
Technische Universität Graz

Fully and Semi-Automated Shape Differentiation in
NGSolve

P. Gangl, K. Sturm, M. Neunteufel, J. Schöberl

Berichte aus dem
Institut für Angewandte Mathematik

Bericht 2020/5

Technische Universität Graz

Fully and Semi-Automated Shape Differentiation in
NGSolve

P. Gangl, K. Sturm, M. Neunteufel, J. Schöberl

Berichte aus dem
Institut für Angewandte Mathematik

Bericht 2020/5

Technische Universität Graz
Institut für Angewandte Mathematik
Steyrergasse 30
A 8010 Graz

WWW: http://www.applied.math.tugraz.at

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

Fully and Semi-Automated Shape Differentiation in
NGSolve

Peter Gangl∗, Kevin Sturm† , Michael Neunteufel‡ and Joachim Schöberl§

April 14, 2020

Abstract

In this paper we present a framework for automated shape differentiation in the finite
element software NGSolve. Our approach combines the mathematical Lagrangian approach
for differentiating PDE constrained shape functions with the automated differentiation ca-
pabilities of NGSolve. The user can decide which degree of automatisation is required and
thus allows for either a more custom-like or black-box-like behaviour of the software.

We discuss the automatic generation of first and second order shape derivatives for un-
constrained model problems as well as for more realistic problems that are constrained by
different types of partial differential equations. We consider linear as well as nonlinear prob-
lems and also problems which are posed on surfaces. In numerical experiments we verify the
accuracy of the computed derivatives via a Taylor test. Finally we present first and second
order shape optimisation algorithms and illustrate them for several numerical optimisation
examples ranging from nonlinear elasticity to Maxwell’s equations.
Keywords: shape optimisation, automated differentiation, shape Newton method

1 Introduction

Numerical simulation and shape optimisation tools to solve the problems have become an in-
tegral part in the design process of many products. Starting out from an initial design, non-
parametric shape optimisation techniques based on first and second order shape derivatives can
assist in finding shapes of a product which are optimal with respect to a given objective func-
tion. Examples include the optimal design of aircrafts [28, 29], optimal inductor design [16],
optimisation of microlenses [23], the optimal design of electric motors [10], applications from
mechanical engineering [2,19], multiphysics problems [9] or electrical impedance tomography
(EIT) in medical sciences to name only a few [13].

Shape optimisation algorithms are based on the concept of shape derivatives. LetA ⊂P (Rd)
a set of admissible shapes and J :A → R a shape function. Given an admissible shape Ω ∈A
∗TU Graz, Steyrergasse 30, 8010 Graz, Austria, E-Mail: gangl(at)math.tugraz.at
†TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria, E-Mail: kevin.sturm(at)tuwien.ac.at
‡TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria, E-Mail: michael.neunteufel(at)tuwien.ac.at
§TU Wien, Wiedner Hauptstr. 8-10, 1040 Vienna, Austria, E-Mail: joachim.schoeberl(at)tuwien.ac.at

1

2 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

and a sufficiently smooth vector field V , we define the perturbed domain Ωt := (Id+ tV)(Ω) for
a small perturbation parameter t > 0. The shape derivative is defined as

DJ (Ω)(V) :=
�

d
d t
J (Ωt)

�

�

�

�

�

t=0

= lim
t↘0

J (Ωt)−J (Ω)
t

. (1.1)

In most practically relevant applications, the objective functional depends on the shape of
a (sub-)domain via the solution of a partial differential equation (PDE). Thus, one is facing a
problem of PDE-constrained shape optimisation of the form

min
(Ω,u)∈A×X

J(Ω, u)

s.t. (Ω, u) ∈A × X : e(Ω; u, v) = 0 for all v ∈ X .
(1.2)

Here, the second line represents the constraining boundary value problem posed on a Hilbert
space X , which we assume to be uniquely solvable for all admissible Ω ∈ A . Denoting the
unique solution for a given Ω ∈A by uΩ, we introduce the notation for the reduced functional

J (Ω) := J(Ω, uΩ).

In order to be able to apply a shape optimisation algorithm to a given problem of this kind,
the shape derivative (1.1) has to be computed, see the standard literature [5, 32] or [33] for
an overview of different approaches. In the following we focus on computing the so-called vol-
ume form of the shape derivative which in a finite element context is known to give a better
approximation compared to the boundary form; see [4,15].

The convergence of shape optimisation algorithms can be speeded up by using second order
shape derivatives. Given two sufficiently smooth vector fields V, W and an admissible shape
Ω ∈ A , let Ωs,t := (Id + sV + tW)(Ω) the perturbed domain. Then, the second order shape
derivative is defined as

D2J (Ω)(V)(W) :=
�

d2

dsd t
J (Ωs,t)

�

�

�

�

�

s,t=0

. (1.3)

Second order information in Newton-type algorithms has been explored in the articles [1, 8,
22, 24, 31]. Since the computation of second order shape derivatives is more involved and er-
ror prone, several authors have employed automatic differentiation (AD) tools, see e.g. [27]
and [12] for two approaches based on the Unified Form Language (UFL) [3]. In [12], the au-
thors present a fully automated shape differentiation software which uses the transformation
properties on the finite element level. In [27] (see also the earlier work [26]) the automated
derivatives are computed using UFL. The strategy of [12] and [27] differ in that, for the latter,
the software computes an unsymmetric shape Hessian since it involves the term DJ (Ω)(∂ VW).
Optionally the software allows to make the shape Hessian symmetric by requiring ∂ VW = 0.
Let us also mention [7] where automated shape derivatives for transient PDEs in FEniCS and
Firedrake are presented.

In this paper we present an alternative framework for AD of PDE constrained problems of
type (1.2). There exist several approaches for the rigorous derivation of the shape derivative of
PDE-constrained shape functionals, see [34] for an overview. The main idea, however, is always

Automated Shape Optimisation in NGSolve 3

similar. After transforming the perturbed setting back to the original domain, shape differentia-
tion in the direction of a given vector field reduces to the differentiation with respect to the scalar
parameter t which now enters via the corresponding transformation and its gradient. It is shown
in [33] that the shape derivative for a nonlinear PDE-constrained shape optimisation problem
can be computed as the derivative of the Lagrangian with respect to the perturbation parame-
ter. We will illustrate this systematic procedure for a number of different applications and utilise
symbolic differentiation provided by the finite element software package NGSolve [30] to obtain
the shape derivative for different classes of PDE-constrained optimisation problems. NGSolve
allows for a fast and efficient numerical solution of a large number of different boundary value
problems. The aim of this paper is to extend NGSolve by the possibility of semi-automatic and
fully automatic shape differentiation and optimisation.

Distinctly from previous approaches we cover the following two points:

• a fully automated setting requiring as input the weak formulation of the constraint and
the cost function,

• a semi-automated setting which offers a highly customizable user interface, but requires
mathematical background knowledge.

Structure of the paper. In Section 2 we give a brief introduction on how to solve a PDE in
NGSolve and present its built-in auto-differentiation capabilities. The introduced syntax will
also lay the foundation for the following sections. In Section 3 we present a first unconstrained
shape optimisation problem and show how to solve it in NGSolve. For this purpose we show
how to compute the first and second order shape derivative in a semi-automated way. Section 4
extends the preceding section by incorporating a PDE constraint. The strategy is illustrated
by means of a simple Poisson equation. We also show how to treat the computation of shape
derivatives when the PDE is defined on surfaces. While the semi-automated shape differentiation
presented in Sections 3 and 4 requires mathematical background knowledge, in Section 5 we
show how the shape derivatives can be computed in a fully automated fashion. In the last section
of the paper we verify the computed formulas by a Taylor test, discuss optimisation algorithms
and present several numerical optimisation examples including nonlinear elasticity, Maxwell’s
equations and Helmholtz’s equation.

2 A brief introduction to NGSolve

In this section, we give a brief overview over the main concepts of the finite element software
NGSolve [30]. We first describe the main principles for numerically solving boundary value
problems in NGSolve before focusing on its built-in automatic differentiation capabilities. In the
subsequent sections of this paper, these ingredients will be combined to implement the shape
derivative of unconstrained and PDE-constrained shape optimisation problems in an automated
way.

4 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

2.1 Solving PDEs with finite elements in NGSolve
In this section, we illustrate the syntax of NGSolve using the python programming language
for the Poisson equation with homogeneous Dirichlet conditions as a model problem. We refer
the reader to the online documentation

https://ngsolve.org/docu/latest/

for a more detailed description of the many features.
The weak form of the model problem on a domain Ω ⊂ Rd reads

Find u ∈ H1
0(Ω) :

ˆ
Ω

∇u · ∇w dx =
ˆ
Ω

f w dx for all w ∈ H1
0(Ω). (2.1)

We consider a ball of radius 1
2 in two space dimensions centered at the point (0.5,0.5)>, i.e.

Ω= B((0.5, 0.5)>, 0.5), and the right hand side is defined by f (x1, x2) = 2x2(1−x2)+2x1(1−x1).
We will go through the steps for numerically solving this problem by the finite element method.

We begin by importing the necessary functionalities and setting up a finite element mesh.

1 from ngsolve import ∗
2 from netgen . geom2d import SplineGeometry
3

4 geo = SplineGeometry ()
5 geo . AddCirc le ((0 . 5 , 0 . 5) ,0 .5 , bc=" c i r c l e ")
6

7 mesh = Mesh(geo . GenerateMesh (maxh=0.2))
8 mesh . Curve (3)

The first line imports all modules from the package NGSolve. The second line includes the
SplineGeometry function which enables us to define a mesh via a geometric description, in our
case a circle centered at (0.5,0.5)> of radius 0.5. Finally the mesh is generated in line 7 and
in line 8 we specify that we want to use a curved finite element mesh for a more accurate
approximation of the geometry.

Next in line 9 we define an H1 conforming finite element space of polynomial degree 3 and
include Dirichlet boundary conditions on the boundary of the domain ∂Ω (referenced by the
string “circle” that we assigned in line 5). On this space we define a trial function u in line
11 and a test function w in line 12. These are purely symbolic objects which are used to define
boundary value problems in weak form.

9 f e s = H1(mesh , order=3, d i r i c h l e t=" c i r c l e ")
10

11 u = f e s . T r i a l Func t i on ()
12 w = f e s . Tes tFunct ion ()

For a more compact presentation later on, we define a coefficient function X which combines
the three spatial components:

13 X = C o e f f i c i e n t F u n c t i o n ((x , y , z))

Now, the left and right hand side of problem (2.1) can be conveniently defined as a bilinear or
linear form, respectively, on the finite elements space fes by the following lines.

https://ngsolve.org/docu/latest/

Automated Shape Optimisation in NGSolve 5

Figure 1: Solution of problem (2.1) by code fragments of Section 2.1 with 29 nodes, 40 (curved)
triangular elements and polynomial order 3.

14 L = LinearForm (f e s)
15 f1 = (2∗X[1]∗(1−X [1])+2∗X[0]∗(1−X [0]))
16 L += f1 ∗ w ∗ dx
17

18 a = Bi l inearForm (fes , symmetric=True)
19 a += grad (u)∗grad (w)∗dx

We assemble the system matrix coming from the bilinear form a and the load vector coming
from L and solve the corresponding system of linear equations.

20 a . Assemble ()
21 L . Assemble ()
22

23 gfu = GridFunct ion (f e s)
24 gfu . vec . data = a . mat . Inve r se (f e s . FreeDofs () , i nve r s e=" spar secho le sky ") ∗ L . vec
25

26 Draw (gfu , mesh , " s t a t e ")

Here, gfu is defined as a GridFunction over the finite element space fes. The Dirichlet con-
ditions are incorporated into the direct solution of the linear system and the numerical solution
is drawn in the graphical user interface. The numerical solution is depicted in Figure 1.

6 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

2.2 Automatic Differentiation in NGSolve
In NGSolve, symbolic expressions are stored in expression trees, see Figure 2 for an example.
It is possible to differentiate an expression expr with respect to a variable var appearing in expr
into a direction dir by the command

expr.Diff(var, dir).

Mathematically this line corresponds to the directional derivative of g:=expr at x := var in
direction v := dir, that is,

Dg(x)(v). (2.2)

When calling the Diff command for expr, the expression tree of expr is gone through node by
node, and for each node the corresponding differentiation rules such as product rule or chain
rule are applied. When a node represents the variable with respect to which the differentiation
is carried out, it is replaced by the direction dir of differentiation.

