector field displ, which is of type GridFunction, is evaluated for
each mesh node and, subsequently, the mesh nodes are updated. At the end of the procedure, the
mesh structure needs to be updated, see line 291. Note that the evaluation of GridFunctions
requires a mapped integration point mip of the mesh which is created in line 287.

One advantage of this strategy is that a distorted mesh can easily be repaired by a call of the
method mesh.ngmesh.OptimizeMesh2d () followed by mesh.ngmesh.Update (). Figure 4
shows a distorted mesh and the result of a call of mesh.ngmesh.0OptimizeMesh2d ().

6.2.3 Newton’s method for unconstrained problems

The particular choice H = Hé(D)d and
(V, W)y 1= D* £(Q)(V)(W), (6.13)

leads to Newton’s method. We refer to [1, 8, 22,24] where shape Newton methods were used
previously and to [14, Chapter 2] and [18, Chapter 5] for Newton’s method in an optimal control
setting. This bilinear form is only positive semi-definite on Hé(D)d since D* £ (Q)(V)(W) =0 for
V,W with V = W = 0 on 9{2. Moreover, from the structure theorem for second shape derivatives
proved in [21] we know that at a stationary point £, that is, D_#(Q)(V) = 0 for all V € C*!(D)‘,
we have

D* 2(Q)(V)(W) =Ly(V-n,W -n), (6.14)

Automated Shape Optimisation in NGSolve 27

Figure 4: Before and after mesh optimisation by mesh.ngmesh.OptimizeMesh2d ().

where £, : C°(8Q)xC°(8Q) — Ris a bilinear function. Hence we also have D? #(Q)(V)(W) =0
for all V, W such that V-n =W -n = 0. As a result the gradient
(V£(Q),V)y =D g(Q)(V) forallVeH)(D) (6.15)

according to (6.13) is not uniquely determined. To get around this difficulty, the shape Hessian
is often regularised by an H' term, i.e. (6.13) is replaced by

Dzj(ﬂ)(V)(W)+5/3V:8W+V-de, (6.16)
Q

see, e.g. [27], which, however, impairs the convergence speed of Newton’s method.

Alternative regularisation strategy. Here, we propose the following strategy: We regularise
the shape Hessian only on the boundary dQ2 and only in tangential direction, i.e., we choose

(V,W)y :=D*> (V)W) +6 an(V)W - 1) (6.17)

with a regularisation parameter 6. To exclude the part of the kernel corresponding to interior
deformations, we solve the (regularised) Newton equation (6.15) only on the boundary df.
This is realised by setting Dirichlet boundary conditions for all degrees of freedom except those
on the boundary.

;14| getExtension (gfX _bnd, VEC2.FreeDofs (), gfX)
5| gfset. Set ((0,0))
| gfset.vec.data = gfset.vec — 1 *x gfX.vec

28 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

As a result, we get a shape gradient V j (£2) which is nonzero only on the boundary. We extend
this vector field to the interior by solving an additional boundary value problem (of linearised
elasticity type), where we use the deformation given by V_¢(Q) as Dirichlet boundary condi-
tions.

def getExtension (gfX bnd, freedofs, gfX ext):
u,v = VEC.TnT ()
aX _ext = BilinearForm (VEC)
aX _ext += InnerProduct(grad(u)+grad(u).trans,grad(v))=*dx+InnerProduct(u,v)x*xdx

gfX ext.Set(gfX bnd)
aX ext.Assemble ()

r = gfX bnd.vec.CreateVector ()
r.data = (—1) * aX ext.mat % gfX ext.vec

gfX ext.vec.data += aX_ext.mat.Inverse (freedofs=freedofs) % r

The Newton algorithm reads as follows.

Algorithm 2 Newton algorithm
: Input: domain Q,, n =0, N,,,, >0, >0
: Output: optimal shape Q*
while n <N,,,, and [V £(Q,)| > € do
solve (6.15) to get V_#(%,)
Qi1 < (ld=V_2£(Q,))(£2,)
n—n+1
end while

N kR Wb

6.2.4 Newton’s method for PDE-constrained problems

We consider the PDE-constrained model problem of Section 4.1 which is subject to the Poisson
equation. The unregularised Newton system reads

D> #(Q)(V)(W)=—-Dg(Q)(V) forallVeH)(Q). (6.18)

In Subsection 4.3 we discussed how the second order derivative can be evaluated. Recalling that
d #(Q)(V) = 0,Gy,(0,0,u, p) we see that (4.23) and (4.19) lead to