Figure 2 shows the differentiation of the expression expr= 2x*x+3y with respect to x into
the direction given by v:

27 v = Parameter (1)
28 expr = 2∗x∗x+3∗y
29 dexpr = expr . D i f f (x , v)
30 p r i n t (expr)
31 p r i n t (dexpr)

The output of print(expr) reads

coef binary operation ’+’, real
coef binary operation ’*’, real

coef scale 2, real
coef coordinate x, real

coef coordinate x, real
coef scale 3, real

coef coordinate y, real

which translates to 2x ∗ x + 3y and corresponds to the expression tree depicted in Figure 2(a).
The output of print(dexpr) reads

coef binary operation ’+’, real
coef binary operation ’+’, real

coef binary operation ’*’, real
coef scale 2, real

coef N5ngfem28ParameterCoefficientFunctionE, real
coef coordinate x, real

coef binary operation ’*’, real
coef scale 2, real

coef coordinate x, real
coef N5ngfem28ParameterCoefficientFunctionE, real

coef scale 3, real
coef 0, real

Automated Shape Optimisation in NGSolve 7

+

3y*

2x x

+

3*0+

*

2v x

*

2x v

(a) (b)

Figure 2: Illustration of Diff command for example expr= 2x*x+3y. (a) Expression tree for
expr. (b) Expression tree for expression obtained by call of expr.Diff(x, dir).

which translates to (2v ∗ x + 2x ∗ v) + 3 ∗ 0 and corresponds to the expression tree depicted in
Figure 2(b).

By default NGSolve GridFunctions as well as trial and test functions do not depend on the
spatial variables x , y, z. While trial and test functions are purely symbolic objects, GridFunctions
represent functions in the finite element space. The code segments

32 u = f e s . T r i a l Func t i on () # symbol ic o b j e c t
33 w = f e s . Tes tFunct ion () # symbol ic o b j e c t
34 gf = GridFunct ion (f e s)
35 gf . Set (x∗x∗y)
36

37 p r i n t (" D i f f u wrt x " , u . D i f f (x))
38 p r i n t (" D i f f w wrt x " , w. D i f f (x))
39 p r i n t (" D i f f g f wrt x " , g f . D i f f (x))

will give the following output:

Diff u wrt x: ConstantCF, val = 0
Diff w wrt x: ConstantCF, val = 0
Diff gf wrt x: ConstantCF, val = 0

3 Semi-automatic shape differentiation without constraints

We will illustrate the steps to be taken in order to obtain the shape derivative of a shape function
in a semi-automatic way for a simple shape optimisation problem. ForΩ ⊂ Rd bounded and open
and a continuously differentiable function f ∈ C1(Rd), we consider the shape differentiation of

8 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

the shape function

J (Ω) =
ˆ
Ω

f (x)dx . (3.1)

Clearly the minimiser of J over all measurable sets in Rd is given by Ω∗ = {x ∈ Rd : f (x)< 0}.
We also refer to [25] for the computations of first and second order variations of type (3.1)
where Ω is a submanifold of Rd .

3.1 First order shape derivative

Given a vector field V ∈ C0,1(Rd)d , we define the transformation

Tt(x) := (Id+ t V)(x), x ∈ Rd , t ≥ 0.

Definition 3.1. The first order shape derivative of a shape function J at Ω in direction V ∈
C0,1(Rd)d is defined by

DJ (Ω)(V) = lim
t↘0

J (Tt(Ω))−J (Ω)
t

. (3.2)

3.1.1 Shape differentiation of unconstrained volume integrals

Using the transformation y = Tt(x) and the notation Ft := ∂ Tt = I + t∂ V for the Jacobian of
the transformation Tt , we get for J as in (3.1),

J (Ωt) =
ˆ
Ωt

f (x ′) dx ′ =
ˆ
Ω

(f ◦ Tt)(x)det(Ft(x))dx . (3.3)

Now let us explain how to compute the shape derivative of J . Denoting

G(Tt , Ft) :=
ˆ
Ω

(f ◦ Tt)(x)det(Ft(x))dx , (3.4)

the chain rule gives (formally)

d
d t
J (Ωt)

�

�

�

�

t=0

=
d
d t

G(Tt , Ft)

�

�

�

�

t=0

=
�

dG
dTt

dTt

d t
+

dG
dFt

dFt

d t

�

�

�

�

�

t=0

.

Using that dTt
d t (x) = V (x) and dFt

d t (x) = ∂ V (x), we get for the shape derivative

dJ (Ω)(V) =
d
d t
J (Ωt)

�

�

�

�

t=0

=
�

dG
dTt

V +
dG
dFt
∂ V
�

�

�

�

�

t=0

.

This is the form we use for defining the first order shape derivative in NGSolve. Note that a
Lipschitz vector field is differentiable almost everywhere and hence ∂ V (x) is defined almost
everywhere and bounded.

Given the function f (x1, x2) = (x1 − 0.5)2/a2 + (x2 − 0.5)2/b2 − R2 with a = 1.3, b = 1/a
and R= 0.5, we implement the transformed cost function (3.3) as follows:

Automated Shape Optimisation in NGSolve 9

40 f = ((X[0]−0.5) /1.3) ∗∗2+(1.3∗(X[1]−0.5))∗∗2 − 0.5∗∗2
41

42 F = Id (2) # symbol ic i d e n t i t y matr ix
43 G_f = f ∗ Det (F) ∗ dx # F only a c t s as a dummy v a r i a b l e

Here, we introduce the symbol F and assign to it the value of the identity matrix in line 42. This
allows us to differentiate with respect to F. Then we define the function G of (3.4) in line 43.
The shape derivative is a bounded linear functional on a space of vector fields. We introduce a
vector-valued finite element space VEC and define the object representing the shape derivative
dJOmega_f as a linear functional on VEC. In line 48, we differentiate with respect to the spatial
variables in the direction given by V. Note that X is the coefficient function we introduced in
line 13. In line 49, we deal with the differentiation with respect to F.

44 VEC = VectorH1 (mesh , order=1, d i r i c h l e t=" ") #v e c t o r i a l FE space of order 1
45 V = VEC . TestFunct ion ()
46

47 dJOmega_f = LinearForm (VEC)
48 dJOmega_f += G_f . D i f f (X , V)
49 dJOmega_f += G_f . D i f f (F , grad (V))

Remark 3.2. Defining ξt := det(Ft) and using d
d tξt |t=0 = div V , it holds

dG
dFt

dFt

d t

�

�

�

�

t=0

=
dG
dξt

dξt

dFt

dFt

d t

�

�

�

�

t=0

=
dG
dξt

dξt

d t

�

�

�

�

t=0

=
dG
dξt

divV

�

�

�

�

t=0

=
ˆ
Ω

f div V dx .

Therefore, we obtain for the first order shape derivative the well-known formula

DJ (Ω)(V) =
ˆ
Ω

∇ f · V + f divV dx .

Finally if Ω is smooth enough (for instance C1), then the shape derivative is given by

DJ (Ω)(V) =
ˆ
∂Ω

f V · n ds, (3.5)

where n denotes the outward pointing normal along ∂Ω.

3.1.2 Shape differentiation of unconstrained boundary integrals

For Ω and f as in the previous section we consider

Jbnd(Ω) =
ˆ
∂Ω

f (x) dx . (3.6)

Then we get

Jbnd(Ωt) =
ˆ
∂Ωt

f (x ′) dsx ′ =
ˆ
∂Ω

(f ◦ Tt)(x)det(Ft(x))|Ft(x)
−>n(x)|dsx , (3.7)

see e.g. [32, Prop. 2.47], with the outer unit normal vector n and | · | denoting the Euclidean
norm. Again, the shape derivative can be computed as the total derivative of this expression
with respect to the parameter t. In NGSolve, the only difference lies in the necessity to use the
trace of the gradient of a test vector field V.

10 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

50 G_f_bnd = f ∗ Det (F) ∗ Norm(Inv (F) . t r ans ∗ s p e c i a l c f . normal (2)) ∗ ds
51

52 dJOmega_f_bnd = LinearForm (VEC)
53 dJOmega_f_bnd += G_f_bnd . D i f f (X , V) # no t r a c e needed
54 dJOmega_f_bnd += G_f_bnd . D i f f (F , grad (V) . Trace ()) # t r a c e needed

3.2 Second order shape derivatives

For second order shape derivatives, we consider perturbations of the form

Ts,t(x) = (Id+ sV + tW)(x), x ∈ Rd ,

for s, t ≥ 0 and define Ωs,t := Ts,t(Ω).

Definition 3.3. The second order shape derivative of a shape function J at Ω in direction
(V, W) ∈ C0,1(Rd)d × C0,1(Rd)d is defined by

D2J (Ω)(V)(W) =
d2

dsd t
J (Ωs,t)

�

�

�

�

s=t=0

. (3.8)

Remark 3.4. We remark that if J is smooth enough, the second order derivative as defined in
(3.8) is symmetric by definition:

D2J (Ω)(V)(W) = D2J (Ω)(W)(V). (3.9)

We stress that this derivative is not the same as the shape derivative obtained by repeated shape
differentiation, that is, it does not coincide with (see, e.g., [6, Chap. 9, Sec. 6])

d2J (Ω)(V)(W) := lim
t↘0

DJ (T W
t (Ω))(V)− DJ (Ω)(V)

t
(3.10)

which is in general asymmetric. However, in NGSolvewe compute directly the second derivative
as defined in (3.8). However, this derivative is only symmetric if ∂ VW = 0 since

d2J (Ω)(V)(W) = D2J (Ω)(V)(W) + DJ (Ω)(∂ VW). (3.11)

In NGSolve, when repeating the shape differentiation procedure introduced in Section 3.1, we
compute directly the second order shape derivative as defined in (3.8). Here, we exploit that
GridFunctions are independent of the spatial coordinates, see also Section 2.2.

Similarly to the computations of the first derivative, we use the notation Fs,t := ∂ Ts,t =
I + s∂ V + t∂W . For the shape function defined in (3.1) we get

d2

dsd t
J (Ωs,t)

�

�

�

�

s=t=0

=
d2

dsd t

ˆ
Ωs,t

f (x)dx

�

�

�

�

s=t=0

=
d2

dsd t

ˆ
Ω

(f ◦ Ts,t)(x)det(Fs,t(x))dx

�

�

�

�

s=t=0

.

Automated Shape Optimisation in NGSolve 11

Again, using the notation G(Ts,t , Fs,t) =
´
Ω(f ◦ Ts,t)(x)det(Fs,t(x))dx , we get

d2

dsd t
J (Ωs,t)

�

�

�

�

s=t=0

=
d2

dsd t
G(Ts,t , Fs,t)

�

�

�

�

s=t=0

=
d
ds

�

dG
dTs,t

dTs,t

d t
+

dG
dFs,t

dFs,t

d t

��

�

�

�

s=t=0

.

Using that
d2Ts,t

dsd t = 0 and
d2Fs,t

dsd t = 0, we get further

d2

dsd t
J (Ωs,t)

�

�

�

�

s=t=0

=
d
ds

�

dG
dTs,t

�

dTs,t

d t
+

d
ds

�

dG
dFs,t

�

dFs,t

d t

�

�

�

�

s=t=0

=

�

d2G
dT 2

s,t

dTs,t

ds
+

d2G
dFs,t dTs,t

dFs,t

ds

�

dTs,t

d t
+

�

d2G
dTs,t dFs,t

dTs,t

ds
+

d2G
dF2

s,t

dFs,t

ds

�

dFs,t

d t

�

�

�

�

s=t=0

.

(3.12)

Formula (3.12) is used for the automatic derivation of the second order shape derivative in
NGSolve. Using

dTs,t

ds (x) = V (x), dTs,t

d t (x) = W (x) and
dFs,t

ds (x) = ∂ V (x), dFs,t

d t (x) = ∂W (x), we
get

d2

dsd t
J (Ωs,t)

�

�

�

�

s=t=0

=

�

d2G
dT 2

s,t
V +

d2G
dFs,t dTs,t

∂ V

�

W +

�

d2G
dTs,t dFs,t

V +
d2G
dF2

s,t
∂ V

�

∂W

�

�

�

�

s=t=0

.

(3.13)

Remark 3.5. We remark that the formula (3.13) can be evaluated explicitly and reads

D2J (Ω)(V, W) =
ˆ
Ω

∇2 f V ·W +∇ f ·W divV +∇ f · V divW + f divV divW − f ∂ V> : ∂W dx .

Formula (3.13) can be implemented in NGSolve as follows:

55 d2JOmega_f = Bi l inearForm (VEC)
56 W = VEC . T r i a l Func t i on ()
57

58 d2JOmega_f+=(G_f . D i f f (X , W)+G_f . D i f f (F , grad (W))) . D i f f (X , V)
59 d2JOmega_f+=(G_f . D i f f (X , W)+G_f . D i f f (F , grad (W))) . D i f f (F , grad (V))

Notice that since W is a trial function it is not affected by the differentiation with respect to X,
see Section 2.2. In the same fashion, second order derivatives of boundary integrals of the form
(3.6) can be computed.

60 d2JOmega_f_bnd = Bi l inearForm (VEC)
61

62 d2JOmega_f_bnd+=(G_f_bnd . D i f f (X , W)+G_f_bnd . D i f f (F , grad (W) . Trace ())) . D i f f (X , V)
63 d2JOmega_f_bnd+=(G_f_bnd . D i f f (X , W)+G_f_bnd . D i f f (F , grad (W) . Trace ())) . D i f f (F , grad (V

) . Trace ())

4 Semi-automatic shape differentiation with PDE constraints

In this section, we describe the automatic derivation of the shape derivative for the following
type of equality constrained shape optimisation problems:

min
(Ω,u)

J(Ω, u) (4.1)

12 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

subject to (Ω, u) ∈A × X solves
e(Ω, u) = 0, (4.2)

where e :A × X → X ∗ with e(Ω, ·) : X (Ω)→ X (Ω)∗ represents an abstract PDE constraint with
X = ∪Ω∈A X (Ω) being the union of Banach spaces X (Ω) and A a set of admissible shapes. For
any given Ω ∈ A we assume the PDE constraint (4.2) to admit a unique solution which we
denote by uΩ. Moreover, let J (Ω) := J(Ω, uΩ) denote the reduced cost functional. One way to
eliminate the constraint (4.2) is to introduce a Lagrangian

L (Ω, u, p) := J(Ω, u) + 〈e(Ω, u), p〉. (4.3)

Now an initial shape Ω is perturbed by a family of transformations Tt , resulting in a new shape
Ωt := Tt(Ω). Transforming back to the initial shape Ω leads to the Lagrangian:

G(t, u, p) :=L (Tt(Ω),Φt(u),Φt(p)), u, p ∈ X (Ω), (4.4)

where Φt : X (Ω) → X (Ωt) is a bijective mapping. Here the transformation Φt depends on the
differential operator involved. For instance

• if X (Ω) = H1
0(Ω), then Φt(u) = u ◦ T−1

t ,

• if X (Ω) = H(curl,Ω), then Φt(u) = ∂ T−>t (u ◦ T−1
t),

• if X (Ω) = H(div,Ω), then Φt(u) =
1

det(∂ Tt)
∂ Tt(u ◦ T−1

t).

Now the shape differentiability of (4.1)–(4.2) is reduced to proving that (see [34])

DJ (Ω)(V) =
d
d t

G(t, ut , 0)|t=0 = ∂t G(0, u, p), (4.5)

where ut := ut ◦ Tt and ut ∈ X (Ωt) solves e(Ωt , ut) = 0. The verification of (4.5) can be ac-
complished by different methods, see e.g. [34] for an overview. However, we remark that (4.5)
holds for a large class of nonlinear PDE constrained shape optimisation; see [33].

The rest of this section is organised as follows: We introduce a model problem, which is
the minimisation of a tracking-type cost functional subject to Poisson’s equation in Section 4.1.
We illustrate how the first and second order shape derivative for this PDE-constrained model
problem can be obtained in NGSolve in Sections 4.2 and 4.3. Finally, we also briefly discuss the
extension to partial differentiation equations on surfaces.

4.1 PDE-constrained model problem

We will illustrate the derivation of the first and second order shape derivative for the minimi-
sation of a tracking-type cost functional subject to Poisson’s equation on the unknown domain
Ω. Let d = 2 or 3, f , ud ∈ H1(Rd) and A ⊂ P (Rd) a set of admissible shapes. We consider the
problem

min
(Ω,u)

J(Ω, u) =
ˆ
Ω

|u− ud |2 dx (4.6a)

Automated Shape Optimisation in NGSolve 13

subject to (Ω, u) ∈A ×H1
0(Ω) solve

〈e(Ω, u),ψ〉 :=
ˆ
Ω

∇u · ∇ψdx −
ˆ
Ω

fψdx = 0 for all ψ ∈ H1
0(Ω). (4.6b)

The Lagrangian is given by

L (Ω,ϕ,ψ) :=
ˆ
Ω

|ϕ − ud |2 dx +
ˆ
Ω

∇ϕ · ∇ψdx −
ˆ
Ω

fψdx . (4.7)

Given an admissible shape Ω, a vector field V ∈ C0,1(Rd)d and t > 0 small, let Ωt := (Id+ tV)(Ω)
the perturbed domain. Therefore the parametrised Lagrangian is given by

G(t,ϕ,ψ) :=L (Tt(Ω),ϕ ◦ T−1
t ,ψ ◦ T−1

t), ϕ,ψ ∈ H1
0(Ω). (4.8)

Changing variables yields

G(t,ϕ,ψ) =
ˆ
Ω

|ϕ − ut
d |

2 det(Ft)dx +
ˆ
Ω

(F−>t ∇ϕ) · (F
−>
t ∇ψ)det(Ft)dx −

ˆ
Ω

f tψdet(Ft)dx

(4.9)

=: G̃(Tt , Ft ,ϕ,ψ),

where ut
d = ud ◦Tt and f t = f ◦Tt . Recall that, for a given Ω ∈A , uΩ denotes the corresponding

unique solution to (4.6b) and J (Ω) the reduced cost functional, J (Ω) := J(Ω, uΩ). Let ut ∈
H1

0(Ω) the solution of the perturbed state equation brought back to the original domain Ω, that
is, ut ∈ H1

0(Ω) is the unique solution to

∂ψG(t, ut , 0)(ψ) = 0 for all ψ ∈ H1
0(Ω). (4.10)

Note that, for ut defined by (4.10), it holds J (Ωt) = G(t, ut ,ψ) for allψ ∈ H1
0(Ω) and therefore

also DJ (Ω)(V) = d
d t G(t, ut ,ψ) for all ψ ∈ H1

0(Ω).
It can easily be shown that (4.5) holds and thus the shape derivative in the direction of a

vector field V ∈ C0,1(R)d is given by

DJ (Ω)(V) = ∂t G(0, u, p),

where p ∈ H1
0(Ω) denotes the adjoint state and is defined as the unique solution p ∈ H1

0(Ω) to

∂ϕG(0, u, p)(ϕ̂) = 0 for all ϕ̂ ∈ H1
0(Ω), (4.11)

or explicitly

ˆ
Ω

∇ϕ̂ · ∇p dx = −2
ˆ
Ω

(u− ud)ϕ̂ dx for all ϕ̂ ∈ H1
0(Ω). (4.12)

14 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

4.2 First order shape derivative

By the discussion above, the first order shape derivative is given by ∂t G(0, u, p) with G defined
in (4.9) and u and p the unique solutions to the boundary value problems (4.6b) and (4.12),
respectively.

Writing G̃(Tt , Ft) := G̃(Tt , Ft , u, p) = G(t, u, p) we obtain in analogy to the unconstrained
problem

DJ (Ω)(V) =
d
d t
J (Ωt)

�

�

�

�

t=0

=
�

dG
dTt

V +
dG
dFt
∂ V
�

�

�

�

�

t=0

.

We can compute explicitly

dG
dFt
|t=0∂ V =

ˆ
Ω

div(V)(u− ud)
2 − (∂ V + ∂ V>)∇u · ∇p− div(V)∇u · ∇p− f p div(V) dx ,

(4.13)
dG
dTt
|t=0V =

ˆ
Ω

−2(u− ud)∇ud · V −∇ f · V p dx . (4.14)

Now we are in a position to compute the first order shape derivative for the PDE-constrained
shape optimisation problem (4.6) in NGSolve. After solving the state equation as shown in
Section 2.1, the adjoint equation can be solved as follows.

64 ud = X[0]∗(1−X [0]) ∗X[1]∗(1−X [1])
65 def Cost (u) :
66 re turn (u−ud)∗∗2 ∗ Det (F) ∗ dx
67

68 #so lve a d j o i n t equat ion
69 gfp = GridFunct ion (f e s)
70 dCostdu = LinearForm (f e s)
71 dCostdu += Cost (gfu) . D i f f (gfu , w)
72 dCostdu . Assemble ()
73 gfp . vec . data = −a . mat . Inve r se (f e s . FreeDofs () , i nve r s e=" spar secho le sky ") . T ∗

dCostdu . vec
74

75 Draw(gfp , mesh , " a d j o i n t ")

We can now define the Lagrangian (4.9) such that the shape derivative can be obtained by the
same procedure as in the unconstrained setting. Note that lines 82–83 coincide with lines 48–49.

76 def Equation (u ,w) :
77 re turn ((Inv (F) . t r ans ∗ grad (u)) ∗ (Inv (F) . t r ans ∗ grad (w)) − f ∗w)∗Det (F)∗dx
78

79 G_pde = Cost (gfu) + Equation (gfu , gfp)
80

81 dJOmega_pde = LinearForm (VEC)
82 dJOmega_pde += G_pde . D i f f (X , V)
83 dJOmega_pde += G_pde . D i f f (F , grad (V))

Automated Shape Optimisation in NGSolve 15

4.3 Second order shape derivative

Let us introduce the notation

GV,W (s, t,ϕ,ψ) =
ˆ
Ω

(F−>s,t ∇ϕ) · (F
−>
s,t ∇ψ)det(Fs,t) dx −

ˆ
Ω

f ◦ Ts,tψdet(Fs,t) dx
︸ ︷︷ ︸

=:〈EV,W (s,t)ϕ,ψ〉

(4.15)

+
ˆ
Ω

|ϕ − ud ◦ Ts,t |2 det(Fs,t)dx
︸ ︷︷ ︸

=:JV,W (s,t)

, (4.16)

where Ts,t(x) = x + sV (x) + tW (x) and Fs,t := ∂ Ts,t . We observe that

J (Ts,t(Ω)) = GV,W (s, t, us,t , ps,t) (4.17)

with (us,t , ps,t) ∈ H1
0(Ω)×H1

0(Ω) being the solution to

∂pGV,W (s, t, us,t , 0)(ϕ) = 0 for all ϕ ∈ H1
0(Ω),

∂uGV,W (s, t, us,t , ps,t)(ψ) = 0 for all ψ ∈ H1
0(Ω)

(4.18)

for s, t ≥ 0. In case t = 0 we write us := us,t |t=0 and ps := ps,t |t=0 and similarly for t = s = 0
we write u := us,t |s=t=0 and p := ps,t |s=t=0. Therefore, consecutive differentiation of (4.17) first
with respect to t at zero and then with respect to s at zero yields

D2J (Ω)(V)(W) =
d2

dsd t
GV,W (s, t, us,t , ps,t)|s=t=0 =

d
ds
∂t GV,W (s, 0, us, ps)|s=0

= ∂s∂t GV,W (0, 0, u, p) + ∂u∂t GV,W (0,0, u, p)(∂su
0) + ∂p∂t GV,W (0, 0, u, p)(∂sp

0),
(4.19)

where ∂su
0 ∈ H1

0(Ω) solves the material derivative equation

∂u∂pGV,W (0, 0, u, 0)(ψ)(∂su
0) = −∂s∂pGV,W (0,0, u, 0)(ψ) for all ψ ∈ H1

0(Ω), (4.20)

or equivalently

〈∂uEV,W (0, 0)(∂su
0),ψ〉= −〈∂sEV,W (0,0)u,ψ〉 for all ψ ∈ H1

0(Ω). (4.21)

Similarly the function ∂sp
0 ∈ H1

0(Ω) solves the material derivative equation

∂p∂uGV,W (0,0, u, p)(ψ)(∂sp
0) = −∂ 2

u GV,W (0, 0, u, p)(ψ)(∂su
0)− ∂s∂uGV,W (0,0, u, p)(ψ) (4.22)

for all ψ ∈ H1
0(Ω). Formally (4.20) and (4.22) can be written as an operator equation

�

∂ 2
u GV,W (0, 0, u, p) ∂p∂uGV,W (0,0, u, p)

∂u∂pGV,W (0, 0, u, p) 0

��

∂su
0

∂sp
0

�

= −
�

∂s∂uGV,W (0,0, u, p)
∂s∂pGV,W (0,0, u, 0)

�

. (4.23)

So to evaluate the second derivative (4.19) in some direction (V, W)we have to solve the system
(4.23).

This is realised in NGSolve by setting up a combined finite element space which we denote
by X2. We define trial and test functions as well as grid functions representing the deformation
vector fields V and W , which we initialise with some functions.

16 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

84 X2 = FESpace ([fes , f e s])
85 dsu , dsp = X2 . T r i a l Func t i on ()
86 uTest , pTest = X2 . Tes tFunct ion ()
87 gfV = GridFunct ion (VEC)
88 gfW = GridFunct ion (VEC)
89 gfV . Set ((X[0]∗X[0]∗X[1]∗ exp (X [1]) ,X[1]∗X[1]∗X[0]∗ exp (X [0])))
90 gfW . Set ((X[1]∗X[1]∗X[0]∗ exp (X [0]) ,X[0]∗X[0]∗X[1]∗ exp (X [1])))

We define a 2×2 block bilinear form as well as a 2×1 block linear form which will represent the
left and right hand sides of (4.23), respectively. The operator equation in (4.23) can be conve-
niently defined by differentiating the Lagrangian with respect to the corresponding variables.