3,0,Gyw(0,0,u,p) 0,8,Gyy(0,0,u,p) 3,0,Gyw(0,0,u,p) 1% 0,Gyw(0,0,u,p)
3,3,Gyw(0,0,u,p) 32Gyy(0,0,u,p) 3,3,Gyw(0,0,u,p) || du® | =— 0
as ap GV,W(O: 0, u, P) au ap GV,W(O: O; u, p) 0 aspo 0

(6.19)

-

Automated Shape Optimisation in NGSolve 29

The component V then represents the direction which we use for the shape Newton optimisation
step. The matrix in (6.19) can be realised in NGSolve by using a combined finite element space
X3 consisting of three components as follows:

217/ X3 = FESpace ([VEC, fes, fes])

PHI, ul, pl= X3.TrialFunction ()
PSI, uTestl, pTestl = X3.TestFunction ()

shapeHessLag3 = BilinearForm (X3)

shapeHessLag3 += G _pde 0.DiffShape (PHI).DiffShape (PSI) #block (1,1)
33| shapeHessLag3 += G _pde 0.DiffShape (PSI).Diff (gfu,ul) #block (1,2)
shapeHessLag3 += G _pde 0.DiffShape (PSI).Diff (gfp,pl) #block (1,3)
shapeHessLag3 += G _pde 0.Diff (gfu, uTestl).DiffShape (PHI) #block (2,1)

shapeHessLag3 += (G_pde 0.Diff (gfu, uTestl)).Diff(gfu, ul) #block (2,2)
shapeHessLag3 += (G _pde 0.Diff (gfu, uTestl)).Diff (gfp, pl) #block (2,3)
shapeHessLag3 += G pde 0.Diff (gfp,pTestl).DiffShape (PHI) #block (3,1)
shapeHessLag3 += (G pde 0.Diff (gfp,pTestl)).Diff(gfu, ul) #block (3,2)

The right hand side of (6.19) can be defined as follows:

shapeGradLag3 = LinearForm (X3)
shapeGradLag3 += (—1) * G pde 0.DiffShape (PSI)

Recall that the system (6.15) has a nontrivial kernel as discussed in Section 6.2.3. This problem
can be circumvented by proceeding like in the unconstrained case. We add a regularisation only
on the boundary,

delta =1

;s shapeHessLag3 += delta % InnerProduct(PHI, specialcf.tangential(2)) * InnerProduct

(PSI, specialcf.tangential (2))xds

and exclude the interior degrees of freedom in the first row and column of the 3x3 block system.
This can be realised by setting Dirichlet boundary conditions for the interior degrees of freedom,
i.e. by dealing with the free degrees of freedom,

copy of VEC with Dirichlet boundary conditions on whole boundary:

25| VEC2 = VectorH1 (mesh, order = 1, dirichlet = ".x"

freeDofsCombined = BitArray (VEC2.ndof + 2xfes.ndof)

for i in range(VEC2.ndof):
freeDofsCombined[i] = not VEC2.FreeDofs () [i]

for i in range(fes.ndof):
freeDofsCombined [VEC2.ndof+i] = fes.FreeDofs () [i]
freeDofsCombined [VEC2. ndof+fes.ndof+i] = fes.FreeDofs()[1i]

and solving the regularised system using these free dofs:

| gfCombined3 = GridFunction (X3)
;| shapeHessLag3 . Assemble ()

shapeGradLag3 . Assemble ()

5| gfCombined3.vec.data = shapeHessLag3.mat.Inverse (freedofs=freeDofsCombined,

inverse="umfpack") * shapeGradLag3.vec

30 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

The newton direction is then given as the first of the three components of the obtained solution.

)| Vtilde_bnd = GridFunction (VEC)

Vtilde = GridFunction (VEC)
Vtilde bnd.vec.data = gfCombined3.components[0].vec
getExtension (Vtilde bnd, VEC2.FreeDofs (), Vtilde)

gfset.vec.data = gfset.vec + 1 x Vtilde.vec

6.3 Numerical shape optimisation of model problems

In this section we will apply the automated shape differentiation and all numerical algorithms
introduced in the preceding sections in numerical examples.

6.3.1 A first shape optimisation problem

In this section, we revisit problem (3.1) introduced in Section 3, i.e. the problem of finding a

shape Q2 such that the cost function ¢(Q2) = fﬂ f(x) dx is minimised.

First order methods We illustrate our first order methods in a problem which was also con-
sidered in [17] and reproduce the results obtained there. We choose the function

£ (xq1,x5) =(\/(x1 —a)?+ bxs — 1)(\/()(1 +a)?+ bx:— 1)

'(\/bx%-i_(xz_a)z_l)(\/bxf+(X2+a)2—1)_6 (6.20)

with a = g, b = 2 and € = 0.001. Recall that the optimal shape is given by {(x;,x,) € R* :
f(x7,x5) < 0} which is depicted in Figure 5 (right). We start our optimisation algorithm with
the unit disk, Q° = B;(0) as an initial design. Note that the optimal design cannot be reached
by means of shape optimisation using boundary perturbations. However, we expect the outer
curve of the optimal shape to be reached very closely.

We apply Algorithm 1 with the shape gradient V_¢ associated to the H' inner product (6.9),
to the bilinear form of linearised elasticity (6.10) and including the additional Cauchy-Riemann
term (6.11). We chose the algorithmic parameters y = le —4, € = le — 7, a mesh consisting of
2522 vertices and 4886 elements and a globally continuous vector-valued finite element space
VEC of order 3. The results can be seen in Figures 6, 7 and 8, respectively.

Second order method Since Newton’s method converges quadratically only in a neighbor-
hood of the optimal solution, we choose a simpler optimal design here. We choose

X2 y2
f(xl,xZ):;'i'ﬁ_l (6.21)
which yields an ellipse with the lengths of the two semi-axes a and b. We choose a = 1.3 and
b = 1/a and again start the optimisation with the unit disk as initial shape. Figure 9 shows

the initial and optimised design after only six iterations of Algorithm 2 with (-,-); chosen as

Automated Shape Optimisation in NGSolve 31

3 Initial shape 3 Optimal shape Q= {f< 0}
2 2
1- 1
01 0
-1 -1
-2 -2
-3 T T T T T -3 T T T T T

Figure 5: Initial domain 2, and optimal domain Q* for problem (3.1) with f chosen according

to (6.20).

Figure 6: Results of problem (3.1) with f as in (6.20) and the shape gradient associated to the
H' inner product (6.9).

32 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

* ..

Figure 7: Results of problem (3.1) with f as in (6.20) and the shape gradient associated to the
elasticity bilinear form (6.10).

* ..

Figure 8: Results of problem (3.1) with f as in (6.20) and the shape gradient associated to the
elasticity bilinear form with Cauchy-Riemann term (6.11).

Automated Shape Optimisation in NGSolve 33

102

104

10°

10
Iterations

15

Figure 9: Numerical results for problem (6.17) with f as in (6.21) using second order method.
Left: Initial design. Center: Optimised design after six iterations using (6.15)/(6.17). Right: Ob-
jective value ¢ and norm of shape gradient ||V _¢ (Q)|| in the course of second order optimisation
using (6.16) with 6 = 0.5 and (6.17) with 6 = 100.

in (6.17) with 6 = 100. A comparison of the convergence histories between the choice (6.17)
with & = 100 and (6.16) with 6 = 0.5 is shown in the right picture of Figure 9. In both cases,
the parameter & was chosen empirically to get convergence as fast as possible. The experiments
were conducted on a finite element mesh consisting of 2522 nodes and 4886 triangular elements
with a finite element space VEC of order 3, with the algorithmic parameter e = 1077,

6.3.2 Shape optimisation subject to the Poisson equation

In this section, we revisit the model problem introduced in Section 4.1 with f (x, x,) = 2x,(1—
X5) 4+ 2x,(1 —x;) and uy(xq, x5) = x7(1 —x7)x,(1 — x,). Note that the data is chosen in such a
way that, for Q* = (0, 1)? it holds _#(2*) = 0 and thus Q* is a global minimiser of ¢. We show
results obtained by first and second order shape optimisation methods exploiting automated
differentiation.

We ran the optimisation algorithm in three versions. On the one hand, we applied a first order
method with constant step size a = 1. On the other hand, we applied two second order methods
with the two different regularisation strategies for the shape Hessian in (6.15) introduced in
(6.16) and (6.17). We chose the regularisation parameters 6 empirically such that the method
performs as well as possible. In the case of (6.16) we chose 6 = 0.001 and in the case of (6.17)
6 = 1. The experiments were conducted on a finite element mesh consisting of 4886 elements
with 2522 vertices and polynomial degree 1. In Figure 10, we can observe the decrease of the
objective function as well as of the norm of the shape gradient over 200 iterations for these
three algorithmic settings.