91 shapeHessLag2 = Bi l inearForm (X2)
92 shapeGradLag2 = LinearForm (X2)
93

94 shapeHessLag2 += (G_pde . D i f f (gfu , uTest)) . D i f f (gfu , dsu) #block (1 ,1)
95 shapeHessLag2 += (G_pde . D i f f (gfu , uTest)) . D i f f (gfp , dsp) #block (1 ,2)
96 shapeHessLag2 += (G_pde . D i f f (gfp , pTest)) . D i f f (gfu , dsu) #block (2 ,1)
97

98 #l i n e 1
99 shapeGradLag2 += (G_pde . D i f f (gfu , uTest)) . D i f f (F , grad (gfV))

100 shapeGradLag2 += (G_pde . D i f f (gfu , uTest)) . D i f f (X , gfV)
101

102 #l i n e 2
103 shapeGradLag2 += (G_pde . D i f f (gfp , pTest)) . D i f f (F , grad (gfV))
104 shapeGradLag2 += (G_pde . D i f f (gfp , pTest)) . D i f f (X , gfV)

We can solve this combined system for ∂su
0 and ∂sp

0 and access and visualise the two compo-
nents in the following way:

105 gfCombined2 = GridFunct ion (X2)
106 shapeHessLag2 . Assemble ()
107 shapeGradLag2 . Assemble ()
108 gfCombined2 . vec . data = shapeHessLag2 . mat . Inve r se (X2 . FreeDofs () , i nve r s e = " umfpack

") ∗ shapeGradLag2 . vec
109

110 gfdsu = GridFunct ion (f e s)
111 gfdsp = GridFunct ion (f e s)
112 gfdsu . vec . data = gfCombined2 . components [0] . vec
113 gfdsp . vec . data = gfCombined2 . components [1] . vec
114

115 Draw(gfdsu , mesh , " dsu ")
116 Draw(gfdsp , mesh , " dsp ")

In order to obtain the second order shape derivative in the direction given by (V, W), it remains
to evaluate the term (4.19). We define the three terms of (4.19) as bilinear forms, assemble
them and perform vector-matrix-vector multiplications:

117 w1 = f e s . T r i a l Func t i on ()
118 q1 = f e s . T r i a l Func t i on ()
119

120 shapeHess11 = Bi l inearForm (VEC)
121 shapeHess11 += (G_pde . D i f f (F , grad (W))+G_pde . D i f f (X , W)) . D i f f (F , grad (V))

Automated Shape Optimisation in NGSolve 17

122 shapeHess11 += (G_pde . D i f f (F , grad (W))+G_pde . D i f f (X , W)) . D i f f (X , V)
123 shapeHess11 . Assemble ()
124

125 shapeHess12 = Bi l inearForm (t r i a l s p a c e = fes , t e s t s p a c e = VEC)
126 shapeHess12 += (G_pde . D i f f (F , grad (V)) + G_pde . D i f f (X , V)) . D i f f (gfu ,w1)
127 shapeHess12 . Assemble ()
128

129 shapeHess13 = Bi l inearForm (t r i a l s p a c e = fes , t e s t s p a c e = VEC)
130 shapeHess13 += (G_pde . D i f f (F , grad (V)) + G_pde . D i f f (X , V)) . D i f f (gfp , q1)
131 shapeHess13 . Assemble ()
132

133 av = gfV . vec . CreateVector ()
134 av . data = shapeHess11 . mat ∗ gfV . vec
135

136 adsu = gfV . vec . CreateVector ()
137 adsu . data = shapeHess12 . mat ∗ gfdsu . vec
138

139 adsp = gfV . vec . CreateVector ()
140 adsp . data = shapeHess13 . mat ∗ gfdsp . vec
141

142 d2J = InnerProduct (gfW . vec , av) + InnerProduct (gfW . vec , adsu) + InnerProduct (gfW .
vec , adsp)

4.4 PDEs on surfaces

The automated shape differentiation is not restricted to partial differential equations on domains
Ω, but is readily extended to surface PDEs. We consider a two dimensional closed surface M ⊂ R3

and denote by n the normal field along M . Let ud ∈ H1(Rd) be given and define

J(M , u) =
ˆ

M
|u− ud |2 ds, (4.24)

where u ∈ H1(M) solves the surface equationˆ
M
∇Mu · ∇Mϕ + uϕ ds =

ˆ
M

f ϕ ds for all ϕ ∈ H1(M), (4.25)

where ∇Mϕ denotes the tangential gradient of ϕ; see [6, p.493, Def.5.1]. We assume that the
function f ∈ H1(R3) is given. The Lagrangian is given by

L (M ,ϕ,ψ) :=
ˆ

M
|ϕ − ud |2 ds+

ˆ
M
∇Mϕ · ∇Mψ+ϕψ ds−

ˆ
M

fψ ds. (4.26)

As in the previous section we fix an admissible shape M and let Mt := (Id+ tV)(M) be a small
perturbation of M by means of a vector field V ∈ C1(Rd)d for t > 0 small. The parametrised
Lagrangian is given by

G(t,ϕ,ψ) :=L (Tt(M),ϕ ◦ T−1
t ,ψ ◦ T−1

t), ϕ,ψ ∈ H1(M). (4.27)

Define the density ω(Ft) := det(Ft)|F−>t n|. Changing variables and using

(∇Mtϕ) ◦ Tt = B(Ft)∇M(ϕ ◦ Tt), B(Ft) =

�

I −
F−>t n

|F−>t n|
⊗

F−>t n

|F−>t n|

�

F−>t (4.28)

18 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

yields

G(t,ϕ,ψ) =
ˆ

M
|ϕ − ut

d |
2ω(Ft) ds

+
ˆ

M
((B(Ft)∇ϕ) · (B(Ft)∇ψ) +ϕψ)ω(Ft) ds−

ˆ
M

f tψω(Ft) ds,
(4.29)

where ut
d = ud ◦ Tt and f t = f ◦ Tt .

Writing G̃(Tt , Ft) := G(t, u, p) we obtain in analogy to the domain case

DJ (Ω)(V) =
�

dG
dTt

V +
dG
dFt
∂ V
�

�

�

�

�

t=0

. (4.30)

We can compute explicitly

dG
dFt
|t=0V =

ˆ
M

divM(V)(u− ud)
2 − (∂ M V + ∂ M V>)∇Mu · ∇M p

+ divM(V)(∇Mu · ∇M p+ up)− f p divM(V) ds, (4.31)
dG
dTt
|t=0∂ V =

ˆ
M
− 2(u− ud)∇ud · V −∇ f · V p ds, (4.32)

where ∂ M V denotes the tangential Jacobian of V and divM(V) := ∂ M V : I the tangential diver-
gence, which is defined as the trace of the tangential Jacobian; see [6, p.495].

The implementation is analogous to the previous sections. We will only illustrate first order
derivatives here. We first define the geometry of the unit sphere, create a surface mesh and
define a finite element space on the surface mesh:

143 from netgen . csg import ∗
144 from netgen . meshing import ∗
145 from ngsolve . i n t e r n a l import v i s o p t i o n s
146 from ngsolve import ∗
147

148 geo_sur f = CSGeometry ()
149 sphere = Sphere (Pnt (0 ,0 ,0) ,1) . bc (" outer ")
150 geo_sur f . Add(sphere)
151 mesh_surf = Mesh(geo_sur f . GenerateMesh (per f s t epsend=MeshingStep .MESHSURFACE,

opts teps2d=3,maxh=0.2))
152 mesh_surf . Curve (3)
153 f e s _ s u r f = H1(mesh_surf , order = 3)

Next we define the transformed cost function and partial differential equation needed for setting
up the Lagrangian (4.29). Here, we again make use of a symbolic object F to which we assign
the identity matrix. We define the tangential determinant ω and the matrix B defined in (4.28)
as functions of the deformation gradient Ft .

154 X = C o e f f i c i e n t F u n c t i o n ((x , y , z))
155 func = C o e f f i c i e n t F u n c t i o n (X[0]∗X[1]∗X [2])
156 F = Id (3)
157 tangDet = Det (F) ∗ Norm(Inv (F) . t r ans ∗ s p e c i a l c f . normal (3))
158 Bmat = (Id (3) − 1/Norm(Inv (F) . t r ans ∗ s p e c i a l c f . normal (3))∗∗2 ∗ OuterProduct (Inv (F) .

t r ans ∗ s p e c i a l c f . normal (3) , Inv (F) . t r ans ∗ s p e c i a l c f . normal (3))) ∗ Inv (F) . t r ans

Automated Shape Optimisation in NGSolve 19

159

160 def Equat ion_sur f (u ,w) :
161 re turn ((Bmat∗grad (u) . Trace ()) ∗ (Bmat∗grad (w) . Trace ()) + u∗w − func ∗ w) ∗

tangDet ∗ ds
162

163 def Cos t_ su r f (u) :
164 re turn u∗∗2 ∗ tangDet ∗ ds

Now we can define the bilinear form and solve the state equation. Here, the right hand side of
the equation is included in the bilinear form and the boundary value problem – although linear
– is solved by Newton’s method (which terminates after only one iteration) for convenience.

165 #s e t up and so lve s t a t e equat ion
166 u_surf , w_surf = f e s _ s u r f . TnT()
167 a = Bi l inearForm (f e s _ s u r f)
168 a += Equat ion_sur f (u_surf , w_surf)
169 g fu_ su r f = GridFunct ion (f e s _ s u r f)
170 s o l v e r s . Newton(a , g fu_sur f , p r i n t i n g = Fa l se)
171 Draw(gfu_sur f , mesh_surf , " g fu_ su r f ")

The adjoint equation is solved as usual:

172 #so lve a d j o i n t equat ion
173 l f c o s t _ s u r f = LinearForm (f e s _ s u r f)
174 l f c o s t _ s u r f += Cos t_ sur f (g fu_ su r f) . D i f f (g fu_sur f , w_surf)
175 l f c o s t _ s u r f . Assemble ()
176 inva = a . mat . Inve r se (f e s _ s u r f . FreeDofs () , i nve r s e=" spar secho le sky ")
177 g fp_ su r f = GridFunct ion (f e s _ s u r f)
178 g fp_ su r f . vec . data = −inva . T ∗ l f c o s t _ s u r f . vec
179 Draw(gfp_sur f , mesh_surf , " g fp_ su r f ")

The shape derivative is obtained as in the case of PDEs posed on volumes by the evaluation of
(4.30):

180 G_surf = Cos t_ sur f (g fu_ su r f) + Equat ion_sur f (g fu_sur f , g fp_ su r f)
181

182 VEC3d = VectorH1 (mesh_surf , order=1)
183 V3d = VEC3d . Tes tFunct ion ()
184 dJOmega_surf = LinearForm (VEC3d)
185 dJOmega_surf += G_surf . D i f f (X , V3d) + G_surf . D i f f (F , Grad (V3d) . Trace ())

5 Fully automated shape differentiation

In the previous sections we used the automatic differentiation capabilities of NGSolve to alle-
viate the shape differentiation procedure. However, so far we still had to include some knowl-
edge about the problems at hand. So far, it was necessary to define the objective function or
Lagrangian G in the correct way, accounting for the correct transformation rules between per-
turbed and unperturbed domain. In this section, we will show that also this step can be auto-

20 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

mated since all necessary information is already included in the functional setting. The fully
automated shape differentiation is incorporated by the command

DiffShape(...).

In particular, in the fully automated setting it is enough to set up the cost function or Lagrangian
for the unperturbed setting. For a shape function of the type (3.1) we can define the shape
derivative of the cost function in the following way:

186 G_f_0 = f ∗ dx
187 dJOmega_f_0 = LinearForm (VEC)
188 dJOmega_f_0 += G_f_0 . Di f fShape (V)

Note that there is no term of the form Det(F) showing up in line 186. Here, the transformation
of the domain is taken care of automatically. It can be checked that this really gives the same
result as dJOmega_f defined in lines 48–49.

189 dJOmega_f . Assemble ()
190 dJOmega_f_0 . Assemble ()
191 d i f f e r enceVec = dJOmega_f . vec . CreateVector ()
192 d i f f e r enceVec . data = dJOmega_f . vec − dJOmega_f_0 . vec
193 p r i n t (" |dJOmega_f − dJOmega_f_0| = " , Norm(d i f f e r enceVec))

The above code gives the output

|dJOmega_f - dJOmega_f_0| = 1.571008573810619e-17

which confirms our claim. The same holds true for second order shape derivatives. The lines
58–59 can be replaced by a repeated call of DiffShape(...):

194 d2JOmega_f_0 = Bi l inearForm (VEC)
195 d2JOmega_f_0 += G_f_0 . Di f fShape (V) . Di f fShape (W)

Again, it can be verified that d2JOmega_f_0 coincides with the previously defined quantity
d2JOmega_f. Note that slightly different results may occur due to different integration rules
used. This can be cured by enforcing an integration rule of higher order for G_f, i.e. by replacing
the symbol dx in the definition of G_f with dx(bonus_intorder=2).