Figure 10 shows the initial design as well as the design after 200 iterations of the second
order method with regularisation strategy (6.17). Note that the improved design is very close
to the global solution Q* = (0, 1)2. The initial design was chosen as the disk of radius % centered

L 1)T. The objective value was reduced from 5.297 - 107 to 1.0317 - 1077,

at the point (5, 5

10 10

34 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

1074 10"
R e [[VJ| bnd-reg
n 3 = = =|VJ|| H'-reg
i ! V.J|| grad
AL 1001 IV J]| grad
107> pl \
N i X
H = = =J H'reg EREY
it J grad 107 Ed
107 *‘i E {.\
S b S oeh b
i BT ORES
AL (R
1078 § 8 LT
ot 108 F e S~.s
Y = S e —
\‘ ~ N '~ ~. TE=aao
\.\ S e - Ste——. T
108 F \ Soo A T ———
S ~e. 104 L
S 2
StNemeel. Tmm ==l]
10.9 L e ———— fkad 10 5 L L L
0 50 100 150 200 0 50 100 150 200
Iterations Iterations
(@) (b)

Figure 10: Convergence behaviour for shape optimisation problem (4.6) with proposed regular-
isation strategies (6.17) and (6.16) as well as first order method with constant step size a = 1.

(a) Behaviour of objective function ¢. (b) Behaviour of norm of shape gradient ||V_¢(£2)||.

1.678e-03 1.ddpe-n2

2, 785002

4.124e-82 5.d60e-02 8.d68e-80 1.62de-02

3. 16de-2

4.704e-82 6.244e-82

r

Netgen 6.2-dev

r

Netgen 6.2-dev

Figure 11: Shape optimisation for problem (4.6). Left: Initial design. Right: Improved design
after 200 iterations of second order algorithm with regularisation as proposed in (6.17). Objec-

tive value was reduced from 5.297-107° to 1.0317 - 10~°. Color shows solution of constraining
PDE (4.6b).

Automated Shape Optimisation in NGSolve 35

6.3.3 Nonlinear elasticity

Here, we illustrate the applicability of the automated shape differentiation and optimisation in
the more realistic and more complicated setting of nonlinear elasticity in two space dimensions
using a Saint Venant—Kirchhoff material with Young’s modulus E = 1000 and Poisson ratio
v = 0.3. We consider a two-dimensional cantilever which is clamped on the upper and lower
left parts of the boundary, Fl1 = {0} x (0.88,1) and FIZ = {0} x (0,0.12), respectively, and is
subject to a surface force gy = (0,—100)" on T, = {1} x (0.45,0.55). The initial geometry with
3 holes is depicted in Figure 12 (a). Let I} := I}’ UT? and H%l (€)? the subspace of H'(Q)? with
vanishing trace on I;. The displacement u € H%l (©)? under the surface force gy is given as the
solution to the boundary value problem

/S(u) :Vvdx = / gy-vds (6.22)
Q

I,

forallv e H%l (£2)%. Here, S(u) denotes the Saint Venant—Kirchhoff stress tensor

S(u)=(I,+ Vu) [lTr (%(C(u) — Iz)) I, + u(C(u)— Iz)] , (6.23)

where C(u) = (I, + Vu) (I, + Vu) and I, is the identity matrix, see also [2, Sec. 8], and A and
u denote the Lamé constants,

Evy E
A= = 6.2
I+n-2v “T20+n (6.24)
We minimise the functional
J(Q,u):/S(u):Vu dx+a/1dx (6.25)
Q Q

with a = 2.5 subject to (6.22) which amounts to maximising the structure’s stiffness while
bounding the allowed amount of material used.

We remark that the well-posedness of (6.22) is not clear, see also the discussion in [2, Sec.
8]. Nevertheless, application of the automated shape differentiation and optimisation yields
a significant improvement of the initial design. The highly nonlinear PDE constraint (6.22) is
solved by Newton’s method. In order to have good starting values, a load stepping strategy is
employed, i.e., the load on the right hand side is gradually increased, the PDE is solved and the
solution is used as an initial guess for the next load step. This is repeated until the full load is
applied. With these ingredients at hand, Algorithm 1 (i.e. code lines 244-284) can be run. We
chose the algorithmic parameters alpha = 0.1 (as an initial value), alpha_incr_factor =
1 (i.e. no increase), gamma = le-4 and epsilon = le-7. Moreover, we used (6.9) with an
additional Cauchy-Riemann term as in (6.11) with weight Y.z = 10. The objective value was
reduced from 3.125 to 2.635 (volume term from 1.290 to 1.096) in 15 iterations of Algorithm
1. The results were obtained on a mesh consisting of 10614 elements and 5540 vertices using
piecewise linear, globally continuous finite elements.

36 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

(a) (b) (©

Figure 12: Initial and optimised geometry of cantilever under vertical force on right hand side
using St. Venant-Kirchhoff model in nonlinear elasticity. (a) Initial geometry. (b) Optimised
geometry (reference configuration). (c) Optimised geometry (deformed configuration).

6.3.4 Helmbholtz equation

In this section, we consider the problem of finding the optimal shape of a scattering object. More
precisely, we consider the minimisation of the functional

/ uu ds (6.26)
T,

r

subject to the Helmholtz equation with impedance boundary conditions on the outer boundary,
Findu e HY(Q,C) : /[Vu -Vw— wzuv'v]dx—iw /uﬁ/ds = /fv‘v (6.27)
Q r Q

for all w € H'(Q, C). Here, w denotes the complex conjugate of a complex-valued function w,
w denotes the wave number, i denotes the complex unit and the function f on the right hand
side is chosen as

f(xla X2) — 103 . e—9((x1—0.2)2+(x2—0.5)2), (628)

see Figure 13(a). Furthermore Q = B((0.5,0.5)", 1)\B((0.75,0.5)",0.15) denotes the domain of
interest, I' = {(x, x,) : x> +x = 1} the outer boundary and T, = {(x,x,) : x> +x2 =1,x; > 0}
the right half of the outer boundary. Here, only the inner boundary d Q2 \T is subject to the shape
optimisation. Thus, the aim of this model problem is to find a shape of the scattering object such
that the waves are reflected away from T,.

Figure 13 (b) and (c) show the initial and final shape of the scattering object, respectively.
Figure 14 shows the norm of the state for the initial configuration (circular shape of scattering
object) and for the optimised configuration. The objective value was reduced from 3.44-107° to
3.31-1073. The forward simulations were performed using piecewise linear finite elements on
a triangular grid consisting of with 34803 degrees of freedom. The optimisation stopped after
12 iterations.

Automated Shape Optimisation in NGSolve 37

(a) (b) @]

Figure 13: (a) Geometry with right hand side. (b) Initial shape of scatter. (¢c) Optimised shape
of scatter.

(@ (b)

Figure 14: (a) Absolute value of state u for initial configuration. (b) Absolute value of state u
for optimised configuration.

6.3.5 Application to Electrical Machine

In this section, we consider the setting of three-dimensional nonlinear magnetostatics in H(curl, D)

as it appears in the simulation of electrical machines. Let D ¢ R® denote the computational do-

main, which consists of ferromagnetic material, air regions and permanent magnets. Our aim is

to minimise the functional

/ |curlu - n—B}|* dx, (6.29)
Qg

where Q, denotes the air gap region of the machine, n denotes an extension of the normal

vector to the interior of ,, B} : Q, — R? is a given smooth function and u € Hy(curl, D) is the

solution to the boundary value problem

/vn(lcurlul)curlu-curlw+5u-wdx:/ M - curlw dx (6.30)
D Qm

forallw € Hy(curl, D). Here, Q2 C D denotes the union of the ferromagnetic parts of the electrical
machine, 2,, denotes the permanent magnets subdomain and

Vo = Xo(X)¥(| curlu|) + yp\o(x) vy (6.31)

denotes the magnetic reluctivity, which is a nonlinear function ¥ inside the ferromagnetic regions
and equal to a constant v, elsewhere. Further, 6 > 0 is a small regularisation parameter and
M : D — R3 denotes the magnetisation in the permanent magnets. The nonlinear function %

35¢

359

360

361

38 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

satisfies a Lipschitz condition and a strong monotonicity condition such that problem (6.30) is
well-posed. We refer the reader to [11, Sec. 6] for a more detailed description of the problem
and [10] for a 2D version of the same problem.

As mentioned in Section 4, the transformation ®, used in (4.4) depends on the differential
operator. For the curl-operator, we have

1

(@) =0T (ueT™) and (curl(())oT, = =7

o T, curl(u), (6.32)

see e.g. [20, Section 3.9]. Thus, the variational equation (6.30) can be defined as follows.

52| from math import pi
s3snu0 = 1e7 / (4*pi)

delta = 0.1

sol F = 1d (3)

cl = 1/Det(F) * F

581 c2 = Inv(F).trans

def EquationIron (u,w):
return (nulron(Norm(clxcurl(u))) * (clxcurl(u))*(clkcurl(w)) + deltax(c2x*xu) *(
c2+xw))xDet(F)*dx("iron")

| def EquationAir (u,w) :

return (nuOx(clxcurl(u))*(clkcurl(w)) + deltax(c2xu)*(c2sw))«xDet(F)xdx("air |
airgap")

def EquationMagnets (u,w) :
return (nuOx(clxcurl (u))*(clsxcurl (w)) + deltax(c2xu) *(c2*w)—magn*(clkcurl(w)))
*Det (F)xdx ("magnets")

def Equation (u,w) :
return Equationlron (u,w) + EquationAir (u,w) + EquationMagnets (u,w)