In the more general setting of PDE-constrained shape optimisation, the procedure is very
similar. Here the idea exploited in the implementation of the command DiffShape(...) is to
just differentiate the general expression (4.4) with respect to the parameter t. The transforma-
tions Φt appearing in (4.4), which depend on the functional setting of the PDE, are identified
automatically from the finite element space from which the corresponding functions originate.
The shape derivative of lines 82–83 can be obtained by the following code.

196 def Cost_0 (u) :
197 re turn (u−ud)∗∗2 ∗ dx
198

199 def Equation_0 (u ,w) :
200 re turn (grad (u) ∗ grad (w) − f1 ∗w) ∗dx
201

202 G_pde_0 = Cost_0 (gfu) + Equation_0 (gfu , gfp)
203

Automated Shape Optimisation in NGSolve 21

204 dJOmega_pde_0 = LinearForm (VEC)
205 dJOmega_pde_0 += G_pde_0 . Di f fShape (V)

Here, gfu and gfp represent the solutions to the state and adjoint equation, respectively, and
must have been computed previously. The bilinear form shapeHess11 used in Section 4.3 (see
lines 121–122) can be obtained similarly:

206 shapeHess11_0 = Bi l inearForm (VEC)
207 shapeHess11_0 += G_pde_0 . Di f fShape (W) . Di f fShape (V)

The same holds true for boundary integrals

208 G_f_bnd_0 = f ∗ ds
209 dJOmega_f_bnd_0 = LinearForm (VEC)
210 dJOmega_f_bnd_0 += G_f_bnd_0 . Di f fShape (V)

and surface PDEs

211 def Cos t_sur f_0 (u) :
212 re turn u∗∗2 ∗ ds
213 def Equat ion_sur f_0 (u ,w) :
214 re turn (grad (u) . Trace () ∗grad (w) . Trace () + u∗w − func ∗ w) ∗ ds
215 G_surf_0 = Cost_sur f_0 (g fu_ su r f) + Equat ion_sur f_0 (gfu_sur f , g fp_ su r f)
216 dJOmega_surf_0 = LinearForm (VEC3d)
217 dJOmega_surf_0 += G_surf_0 . Di f fShape (V3d)

as well as their respective second order derivatives.

Remark 5.1. We remark that the fully automated differentiation using DiffShape(...) should
be seen to complement the semi-automated shape differentiation techniques introduced in Sec-
tions 3 and 4 rather than to replace them. Using the semi-automated differentiation, the user has
the possibility to, on the one hand, keep control over the involved terms, and on the other hand
also to adjust the shape differentiation to their custom problems which may be non-standard. As
an example where the semi-automated differentiation may be beneficial compared to the fully
automated differentiation we mention the case of time-dependent PDE constraints considered
in a space-time setting when a shape deformation is only desired in the spatial coordinates. Of
course, when one is interested in the shape derivative for a more standard problem, the fully
automated way appears to be more convenient and less error prone.

6 Numerical Experiments

6.1 Code verification

We verify the expressions that we obtained in a semi-automatical or fully automatical way for
the first and second order shape derivatives by looking at the Taylor expansions of the perturbed
shape functionals. We illustrate our findings in two examples in R2. On the one hand, we con-
sider a shape function as introduced in (3.1) with an additional boundary integral as in (3.6),
henceforth denoted by J1; on the other hand, we consider the PDE-constrained shape optimi-
sation problem defined by (4.6), the reduced form of which will be denoted by J2(Ω). More

22 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

precisely, we consider

J1(Ω) =
ˆ
Ω

f (x) dx +
ˆ
∂Ω

f (x) ds, (6.1)

J2(Ω) =
ˆ
Ω

|uΩ − ud |2 dx where uΩ solves (4.6b). (6.2)

In the case of J1, we used the function f (x1, x2) =
�

0.5+
Æ

x2
1 + x2

2

�2 �

0.5−
Æ

x2
1 + x2

2

�2
and

for J2, we used ud(x1, x2) = x1(1− x1)x2(1− x2) and f (x1, x2) = 2x2(1− x2)+2x1(1− x1) for
the function f in the PDE constraint (4.6b).

For the test of the first order shape derivatives DJi(Ω)(V) we choose a fixed shape Ω and a
vector field V ∈ C0,1(R2)2 and observe the quantity

δ1(Ji, t) := |Ji((Id+ tV)(Ω))−Ji(Ω)− t DJi(Ω)(V)| , (6.3)

for t ↘ 0. Likewise, for the second order shape derivative, we consider the remainder

δ2(Ji, t) :=

�

�

�

�

Ji((Id+ tV)(Ω))−Ji(Ω)− t DJi(Ω)(V)−
1
2

t2D2Ji(Ω)(V)(V)

�

�

�

�

(6.4)

as t ↘ 0. By the definition of first and second order shape derivatives, it must hold that

δ1(Ji, t) = O (t2) and δ2(Ji, t) = O (t3) as t ↘ 0. (6.5)

This behavior can be observed in Figure 3(a) for J1 and in Figure 3(b) for J2, where we used
V (x1, x2) = (x2

1 x2ex2 , x2
2 x1ex1) in both cases.

10
-3

10
-2

10
-1

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-3

10
-2

10
-1

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

(a) (b)

Figure 3: Taylor test for functions J1 and J2.

The experiments for shape functionJ1 was conducted on a mesh consisting of 13662 vertices,
26946 elements and with polynomial order 2 (resulting in 54269 degrees of freedom), and the
experiment for J2 with 95556 vertices and 190062 elements and polynomial degree 1 (95556
degrees of freedom). We conducted these experiments for a number of different problems with
different vector fields V , in particular with different PDE constraints and boundary conditions,
and obtained similar results in all instances provided a sufficiently fine mesh was used.

Automated Shape Optimisation in NGSolve 23

6.2 Optimisation algorithms

In this section we discuss how to use optimisation algorithms in conjunction with the automated
shape differentiation explained in the previous sections. The starting point of our discussion is
a fixed initial shape Ω. Then we consider the mapping

V 7→ g(V) := J ((Id+ V)(Ω)) (6.6)

defined on a suitable space of vector fields Θ ⊂ C0,1(D)d . Since the mapping g is defined on an
open subset Θ of the Banach space C0,1(D)d we can employ standard algorithms to minimise
g over Θ. The only constraint we must impose is that Id+ V remains invertible, which can be
difficult in practice. We observe that for V, W ∈ Θ we have

∂ g(V)(W) = DJ ((Id+ V)(Ω))(W ◦ (Id+ V)−1). (6.7)

6.2.1 Gradient computation

The gradient of ∂ g(V) in a Hilbert space H ⊂ C0,1(D)d is defined by

∂ g(V)(W) = (∇H g(V), W)H for all W ∈ H. (6.8)

Typical choices for H are

H = H1
0(D)

d , (W, V)H :=
ˆ
D
∂W : ∂ V + V ·W dx , (6.9)

H = H1
0(D)

d , (W, V)H :=
ˆ
D
ε(W) : ε(V) + V ·W dx , ε(V) :=

1
2
(∂ V + ∂ V>), (6.10)

H = H1
0(D)

d , (W, V)H :=
ˆ
D
ε(W) : ε(V) + V ·W + γCRBV · BW dx , where γCR > 0 and

(6.11)

B :=
�

−∂x ∂y

∂y ∂x

�

. (6.12)

The last choice corresponds to a penalised Cauchy-Riemann gradient and results in a gradient
which is approximately conformal and hence preserves good mesh quality. We refer to [17] for
a detailed description.

6.2.2 Basic algorithm

LetΩ be an initial shape and let H ⊂ C0,1(D)d be a Hilbert space. Then a basic shape optimisation
algorithm reads as follows.

24 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

Algorithm 1 gradient algorithm
1: Input: domain Ω0, n= 0, Nmax > 0, ε > 0, γ≥ 0
2: Output: optimal shape Ω∗

3: while n≤ Nmax and |∇J (Ωn)|> ε do
4: if J ((Id−α∇J (Ωn))(Ωn))< J (Ωn)− γα|∇J (Ωn)|2 then
5: Ωn+1← (Id−α∇J (Ωn))(Ωn)
6: n← n+ 1
7: increase α
8: else
9: reduce α

10: end if
11: end while

We present and explain the numerical realisation of Algorithm 1 in NGSolve for the case
of a PDE-constrained shape optimisation problem in two space dimensions. The simpler case
of an unconstrained shape optimisation problem or the case of three space dimensions can be
realised by small modifications of the presented code.

First of all, we mention that we realise shape modifications in NGSolve by means of de-
formation vector fields without actually modifying the coordinates of the underlying finite el-
ement grid. Recall the vector-valued finite element space VEC over a given mesh as intro-
duced in code line 44. We define a vector-valued GridFunction with the name gfset which
will represent the current shape. We initialise it with some vector-valued coefficient function
V (x1, x2) = (x2

1 x2, x2
2 x1)> and obtain the deformed shape (Id+ V)(Ω) by the command

mesh.SetDeformation(gfset):
218 g f s e t = GridFunct ion (VEC)
219 Draw(g f se t , mesh , " g f s e t ")
220 S e t V i s u a l i z a t i o n (deformation=True)
221 g f s e t . Set ((X[0]∗X[0]∗X [1] ,X[1]∗X[1]∗X [0]))
222 mesh . SetDeformation (g f s e t)
223 Redraw ()

Any operation involving the mesh such as integration or assembling of matrices is now carried
out for the deformed configuration. The deformation can be unset by the command
mesh.UnsetDeformation(). Integrating the constant function over the mesh in the perturbed
and unperturbed setting,

224 p r i n t (I n t e g r a t e (1 , mesh))
225 mesh . UnsetDeformation ()
226 p r i n t (I n t e g r a t e (1 , mesh))

gives the output

1.7924529046862627
0.7854072970684544

respectively.
In the course of the optimisation algorithm the state equation as well as the adjoint equation

have to be solved for every new shape. We define the following function, which computes the
state and adjoint state for a linear PDE constraint:

Automated Shape Optimisation in NGSolve 25

227 def solvePDE () :
228 a . Assemble ()
229 L . Assemble ()
230 dCostdu . Assemble ()
231

232 inva = a . mat . Inve r se (f e s . FreeDofs () , i nve r s e=" spar secho le sky ")
233 gfu . vec . data = inva ∗ L . vec
234 gfp . vec . data = −inva . T ∗ dCostdu . vec

The shape derivative dJOmega for some problem at hand can be defined as illustrated in Sections
4.1 and Section 5. Finally, we need to define the shape gradient, which is the solution to a
boundary value problem of the form (6.8). We choose the bilinear form defined in (6.11) with
γCR = 10:

235 def eps (u) :
236 re turn 1/2 ∗ (grad (u)+grad (u) . t r ans)
237

238 aX = Bi l inearForm (VEC)
239 W, V = VEC . TnT() # def ine t r i a l func t ion W and t e s t func t ion V
240

241 aX += InnerProduct (eps (W) , eps (V))∗dx + InnerProduct (W, V)∗dx
242 aX += 10 ∗ (grad (W) [1 ,1] − grad (W) [0 ,0]) ∗(grad (V) [1 ,1] − grad (V) [0 ,0]) ∗dx
243 aX += 10 ∗ (grad (W) [1 ,0] + grad (W) [0 ,1]) ∗(grad (V) [1 ,0] + grad (V) [0 ,1]) ∗dx

Now we can run Algorithm 1 for problem (4.6):

244 alpha = 1
245 a l p h a _ i n c r _ f a c t o r = 1.2
246 gamma = 1e−4
247 Nmax = 100
248 eps i l on = 1e−7
249

250 i sConverged = Fa l se
251 g f s e t . Set ((0 ,0))
252 gfX = GridFunct ion (VEC)
253 gfsetTemp = GridFunct ion (VEC)
254

255 solvePDE ()
256 Jnew = I n t e g r a t e (Cost (gfu) , mesh)
257 Jold = Jnew
258

259 f o r k in range (Nmax) :
260 mesh . SetDeformation (g f s e t)
261 aX . Assemble ()
262 dJOmega_pde . Assemble ()
263 invaX = aX . mat . Inve r se (VEC . FreeDofs () , i nve r s e=" spar secho le sky ")
264 gfX . vec . data = invaX ∗ dJOmega_pde . vec
265 currentNormGFX = Norm(gfX . vec)
266

267 while True :
268 i f currentNormGFX < eps i l on :
269 i sConverged = True
270 break

26 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

271

272 gfsetTemp . vec . data = g f s e t . vec − alpha ∗ gfX . vec
273 mesh . SetDeformation (gfsetTemp)
274 solvePDE ()
275 Jnew = I n t e g r a t e (Cost (gfu) , mesh)
276 mesh . UnsetDeformation ()
277 i f Jnew < Jold − gamma ∗ alpha ∗ currentNormGFX∗∗2 :
278 Jold = Jnew
279 g f s e t . vec . data = gfsetTemp . vec
280 alpha ∗= a l p h a _ i n c r _ f a c t o r
281 break
282 e l s e :
283 alpha = alpha / 2
284 Redraw(b lock ing=True)

Mesh movement and mesh optimisation As an alternative to realizing the deformations via
mesh.SetDeformation(...), where the underlying mesh is not modified, one could also
just move every mesh node in the direction of the given descent vector field by changing its
coordinates. This can be realised by invoking the following method:

285 def moveNGmesh2D(d i sp l , mesh) :
286 f o r p in mesh . ngmesh . Po in t s () :
287 mip = mesh(p [0] , p [1])
288 v = d i s p l (mip)
289 p [0] += v [0]
290 p [1] += v [1]
291 mesh . ngmesh . Update ()

Here, the displacement vector field displ, which is of type GridFunction, is evaluated for
each mesh node and, subsequently, the mesh nodes are updated. At the end of the procedure, the
mesh structure needs to be updated, see line 291. Note that the evaluation of GridFunctions
requires a mapped integration point mip of the mesh which is created in line 287.