Here, the computational domain consists of a subdomain representing the ferromagnetic part
of the machine (‘‘iron’’) and a subdomain comprising the permanent magnets (‘‘magnets’’);
the union of all air subdomains, including the air gap between rotating and fixed part of the
machine, is given by “‘air |airgap’’. Moreover, nuIron denotes the nonlinear reluctivity func-
tion ¥ and magn contains the magnetization direction of the permanent magnets. Likewise, the
objective function can be defined as follows,

def Cost(u):
return (InnerProduct(clxcurl (u) ,n2D) — Bd)*Det(F)«dx("airgap")

where n2D and Bd represent the extension of the normal vector to the interior of the air gap
and the desired curve, respectively. For the definition of all quantities, we refer the reader to the
code which was submitted together with this manuscript. The shape differentiation as well as
the optimisation loop now works in the same way as in the previous examples. Figure 15 shows
the initial design of the motor as well as the optimised design obtained after 11 iterations of
Algorithm 1 with y = 0. The experiment was conducted using a tetrahedral finite element mesh
consisting of 13440 vertices, 57806 elements and Nédélec elements of order 2 (resulting in a

Automated Shape Optimisation in NGSolve 39

(@ (b)

Figure 15: (a) Initial design of electrical machine. (b) Optimised design.

curl(u)*n in air gap (initial design) curl(u)*n in air gap (optimized design) desired curve in air gap

angle o 2-component angle o 2-component angle o - 2-component

(a) (b) (©

Figure 16: Improvement of curlu - n as a function of z and the angle ¢ for a fixed radius r
compared to desired curve B. (a) curlu - n for initial configuration. (b) curlu - n for optimised
configuration after 10 iterations. (c) Desired curve B} in polar coordinates as function of z and
the angle ¢ for a fixed radius r.

total of 323808 degrees of freedom). The objective value was reduced from 2.5944 - 1078 to
4.565 - 107! in the course of the first order optimisation algorithm after 11 iterations. It can be
seen from Figure 16 that the difference between the quantity curl(u) - n and the desired curve
B} inside the air gap decreases significantly.

6.3.6 Surface PDEs

Finally, we also show the application of a shape optimisation algorithm to a problem constrained
by a surface PDE. We solve problem (4.24)—(4.25) with u; = 0, f(xq,x5,X3) = X;X,X5 and
initial shape M = S? the unit sphere in R®. We applied a first order algorithm with a line search.
Figure 17 shows the initial geometry as well as the decrease of the objective function and of
the norm of the shape gradient. The objective value was reduced from 7.08-107* t0 9.88-107°.
Figure 18 shows the final design which was obtained after 575 iterations from two different
perspectives. The experiment was conducted using a surface mesh with 332 vertices and 660
faces and polynomial degree 3 (resulting in 2972 degrees of freedom).

40 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

History of surface Laplacian

1078 1072
e
=
= 1074
%
K S, >
K
TN 1075
Wiy]
|
W K“‘U“'”W”ULM‘"A) 1076
108 ¢ '“‘W‘WWH" \
UMM Ush
7O st |
U
u 10 -9 L L L L L 10 7
b Netgen 6.2-dev 0 100 200 300 400 500 600

Iterations

(@) (b)

Figure 17: (a) Initial geometry for shape optimisation with respect to surface PDE (4.24)—-(4.25).
(b) History of objective value and norm of shape gradient using a first order algorithm with line
search.

~1.17%e-84 -5.770e-05 2.471e-86 6.264e-85 1.2280-84 -1.17%e-84 -5.770e-05 2.471e-86 6.264e-85 1.2280-84

r

(@ (b)

Figure 18: (a) Final design after 575 iterations. (b) Different view of (a).

Hetgen 6.2-dev gj Hetgen 6.2-dev

Automated Shape Optimisation in NGSolve 41

Conclusion

We showed how to obtain first and second order shape derivatives for unconstrained and PDE-
constrained shape optimization problems in a semi-automatic and fully automatic way in the
finite element software package NGSolve. We verified the proposed method numerically by
Taylor tests and by showing its successful application to several shape optimisation problems.
We believe that this intuitive approach can help research scientists working in the field of shape
optimisation to further improve numerical methods on the one hand, and product engineers
working with NGSolve to design devices in an optimal fashion on the other hand.

Acknowledgements

Michael Neunteufel has been funded by the Austrian Science Fund (FWF) project W1245.

Replication of results

The python scripts which were used for the results presented in this paper are available with
the arxiv submission. All computations were performed using NGSolve version V6.2.2004.