One advantage of this strategy is that a distorted mesh can easily be repaired by a call of the
method mesh.ngmesh.OptimizeMesh2d() followed by mesh.ngmesh.Update(). Figure 4
shows a distorted mesh and the result of a call of mesh.ngmesh.OptimizeMesh2d().

6.2.3 Newton’s method for unconstrained problems

The particular choice H = H1
0(D)

d and

(V, W)H := D2J (Ω)(V)(W), (6.13)

leads to Newton’s method. We refer to [1, 8, 22, 24] where shape Newton methods were used
previously and to [14, Chapter 2] and [18, Chapter 5] for Newton’s method in an optimal control
setting. This bilinear form is only positive semi-definite on H1

0(D)
d since D2J (Ω)(V)(W) = 0 for

V, W with V =W = 0 on ∂Ω. Moreover, from the structure theorem for second shape derivatives
proved in [21]we know that at a stationary point Ω, that is, DJ (Ω)(V) = 0 for all V ∈ C0,1(D)d ,
we have

D2J (Ω)(V)(W) = `Ω(V · n, W · n), (6.14)

Automated Shape Optimisation in NGSolve 27

Figure 4: Before and after mesh optimisation by mesh.ngmesh.OptimizeMesh2d().

where `Ω : C0(∂Ω)×C0(∂Ω)→ R is a bilinear function. Hence we also have D2J (Ω)(V)(W) = 0
for all V, W such that V · n=W · n= 0. As a result the gradient

(∇J (Ω), V)H = DJ (Ω)(V) for all V ∈ H0
0(D)

d (6.15)

according to (6.13) is not uniquely determined. To get around this difficulty, the shape Hessian
is often regularised by an H1 term, i.e. (6.13) is replaced by

D2J (Ω)(V)(W) +δ
ˆ
Ω

∂ V : ∂W + V ·W dx , (6.16)

see, e.g. [27], which, however, impairs the convergence speed of Newton’s method.

Alternative regularisation strategy. Here, we propose the following strategy: We regularise
the shape Hessian only on the boundary ∂Ω and only in tangential direction, i.e., we choose

(V, W)H := D2J (Ω)(V)(W) +δ
ˆ
∂Ω

(V ·τ)(W ·τ) (6.17)

with a regularisation parameter δ. To exclude the part of the kernel corresponding to interior
deformations, we solve the (regularised) Newton equation (6.15) only on the boundary ∂Ω.
This is realised by setting Dirichlet boundary conditions for all degrees of freedom except those
on the boundary.

292 VEC2 = VectorH1 (mesh , order=1, d i r i c h l e t = " c i r c l e ") #a u x i l i a r y space f o r boundary
cond i t i ons

293 aX = Bi l inearForm (VEC)
294 aX += G_f_0 . Di f fShape (W) . Di f fShape (V)
295 aX += 100 ∗ InnerProduct (W, s p e c i a l c f . t a n g e n t i a l (2)) ∗ InnerProduct (V , s p e c i a l c f .

t a n g e n t i a l (2))∗ds
296 aX . Assemble ()
297 invAX = aX . mat . Inve r se(~VEC2 . FreeDofs () , i nve r s e=" umfpack ")
298

299 gfX_bnd = GridFunct ion (VEC)
300 gfX_bnd . vec . data = invAX ∗ dJOmega_f_0 . vec

28 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

As a result, we get a shape gradient ˜∇J (Ω) which is nonzero only on the boundary. We extend
this vector field to the interior by solving an additional boundary value problem (of linearised
elasticity type), where we use the deformation given by ˜∇J (Ω) as Dirichlet boundary condi-
tions.

301 def ge tExtens ion (gfX_bnd , f reedo f s , g fX_ext) :
302 u , v = VEC . TnT()
303 aX_ext = Bi l inearForm (VEC)
304 aX_ext += InnerProduct (grad (u)+grad (u) . t rans , grad (v))∗dx+InnerProduct (u , v)∗dx
305

306 gfX_ext . Set (gfX_bnd)
307 aX_ext . Assemble ()
308

309 r = gfX_bnd . vec . CreateVector ()
310 r . data = (−1) ∗ aX_ext . mat ∗ gfX_ext . vec
311

312 gfX_ext . vec . data += aX_ext . mat . Inve r se (f r e e d o f s=f r e e d o f s) ∗ r
313

314 getExtens ion (gfX_bnd , VEC2 . FreeDofs () , gfX)
315 g f s e t . Set ((0 ,0))
316 g f s e t . vec . data = g f s e t . vec − 1 ∗ gfX . vec

The Newton algorithm reads as follows.

Algorithm 2 Newton algorithm
1: Input: domain Ω0, n= 0, Nmax > 0, ε > 0
2: Output: optimal shape Ω∗

3: while n≤ Nmax and |∇J (Ωn)|> ε do
4: solve (6.15) to get ∇J (Ωn)
5: Ωn+1← (Id−∇J (Ωn))(Ωn)
6: n← n+ 1
7: end while

6.2.4 Newton’s method for PDE-constrained problems

We consider the PDE-constrained model problem of Section 4.1 which is subject to the Poisson
equation. The unregularised Newton system reads

D2J (Ω)(V)(W) = −DJ (Ω)(V) for all V ∈ H1
0(Ω). (6.18)

In Subsection 4.3 we discussed how the second order derivative can be evaluated. Recalling that
dJ (Ω)(V) = ∂sGV,0(0,0, u, p) we see that (4.23) and (4.19) lead to

∂s∂t GV,W (0,0, u, p) ∂u∂t GV,W (0, 0, u, p) ∂p∂t GV,W (0,0, u, p)
∂s∂uGV,W (0,0, u, p) ∂ 2

u GV,W (0,0, u, p) ∂p∂uGV,W (0, 0, u, p)
∂s∂pGV,W (0,0, u, p) ∂u∂pGV,W (0, 0, u, p) 0

Ṽ
∂su

0

∂sp
0

= −

∂t GV,W (0, 0, u, p)
0
0

 .

(6.19)

Automated Shape Optimisation in NGSolve 29

The component Ṽ then represents the direction which we use for the shape Newton optimisation
step. The matrix in (6.19) can be realised in NGSolve by using a combined finite element space
X3 consisting of three components as follows:

317 X3 = FESpace ([VEC , fes , f e s])
318 PHI , u1 , p1= X3 . T r i a l Func t i on ()
319 PSI , uTest1 , pTest1 = X3 . Tes tFunct ion ()
320

321 shapeHessLag3 = Bi l inearForm (X3)
322 shapeHessLag3 += G_pde_0 . Di f fShape (PHI) . Di f fShape (PSI) #block (1 ,1)
323 shapeHessLag3 += G_pde_0 . Di f fShape (PSI) . D i f f (gfu , u1) #block (1 ,2)
324 shapeHessLag3 += G_pde_0 . Di f fShape (PSI) . D i f f (gfp , p1) #block (1 ,3)
325 shapeHessLag3 += G_pde_0 . D i f f (gfu , uTest1) . Di f fShape (PHI) #block (2 ,1)
326 shapeHessLag3 += (G_pde_0 . D i f f (gfu , uTest1)) . D i f f (gfu , u1) #block (2 ,2)
327 shapeHessLag3 += (G_pde_0 . D i f f (gfu , uTest1)) . D i f f (gfp , p1) #block (2 ,3)
328 shapeHessLag3 += G_pde_0 . D i f f (gfp , pTest1) . Di f fShape (PHI) #block (3 ,1)
329 shapeHessLag3 += (G_pde_0 . D i f f (gfp , pTest1)) . D i f f (gfu , u1) #block (3 ,2)

The right hand side of (6.19) can be defined as follows:

330 shapeGradLag3 = LinearForm (X3)
331 shapeGradLag3 += (−1) ∗ G_pde_0 . Di f fShape (PSI)

Recall that the system (6.15) has a nontrivial kernel as discussed in Section 6.2.3. This problem
can be circumvented by proceeding like in the unconstrained case. We add a regularisation only
on the boundary,

332 de l t a = 1
333 shapeHessLag3 += de l t a ∗ InnerProduct (PHI , s p e c i a l c f . t a n g e n t i a l (2)) ∗ InnerProduct

(PSI , s p e c i a l c f . t a n g e n t i a l (2))∗ds

and exclude the interior degrees of freedom in the first row and column of the 3×3 block system.
This can be realised by setting Dirichlet boundary conditions for the interior degrees of freedom,
i.e. by dealing with the free degrees of freedom,

334 # copy of VEC with D i r i c h l e t boundary cond i t i ons on whole boundary :
335 VEC2 = VectorH1 (mesh , order = 1 , d i r i c h l e t = " .∗ ")
336 freeDofsCombined = Bi tAr ray (VEC2 . ndof + 2∗ f e s . ndof)
337 f o r i in range (VEC2 . ndof) :
338 freeDofsCombined [i] = not VEC2 . FreeDofs () [i]
339 f o r i in range (f e s . ndof) :
340 freeDofsCombined [VEC2 . ndof+ i] = f e s . FreeDofs () [i]
341 freeDofsCombined [VEC2 . ndof+f e s . ndof+ i] = f e s . FreeDofs () [i]

and solving the regularised system using these free dofs:

342 gfCombined3 = GridFunct ion (X3)
343 shapeHessLag3 . Assemble ()
344 shapeGradLag3 . Assemble ()
345 gfCombined3 . vec . data = shapeHessLag3 . mat . Inve r se (f r e e d o f s=freeDofsCombined ,

i nve r s e=" umfpack ") ∗ shapeGradLag3 . vec

30 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

The newton direction is then given as the first of the three components of the obtained solution.

346 Vt i lde_bnd = GridFunct ion (VEC)
347 V t i l d e = GridFunct ion (VEC)
348 Vt i lde_bnd . vec . data = gfCombined3 . components [0] . vec
349 getExtens ion (Vti lde_bnd , VEC2 . FreeDofs () , V t i l d e)
350

351 g f s e t . vec . data = g f s e t . vec + 1 ∗ V t i l d e . vec

6.3 Numerical shape optimisation of model problems

In this section we will apply the automated shape differentiation and all numerical algorithms
introduced in the preceding sections in numerical examples.

6.3.1 A first shape optimisation problem

In this section, we revisit problem (3.1) introduced in Section 3, i.e. the problem of finding a
shape Ω such that the cost function J (Ω) =

´
Ω f (x) dx is minimised.

First order methods We illustrate our first order methods in a problem which was also con-
sidered in [17] and reproduce the results obtained there. We choose the function

f (x1, x2) =
�q

(x1 − a)2 + bx2
2 − 1

��q

(x1 + a)2 + bx2
2 − 1

�

·
�q

bx2
1 + (x2 − a)2 − 1

��q

bx2
1 + (x2 + a)2 − 1

�

− ε
(6.20)

with a = 4
5 , b = 2 and ε = 0.001. Recall that the optimal shape is given by {(x1, x2) ∈ R2 :

f (x1, x2) < 0} which is depicted in Figure 5 (right). We start our optimisation algorithm with
the unit disk, Ω0 = B1(0) as an initial design. Note that the optimal design cannot be reached
by means of shape optimisation using boundary perturbations. However, we expect the outer
curve of the optimal shape to be reached very closely.

We apply Algorithm 1 with the shape gradient∇J associated to the H1 inner product (6.9),
to the bilinear form of linearised elasticity (6.10) and including the additional Cauchy-Riemann
term (6.11). We chose the algorithmic parameters γ = 1e− 4, ε = 1e− 7, a mesh consisting of
2522 vertices and 4886 elements and a globally continuous vector-valued finite element space
VEC of order 3. The results can be seen in Figures 6, 7 and 8, respectively.