References

[1] G. Allaire, E. Cances, and J. L. Vié. Second-order shape derivatives along normal trajec-
tories, governed by Hamilton-Jacobi equations. Structural and Multidisciplinary Optimiza-
tion, 54(5):1245-1266, 2016.

[2] G. Allaire, E Jouve, J., and A.-M. Toader. Structural optimization using sensitivity analysis
and a level-set method. Journal of Computational Physics, 194(1):363 — 393, 2004.

[3] M. S. Alnees, A. Logg, K. B. @lgaard, M. E. Rognes, and G. N. Wells. Unified form language.
ACM Transactions on Mathematical Software, 40(2):1-37, 2014.

[4] Martin Berggren. A unified discrete-continuous sensitivity analysis method for shape op-
timization. In Applied and numerical partial differential equations, volume 15 of Comput.
Methods Appl. Sci., pages 25-39. Springer, New York, 2010.

[5] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design
and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
second edition, 2011. Metrics, analysis, differential calculus, and optimization.

[6] M. C. Delfour and J. P Zolésio. Shapes and geometries. Society for Industrial and Applied
Mathematics, 2011.

[7] J. S. Dokken, S. K. Mitusch, and S. W. Funke. Automatic shape derivatives for transient
PDEs in FEniCS and Firedrake. arXiv e-prints, page arXiv:2001.10058, 2020.

42 P Gangl, J. Schoberl, K. Sturm and M. Neunteufel

[8] K. Eppler, H. Harbrecht, and R. Schneider. On convergence in elliptic shape optimization.
SIAM Journal on Control and Optimization, 46(1):61-83, 2007.

[9] E Feppon, G. Allaire, E Bordeu, J. Cortial, and C. Dapogny. Shape optimization of a cou-
pled thermal fluid-structure problem in a level set mesh evolution framework. SeMA,
76(3):413-458, 2019.

[10] P Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm. Shape optimization of an elec-
tric motor subject to nonlinear magnetostatics. SIAM Journal on Scientific Computing,
37(6):B1002-B1025, 2015.

[11] P Gangl and K. Sturm. Asymptotic analysis and topological derivative for 3D quasi-linear
magnetostatics, 2019. arXiv:1908.10775.

[12] D. A. Ham, L. Mitchell, A. Paganini, and . Wechsung, E Automated shape differentiation
in the unified form language. Structural and Multidisciplinary Optimization, 60(5):1813-
1820, 2019.

[13] M. Hintermiiller and A. Laurain. Electrical impedance tomography: from topology to
shape. Control and Cybernetics, 37(4):913-933, 2008.

[14] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints.
Springer, New York, 2009.

[15] R. Hiptmair, A. Paganini, and S. Sargheini. Comparison of approximate shape gradients.
BIT, 55(2):459-485, 2015.

[16] D. Homberg and J. Sokolowski. Optimal shape design of inductor coils for surface hard-
ening. SIAM Journal on Control and Optimization, 42(3):1087-1117, 2003.

[17] J. A.Iglesias, K. Sturm, and E Wechsung. Two-dimensional shape optimization with nearly
conformal transformations. SIAM Journal on Scientific Computing, 40(6):A3807-A3830,
2018.

[18] K. Ito and K. Kunisch. Lagrange multiplier approach to variational problems and applica-
tions. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.

[19] A. Laurain. A level set-based structural optimization code using FEniCS. Structural and
Multidisciplinary Optimization, 58(3):1311-1334, 2018.

[20] P Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and
Scientific Computation. Clarendon Press, 2003.

[21] A. Novruzi and M. Pierre. Structure of shape derivatives. Journal of Evolution Equations,
2(3):365-382, 2002.

[22] A. Novruzi and J. R. Roche. Newton’s method in shape optimisation: A three-dimensional
case. Bit Numerical Mathematics, 40(1):102-120, 2000.

Automated Shape Optimisation in NGSolve 43

[23] A.Paganini, S. Sargheini, R. Hiptmair, and Ch. Hafner. Shape optimization of microlenses.
Optics Express, 23(10):13099, 2015.

[24] A. Paganini and K. Sturm. Weakly normal basis vector fields in RKHS with an application
to shape Newton methods. SIAM Journal on Numerical Analysis, 57(1):1-26, 2019.

[25] Anton Schiela and Julian Ortiz. Second order directional shape derivatives, March 2017.

[26] S. Schmidt. A two stage CVT / eikonal convection mesh deformation approach for large
nodal deformations. arXiv e-prints, page arXiv:1411.7663, 2014.