Second order method Since Newton’s method converges quadratically only in a neighbor-
hood of the optimal solution, we choose a simpler optimal design here. We choose

f (x1, x2) =
x2

a2
+

y2

b2
− 1 (6.21)

which yields an ellipse with the lengths of the two semi-axes a and b. We choose a = 1.3 and
b = 1/a and again start the optimisation with the unit disk as initial shape. Figure 9 shows
the initial and optimised design after only six iterations of Algorithm 2 with (·, ·)H chosen as

Automated Shape Optimisation in NGSolve 31

Figure 5: Initial domain Ω0 and optimal domain Ω∗ for problem (3.1) with f chosen according
to (6.20).

Figure 6: Results of problem (3.1) with f as in (6.20) and the shape gradient associated to the
H1 inner product (6.9).

32 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

Figure 7: Results of problem (3.1) with f as in (6.20) and the shape gradient associated to the
elasticity bilinear form (6.10).

Figure 8: Results of problem (3.1) with f as in (6.20) and the shape gradient associated to the
elasticity bilinear form with Cauchy-Riemann term (6.11).

Automated Shape Optimisation in NGSolve 33

Figure 9: Numerical results for problem (6.17) with f as in (6.21) using second order method.
Left: Initial design. Center: Optimised design after six iterations using (6.15)/(6.17). Right: Ob-
jective valueJ and norm of shape gradient ‖∇J (Ω)‖ in the course of second order optimisation
using (6.16) with δ = 0.5 and (6.17) with δ = 100.

in (6.17) with δ = 100. A comparison of the convergence histories between the choice (6.17)
with δ = 100 and (6.16) with δ = 0.5 is shown in the right picture of Figure 9. In both cases,
the parameter δ was chosen empirically to get convergence as fast as possible. The experiments
were conducted on a finite element mesh consisting of 2522 nodes and 4886 triangular elements
with a finite element space VEC of order 3, with the algorithmic parameter ε= 10−7.

6.3.2 Shape optimisation subject to the Poisson equation

In this section, we revisit the model problem introduced in Section 4.1 with f (x1, x2) = 2x2(1−
x2) + 2x1(1− x1) and ud(x1, x2) = x1(1− x1)x2(1− x2). Note that the data is chosen in such a
way that, for Ω∗ = (0, 1)2 it holds J (Ω∗) = 0 and thus Ω∗ is a global minimiser of J . We show
results obtained by first and second order shape optimisation methods exploiting automated
differentiation.

We ran the optimisation algorithm in three versions. On the one hand, we applied a first order
method with constant step size α= 1. On the other hand, we applied two second order methods
with the two different regularisation strategies for the shape Hessian in (6.15) introduced in
(6.16) and (6.17). We chose the regularisation parameters δ empirically such that the method
performs as well as possible. In the case of (6.16) we chose δ = 0.001 and in the case of (6.17)
δ = 1. The experiments were conducted on a finite element mesh consisting of 4886 elements
with 2522 vertices and polynomial degree 1. In Figure 10, we can observe the decrease of the
objective function as well as of the norm of the shape gradient over 200 iterations for these
three algorithmic settings.

Figure 10 shows the initial design as well as the design after 200 iterations of the second
order method with regularisation strategy (6.17). Note that the improved design is very close
to the global solution Ω∗ = (0,1)2. The initial design was chosen as the disk of radius 1

2 centered

at the point
�

1
2 , 1

2

�>
. The objective value was reduced from 5.297 · 10−5 to 1.0317 · 10−9.

34 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

0 50 100 150 200

Iterations

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

J

0 50 100 150 200

Iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

(a) (b)

Figure 10: Convergence behaviour for shape optimisation problem (4.6) with proposed regular-
isation strategies (6.17) and (6.16) as well as first order method with constant step size α= 1.
(a) Behaviour of objective function J . (b) Behaviour of norm of shape gradient ‖∇J (Ω)‖.

Figure 11: Shape optimisation for problem (4.6). Left: Initial design. Right: Improved design
after 200 iterations of second order algorithm with regularisation as proposed in (6.17). Objec-
tive value was reduced from 5.297 · 10−5 to 1.0317 · 10−9. Color shows solution of constraining
PDE (4.6b).

Automated Shape Optimisation in NGSolve 35

6.3.3 Nonlinear elasticity

Here, we illustrate the applicability of the automated shape differentiation and optimisation in
the more realistic and more complicated setting of nonlinear elasticity in two space dimensions
using a Saint Venant–Kirchhoff material with Young’s modulus E = 1000 and Poisson ratio
ν = 0.3. We consider a two-dimensional cantilever which is clamped on the upper and lower
left parts of the boundary, Γ 1

l = {0} × (0.88, 1) and Γ 2
l = {0} × (0,0.12), respectively, and is

subject to a surface force gN = (0,−100)> on Γr = {1} × (0.45, 0.55). The initial geometry with
3 holes is depicted in Figure 12 (a). Let Γl := Γ 1

l ∪ Γ
2
l and H1

Γl
(Ω)2 the subspace of H1(Ω)2 with

vanishing trace on Γl . The displacement u ∈ H1
Γl
(Ω)2 under the surface force gN is given as the

solution to the boundary value problem

ˆ
Ω

S(u) :∇v dx =
ˆ
Γr

gN · v ds (6.22)

for all v ∈ H1
Γl
(Ω)2. Here, S(u) denotes the Saint Venant–Kirchhoff stress tensor

S(u) = (I2 +∇u)
�

λTr
�

1
2
(C(u)− I2)

�

I2 +µ(C(u)− I2)
�

, (6.23)

where C(u) = (I2 +∇u)>(I2 +∇u) and I2 is the identity matrix, see also [2, Sec. 8], and λ and
µ denote the Lamé constants,

λ=
Eν

(1+ ν)(1− 2ν)
, µ=

E
2(1+ ν)

. (6.24)

We minimise the functional

J(Ω, u) =
ˆ
Ω

S(u) :∇u dx +α
ˆ
Ω

1 dx (6.25)

with α = 2.5 subject to (6.22) which amounts to maximising the structure’s stiffness while
bounding the allowed amount of material used.

We remark that the well-posedness of (6.22) is not clear, see also the discussion in [2, Sec.
8]. Nevertheless, application of the automated shape differentiation and optimisation yields
a significant improvement of the initial design. The highly nonlinear PDE constraint (6.22) is
solved by Newton’s method. In order to have good starting values, a load stepping strategy is
employed, i.e., the load on the right hand side is gradually increased, the PDE is solved and the
solution is used as an initial guess for the next load step. This is repeated until the full load is
applied. With these ingredients at hand, Algorithm 1 (i.e. code lines 244–284) can be run. We
chose the algorithmic parameters alpha = 0.1 (as an initial value), alpha_incr_factor =
1 (i.e. no increase), gamma = 1e-4 and epsilon = 1e-7. Moreover, we used (6.9) with an
additional Cauchy-Riemann term as in (6.11) with weight γCR = 10. The objective value was
reduced from 3.125 to 2.635 (volume term from 1.290 to 1.096) in 15 iterations of Algorithm
1. The results were obtained on a mesh consisting of 10614 elements and 5540 vertices using
piecewise linear, globally continuous finite elements.

36 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

(a) (b) (c)

Figure 12: Initial and optimised geometry of cantilever under vertical force on right hand side
using St. Venant–Kirchhoff model in nonlinear elasticity. (a) Initial geometry. (b) Optimised
geometry (reference configuration). (c) Optimised geometry (deformed configuration).

6.3.4 Helmholtz equation

In this section, we consider the problem of finding the optimal shape of a scattering object. More
precisely, we consider the minimisation of the functional

ˆ
Γr

uu ds (6.26)

subject to the Helmholtz equation with impedance boundary conditions on the outer boundary,

Find u ∈ H1(Ω,C) :
ˆ
Ω

[∇u · ∇w̄−ω2uw̄
�

dx − iω
ˆ
Γ

uw̄ ds =
ˆ
Ω

f w̄ (6.27)

for all w ∈ H1(Ω,C). Here, w denotes the complex conjugate of a complex-valued function w,
ω denotes the wave number, i denotes the complex unit and the function f on the right hand
side is chosen as

f (x1, x2) = 103 · e−9((x1−0.2)2+(x2−0.5)2), (6.28)

see Figure 13(a). FurthermoreΩ= B((0.5, 0.5)>, 1)\B((0.75, 0.5)>, 0.15) denotes the domain of
interest, Γ = {(x1, x2) : x2

1+ x2
2 = 1} the outer boundary and Γr = {(x1, x2) : x2

1+ x2
2 = 1, x1 ≥ 0}

the right half of the outer boundary. Here, only the inner boundary ∂Ω\Γ is subject to the shape
optimisation. Thus, the aim of this model problem is to find a shape of the scattering object such
that the waves are reflected away from Γr .

Figure 13 (b) and (c) show the initial and final shape of the scattering object, respectively.
Figure 14 shows the norm of the state for the initial configuration (circular shape of scattering
object) and for the optimised configuration. The objective value was reduced from 3.44 ·10−3 to
3.31 · 10−3. The forward simulations were performed using piecewise linear finite elements on
a triangular grid consisting of with 34803 degrees of freedom. The optimisation stopped after
12 iterations.

Automated Shape Optimisation in NGSolve 37

(a) (b) (c)

Figure 13: (a) Geometry with right hand side. (b) Initial shape of scatter. (c) Optimised shape
of scatter.

(a) (b)

Figure 14: (a) Absolute value of state u for initial configuration. (b) Absolute value of state u
for optimised configuration.

6.3.5 Application to Electrical Machine

In this section, we consider the setting of three-dimensional nonlinear magnetostatics in H(curl,D)
as it appears in the simulation of electrical machines. Let D ⊂ R3 denote the computational do-
main, which consists of ferromagnetic material, air regions and permanent magnets. Our aim is
to minimise the functional ˆ

Ωg

|curlu · n− Bn
d |

2 dx , (6.29)

where Ωg denotes the air gap region of the machine, n denotes an extension of the normal
vector to the interior of Ωg , Bn

d : Ωg → R3 is a given smooth function and u ∈ H0(curl,D) is the
solution to the boundary value problem

ˆ
D
νΩ(|curlu|)curlu · curl w+δu ·w dx =

ˆ
Ωm

M · curl w dx (6.30)

for all w ∈ H0(curl,D). Here,Ω ⊂ D denotes the union of the ferromagnetic parts of the electrical
machine, Ωm denotes the permanent magnets subdomain and

νΩ = χΩ(x)ν̂(|curlu|) +χD\Ω(x)ν0 (6.31)

denotes the magnetic reluctivity, which is a nonlinear function ν̂ inside the ferromagnetic regions
and equal to a constant ν0 elsewhere. Further, δ > 0 is a small regularisation parameter and
M : D → R3 denotes the magnetisation in the permanent magnets. The nonlinear function ν̂

38 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

satisfies a Lipschitz condition and a strong monotonicity condition such that problem (6.30) is
well-posed. We refer the reader to [11, Sec. 6] for a more detailed description of the problem
and [10] for a 2D version of the same problem.

As mentioned in Section 4, the transformation Φt used in (4.4) depends on the differential
operator. For the curl-operator, we have

Φt(u) = ∂ T−>t (u ◦ T−1
t) and (curl(Φt(u))) ◦ Tt =

1
det(∂ Tt)

∂ Tt curl(u), (6.32)

see e.g. [20, Section 3.9]. Thus, the variational equation (6.30) can be defined as follows.

352 from math import p i
353 nu0 = 1e7 / (4∗ pi)
354 de l t a = 0.1
355

356 F = Id (3)
357 c1 = 1/Det (F) ∗ F
358 c2 = Inv (F) . t r ans
359

360 def Equat ionIron (u ,w) :
361 re turn (nuIron (Norm(c1∗ c u r l (u))) ∗ (c1∗ c u r l (u)) ∗(c1∗ c u r l (w)) + de l t a ∗(c2∗u) ∗(

c2∗w))∗Det (F)∗dx(" i ron ")
362

363 def Equat ionAir (u ,w) :
364 re turn (nu0∗(c1∗ c u r l (u)) ∗(c1∗ c u r l (w)) + de l t a ∗(c2∗u) ∗(c2∗w))∗Det (F)∗dx(" a i r |

a i rgap ")
365

366 def EquationMagnets (u ,w) :
367 re turn (nu0∗(c1∗ c u r l (u)) ∗(c1∗ c u r l (w)) + de l t a ∗(c2∗u) ∗(c2∗w)−magn∗(c1∗ c u r l (w)))

∗Det (F)∗dx(" magnets ")
368

369 def Equation (u ,w) :
370 re turn Equat ionIron (u ,w) + Equat ionAir (u ,w) + EquationMagnets (u ,w)

Here, the computational domain consists of a subdomain representing the ferromagnetic part
of the machine (“iron”) and a subdomain comprising the permanent magnets (“magnets”);
the union of all air subdomains, including the air gap between rotating and fixed part of the
machine, is given by “air|airgap”. Moreover, nuIron denotes the nonlinear reluctivity func-
tion ν̂ and magn contains the magnetization direction of the permanent magnets. Likewise, the
objective function can be defined as follows,

371 def Cost (u) :
372 re turn (InnerProduct (c1∗ c u r l (u) ,n2D) − Bd)∗Det (F)∗dx(" a i rgap ")

where n2D and Bd represent the extension of the normal vector to the interior of the air gap
and the desired curve, respectively. For the definition of all quantities, we refer the reader to the
code which was submitted together with this manuscript. The shape differentiation as well as
the optimisation loop now works in the same way as in the previous examples. Figure 15 shows
the initial design of the motor as well as the optimised design obtained after 11 iterations of
Algorithm 1 with γ= 0. The experiment was conducted using a tetrahedral finite element mesh
consisting of 13440 vertices, 57806 elements and Nédélec elements of order 2 (resulting in a

Automated Shape Optimisation in NGSolve 39

(a) (b)

Figure 15: (a) Initial design of electrical machine. (b) Optimised design.