[27] S. Schmidt. Weak and strong form shape Hessians and their automatic generation. SIAM
Journal on Scientific Computing, 40(2):C210-C233, 2018.

[28] S. Schmidt, C. Ilic, V. Schulz, and N. Gauger. Three-dimensional large-scale aerodynamic
shape optimization based on shape calculus. AIAA Journal, 51(11):2615-2627, 2013.

[29] S. Schmidt, C. Ilic, V. Schulz, and N. R. Gauger. Airfoil design for compressible inviscid
flow based on shape calculus. Optimization and Engineering, 12(3):349-369, 2011.

[30] J. Schoberl. C++11 implementation of finite elements in NGSolve. Technical Report 30,
Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014.

[31] V. H. Schulz. A riemannian view on shape optimization. Foundations of Computational
Mathematics, 14(3):483-501, 2014.

[32] J. Sokotowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1992. Shape sensitivity
analysis.

[33] K. Sturm. Minimax Lagrangian approach to the differentiability of nonlinear PDE con-
strained shape functions without saddle point assumption. SIAM Journal on Control and
Optimization, 53(4):2017-2039, 2015.

[34] K. Sturm. Shape differentiability under non-linear PDE constraints. In New trends
in shape optimization, volume 166 of Internat. Ser. Numer. Math., pages 271-300.
Birkhauser/Springer, Cham, 2015.

Erschienene Preprints ab Nummer 2018/1

2018/1
2018/2
2018/3

2018 /4
2018/5

2018/6
2018/7
2018/8
2018/8

2019/1
2019,/2

2019/3
2019/4

2019/5

2019/6
2019/7
2019/8
2019/9

2020/1

2020/2
2020/3

2020 /4

U. Langer, M. Schanz, O. Steinbach, W.L. Wendland (eds.): 16th Workshop on Fast
Boundary Element Methods in Industrial Applications, Book of Abstracts

S. Dohr, J. Zapletal, G. Of, M. Merta, M. Kravcenko: A parallel space-time boundary
element method for the heat equation

S. Dohr, M. Merta, G. Of, O. Steinbach, J. Zapletal: A parallel solver for a precondi-
tioned space-time boundary element method for the heat equation

S. Amstutz, P. Gangl: Toplogical derivative for nonlinear magnetostatic problem

O. Steinbach, M. Zank: A Stabilized Space—Time Finite Element Method for the
Wave Equation

O. Steinbach, H. Yang: A Space-Time Finite Element Method for the Linear Bidomain
Equations

O. Steinbach, M. Zank: Coercive space-time finite element methods for initial bound-
ary value problems

S. Dohr, K. Niino, O. Steinbach: Space-time boundary element methods for the heat
equation

O. Steinbach, H. Yang: Space-time finite element methods for parabolic evolution
equations: Discretization, a posteriori error estimation, adaptivity and solution

O. Steinbach (eds.): 15th Austrian Numerical Analysis Day, Book of Abstracts

P. Gangl, K. Sturm: A simplified derivation technique of topological derivatives for
quasi-linear transmission problems

M. Merkel, P. Gangl, S. Schops: Shape Optimization of Rotating Electric Machines
using Isogeometric Analysis and Harmonic Stator-Rotor Coupling

P. Gangl and K. Sturm: Asymptotic analysis and topological derivative for 3D quasi-
linear magnetostatics

M. Holzmann and G. Unger: Boundary integral formulations of eigenvalue problems
for elliptic differential operators with singular interactions and their numerical ap-
proximation by boundary element methods

M. Neumiiller, O. Steinbach: Regularization error estimates for distributed control
problems in energy spaces

U. Langer, M. Schanz, O. Steinbach, W. L. Wendland (eds.): 17th Workshop on Fast
Boundary Element Methods in Industrial Applications , Book of Abstracts

O. Steinbach, M. Zank: A note on the efficient evaluation of a modified Hilbert
transformation

P. Gangl: A multi-material topology optimization algorithm based on the topological
derivative

D. Pacheco, T. Miiller, O. Steinbach, G. Brenn: A mixed finite element formula-
tion for generalised Newtonian fluid flows with appropriate natural outflow boundary
conditions

U. Langer, O. Steinbach, F. Troltzsch, H. Yang: Unstructured space-time finite ele-
ment methods for optimal sparse control of parabolic equations

D.R.Q. Pacheco, R. Schussnig, O. Steinbach, T.-P. Fries: A fully consistent equal-
order finite element method for incompressible flow problems

U. Langer, O. Steinbach, F. Troltzsch, H. Yang: Unstructured space-time finite ele-
ment methods for optimal control of parabolic equations