-2

80

-1

0

10 -4

260

1

curl(u)*n in air gap (initial design)

angle

140

2

z-component

0
20 -1

-20

-2

80

-1

0

10 -4

260

1

curl(u)*n in air gap (optimized design)

angle

140

2

z-component

0
20 -1

-20

-2

80

-1

0

10 -4

260

1

desired curve in air gap

angle

140

2

z-component

0
20 -1

-20

(a) (b) (c)

Figure 16: Improvement of curlu · n as a function of z and the angle ϕ for a fixed radius r
compared to desired curve Bn

d . (a) curlu · n for initial configuration. (b) curlu · n for optimised
configuration after 10 iterations. (c) Desired curve Bn

d in polar coordinates as function of z and
the angle ϕ for a fixed radius r.

total of 323808 degrees of freedom). The objective value was reduced from 2.5944 · 10−8 to
4.565 ·10−10 in the course of the first order optimisation algorithm after 11 iterations. It can be
seen from Figure 16 that the difference between the quantity curl(u) · n and the desired curve
Bn

d inside the air gap decreases significantly.

6.3.6 Surface PDEs

Finally, we also show the application of a shape optimisation algorithm to a problem constrained
by a surface PDE. We solve problem (4.24)–(4.25) with ud = 0, f (x1, x2, x3) = x1 x2 x3 and
initial shape M = S2 the unit sphere in R3. We applied a first order algorithm with a line search.
Figure 17 shows the initial geometry as well as the decrease of the objective function and of
the norm of the shape gradient. The objective value was reduced from 7.08 ·10−4 to 9.88 ·10−9.
Figure 18 shows the final design which was obtained after 575 iterations from two different
perspectives. The experiment was conducted using a surface mesh with 332 vertices and 660
faces and polynomial degree 3 (resulting in 2972 degrees of freedom).

40 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

0 100 200 300 400 500 600

Iterations

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

J

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

History of surface Laplacian

(a) (b)

Figure 17: (a) Initial geometry for shape optimisation with respect to surface PDE (4.24)–(4.25).
(b) History of objective value and norm of shape gradient using a first order algorithm with line
search.

(a) (b)

Figure 18: (a) Final design after 575 iterations. (b) Different view of (a).

Automated Shape Optimisation in NGSolve 41

Conclusion

We showed how to obtain first and second order shape derivatives for unconstrained and PDE-
constrained shape optimization problems in a semi-automatic and fully automatic way in the
finite element software package NGSolve. We verified the proposed method numerically by
Taylor tests and by showing its successful application to several shape optimisation problems.
We believe that this intuitive approach can help research scientists working in the field of shape
optimisation to further improve numerical methods on the one hand, and product engineers
working with NGSolve to design devices in an optimal fashion on the other hand.

Acknowledgements

Michael Neunteufel has been funded by the Austrian Science Fund (FWF) project W1245.

Replication of results

The python scripts which were used for the results presented in this paper are available with
the arxiv submission. All computations were performed using NGSolve version V6.2.2004.

References

[1] G. Allaire, E. Cancès, and J. L. Vié. Second-order shape derivatives along normal trajec-
tories, governed by Hamilton-Jacobi equations. Structural and Multidisciplinary Optimiza-
tion, 54(5):1245–1266, 2016.

[2] G. Allaire, F. Jouve, J., and A.-M. Toader. Structural optimization using sensitivity analysis
and a level-set method. Journal of Computational Physics, 194(1):363 – 393, 2004.

[3] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form language.
ACM Transactions on Mathematical Software, 40(2):1–37, 2014.

[4] Martin Berggren. A unified discrete-continuous sensitivity analysis method for shape op-
timization. In Applied and numerical partial differential equations, volume 15 of Comput.
Methods Appl. Sci., pages 25–39. Springer, New York, 2010.

[5] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design
and Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
second edition, 2011. Metrics, analysis, differential calculus, and optimization.

[6] M. C. Delfour and J. P. Zolésio. Shapes and geometries. Society for Industrial and Applied
Mathematics, 2011.

[7] J. S. Dokken, S. K. Mitusch, and S. W. Funke. Automatic shape derivatives for transient
PDEs in FEniCS and Firedrake. arXiv e-prints, page arXiv:2001.10058, 2020.

42 P. Gangl, J. Schöberl, K. Sturm and M. Neunteufel

[8] K. Eppler, H. Harbrecht, and R. Schneider. On convergence in elliptic shape optimization.
SIAM Journal on Control and Optimization, 46(1):61–83, 2007.

[9] F. Feppon, G. Allaire, F. Bordeu, J. Cortial, and C. Dapogny. Shape optimization of a cou-
pled thermal fluid-structure problem in a level set mesh evolution framework. SeMA,
76(3):413–458, 2019.

[10] P. Gangl, U. Langer, A. Laurain, H. Meftahi, and K. Sturm. Shape optimization of an elec-
tric motor subject to nonlinear magnetostatics. SIAM Journal on Scientific Computing,
37(6):B1002–B1025, 2015.

[11] P. Gangl and K. Sturm. Asymptotic analysis and topological derivative for 3D quasi-linear
magnetostatics, 2019. arXiv:1908.10775.

[12] D. A. Ham, L. Mitchell, A. Paganini, and . Wechsung, F. Automated shape differentiation
in the unified form language. Structural and Multidisciplinary Optimization, 60(5):1813–
1820, 2019.

[13] M. Hintermüller and A. Laurain. Electrical impedance tomography: from topology to
shape. Control and Cybernetics, 37(4):913–933, 2008.

[14] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich. Optimization with PDE constraints.
Springer, New York, 2009.

[15] R. Hiptmair, A. Paganini, and S. Sargheini. Comparison of approximate shape gradients.
BIT, 55(2):459–485, 2015.

[16] D. Hömberg and J. Sokolowski. Optimal shape design of inductor coils for surface hard-
ening. SIAM Journal on Control and Optimization, 42(3):1087–1117, 2003.

[17] J. A. Iglesias, K. Sturm, and F. Wechsung. Two-dimensional shape optimization with nearly
conformal transformations. SIAM Journal on Scientific Computing, 40(6):A3807–A3830,
2018.

[18] K. Ito and K. Kunisch. Lagrange multiplier approach to variational problems and applica-
tions. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2008.

[19] A. Laurain. A level set-based structural optimization code using FEniCS. Structural and
Multidisciplinary Optimization, 58(3):1311–1334, 2018.

[20] P. Monk. Finite element methods for Maxwell’s equations. Numerical Mathematics and
Scientific Computation. Clarendon Press, 2003.

[21] A. Novruzi and M. Pierre. Structure of shape derivatives. Journal of Evolution Equations,
2(3):365–382, 2002.

[22] A. Novruzi and J. R. Roche. Newton’s method in shape optimisation: A three-dimensional
case. Bit Numerical Mathematics, 40(1):102–120, 2000.

Automated Shape Optimisation in NGSolve 43

[23] A. Paganini, S. Sargheini, R. Hiptmair, and Ch. Hafner. Shape optimization of microlenses.
Optics Express, 23(10):13099, 2015.

[24] A. Paganini and K. Sturm. Weakly normal basis vector fields in RKHS with an application
to shape Newton methods. SIAM Journal on Numerical Analysis, 57(1):1–26, 2019.

[25] Anton Schiela and Julian Ortiz. Second order directional shape derivatives, March 2017.

[26] S. Schmidt. A two stage CVT / eikonal convection mesh deformation approach for large
nodal deformations. arXiv e-prints, page arXiv:1411.7663, 2014.

[27] S. Schmidt. Weak and strong form shape Hessians and their automatic generation. SIAM
Journal on Scientific Computing, 40(2):C210–C233, 2018.

[28] S. Schmidt, C. Ilic, V. Schulz, and N. Gauger. Three-dimensional large-scale aerodynamic
shape optimization based on shape calculus. AIAA Journal, 51(11):2615–2627, 2013.

[29] S. Schmidt, C. Ilic, V. Schulz, and N. R. Gauger. Airfoil design for compressible inviscid
flow based on shape calculus. Optimization and Engineering, 12(3):349–369, 2011.

[30] J. Schöberl. C++11 implementation of finite elements in NGSolve. Technical Report 30,
Institute for Analysis and Scientific Computing, Vienna University of Technology, 2014.

[31] V. H. Schulz. A riemannian view on shape optimization. Foundations of Computational
Mathematics, 14(3):483–501, 2014.

[32] J. Sokołowski and J.-P. Zolésio. Introduction to shape optimization, volume 16 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, 1992. Shape sensitivity
analysis.

[33] K. Sturm. Minimax Lagrangian approach to the differentiability of nonlinear PDE con-
strained shape functions without saddle point assumption. SIAM Journal on Control and
Optimization, 53(4):2017–2039, 2015.

[34] K. Sturm. Shape differentiability under non-linear PDE constraints. In New trends
in shape optimization, volume 166 of Internat. Ser. Numer. Math., pages 271–300.
Birkhäuser/Springer, Cham, 2015.

Erschienene Preprints ab Nummer 2018/1

2018/1 U. Langer, M. Schanz, O. Steinbach, W.L. Wendland (eds.): 16th Workshop on Fast
Boundary Element Methods in Industrial Applications, Book of Abstracts

2018/2 S. Dohr, J. Zapletal, G. Of, M. Merta, M. Kravcenko: A parallel space-time boundary
element method for the heat equation

2018/3 S. Dohr, M. Merta, G. Of, O. Steinbach, J. Zapletal: A parallel solver for a precondi-
tioned space-time boundary element method for the heat equation

2018/4 S. Amstutz, P. Gangl: Toplogical derivative for nonlinear magnetostatic problem
2018/5 O. Steinbach, M. Zank: A Stabilized Space–Time Finite Element Method for the

Wave Equation
2018/6 O. Steinbach, H. Yang: A Space-Time Finite Element Method for the Linear Bidomain

Equations
2018/7 O. Steinbach, M. Zank: Coercive space-time finite element methods for initial bound-

ary value problems
2018/8 S. Dohr, K. Niino, O. Steinbach: Space-time boundary element methods for the heat

equation
2018/8 O. Steinbach, H. Yang: Space-time finite element methods for parabolic evolution

equations: Discretization, a posteriori error estimation, adaptivity and solution
2019/1 O. Steinbach (eds.): 15th Austrian Numerical Analysis Day, Book of Abstracts
2019/2 P. Gangl, K. Sturm: A simplified derivation technique of topological derivatives for

quasi-linear transmission problems
2019/3 M. Merkel, P. Gangl, S. Schöps: Shape Optimization of Rotating Electric Machines

using Isogeometric Analysis and Harmonic Stator-Rotor Coupling
2019/4 P. Gangl and K. Sturm: Asymptotic analysis and topological derivative for 3D quasi-

linear magnetostatics
2019/5 M. Holzmann and G. Unger: Boundary integral formulations of eigenvalue problems

for elliptic differential operators with singular interactions and their numerical ap-
proximation by boundary element methods

2019/6 M. Neumüller, O. Steinbach: Regularization error estimates for distributed control
problems in energy spaces

2019/7 U. Langer, M. Schanz, O. Steinbach, W. L. Wendland (eds.): 17th Workshop on Fast
Boundary Element Methods in Industrial Applications , Book of Abstracts

2019/8 O. Steinbach, M. Zank: A note on the efficient evaluation of a modified Hilbert
transformation

2019/9 P. Gangl: A multi-material topology optimization algorithm based on the topological
derivative

2020/1 D. Pacheco, T. Müller, O. Steinbach, G. Brenn: A mixed finite element formula-
tion for generalised Newtonian fluid flows with appropriate natural outflow boundary
conditions

2020/2 U. Langer, O. Steinbach, F. Tröltzsch, H. Yang: Unstructured space-time finite ele-
ment methods for optimal sparse control of parabolic equations

2020/3 D.R.Q. Pacheco, R. Schussnig, O. Steinbach, T.-P. Fries: A fully consistent equal-
order finite element method for incompressible flow problems

2020/4 U. Langer, O. Steinbach, F. Tröltzsch, H. Yang: Unstructured space-time finite ele-
ment methods for optimal control of parabolic equations

