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Altenberger Str. 69, A 4040 Linz
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Abstract

The aim of this paper is to introduce the dual primal boundary element tearing and inter-

connecting (BETI–DP) method with Dirichlet and hypersingular boundary integral operator
preconditioners. This extends the previous work on boundary element tearing and intercon-
necting (BETI) methods and on coupled finite and boundary element tearing and intercon-
necting (FETI/BETI) methods by U. Langer and O. Steinbach. As a natural continuation
we present here the BETI–DP method and discuss few general choices of the dual spaces as
needed in the formulation of the method. Moreover, we also analyze the use of the Dirich-
let and of the hypersingular boundary integral operator preconditioner. We show that the
condition number of the preconditioned BETI–DP system matrix behaves like the condition
number of the system matrix of the corresponding dual-primal finite element tearing and in-
terconnecting (FETI–DP) method. The numerical results presented confirm the theoretical
estimates.

1 Introduction

The finite element tearing and interconnecting (FETI) method and its boundary element coun-
terpart boundary element tearing and interconnecting (BETI) method are domain decomposition
methods of iterative substructuring type. The local finite and boundary element spaces are given
on each substructure separately to realize the local Dirichlet to Neumann maps. The global
continuity of the primal variables is enforced by using Lagrange multipliers. This results in a
saddle point problem which can be solved iteratively via its dual problem using a preconditioned
conjugate gradient method.
The dual-primal finite element tearing and interconnecting method (FETI–DP) was introduced in
[2]. The term dual–primal refers to the idea of enforcing some continuity constraints across the
interface between the subdomains as in a primal method, while all other constraints are enforced
by using Lagrange multipliers as in the dual method. The tearing part coincides for FETI and
BETI as well as for FETI–DP and BETI–DP methods, while the major differences appear in
the interconnecting part. The analysis of FETI–DP methods for two–dimensional second and
fourth order elliptic boundary value problems was first considered in [16], and later in [1]. For
three–dimensional boundary value problems, see [3, 9]. Recently, a pure algebraic formulation of
FETI–DP which is independent of the underlying partial differential equation was given in [17].
In [11, 12] the BETI and coupled FETI/BETI methods were introduced. These results are based on
the spectral equivalence inequalities of the discrete finite and boundary element Galerkin approx-
imations of the continuous local Steklov–Poincaré operators and with the discrete hypersingular
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boundary integral operator. Note that all constants in those spectral equivalence inequalities are
independent of the discretization.
In this paper, following the ideas of BETI and adapting them to the dual–primal case we introduce
and analyze the BETI–DP concept.
The rest of this paper is organized as follows: in the next section we present the BETI–DP
formulation. Section 3 is dedicated to the analysis of the preconditioners used. Section 4 presents
a more general approach for the three–dimensional case and a discussion of some choices to define
dual and primal spaces in this general context. In Section 5 we present some numerical results
and finally we sketch some conclusions in Section 6.

2 BETI–DP formulation

2.1 Model Problem and its Boundary Element Discretization

Let Ω ⊂ R
d, d = 2, 3, be a bounded domain with the boundary Γ = ∂Ω which is assumed to

be polygonal for d = 2 or polyhedral for d = 3. As a model problem we consider the Dirichlet
boundary value problem

−div[α(x)∇u(x)] = 0 for x ∈ Ω, u(x) = g(x) for x ∈ Γ. (2.1)

We assume that there is given a nonoverlapping decomposition of Ω satisfying

Ω =

p⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Γi = ∂Ωi, Γij = Γi ∩ Γj , ΓS =

p⋃

i=1

Γi.

In what follows we assume that the coefficient function α(x) is piecewise constant, i.e.,

α(x) = αi > 0 for x ∈ Ωi, i = 1, . . . , p.

Thus, instead of the global boundary value problem (2.1) we now consider the local boundary
value problems

−αi∆ui(x) = 0 for x ∈ Ωi, ui(x) = g(x) for x ∈ Γi ∩ Γ, (2.2)

together with transmission conditions on the internal coupling boundaries,

ui(x) = uj(x), αi
∂

∂ni
ui(x) + αj

∂

∂nj
uj(x) = 0 for x ∈ Γij , (2.3)

where ni is the unit outward normal vector with respect to Γi.
All solutions of the local boundary value problems (2.2) can be written by using the representation
formulae [19]

ui(x) =

∫

Γi

U∗(x, y)
∂

∂ni
ui(y)dsy −

∫

Γi

∂

∂ni(y)
U∗(x, y)ui(y)dsy for x ∈ Ωi, (2.4)

where U∗(x, y) is the fundamental solution of the Laplace operator,

U∗(x, y) =





−
1

2π
log |x− y| for d = 2,

1

4π

1

|x− y|
for d = 3.

(2.5)

On the boundary Γi the Cauchy data [ui, ti] of the local boundary value problems verify the
Calderon equations (

ui

ti

)
=

(
1
2I −Ki Vi

Di
1
2I +K ′

i

)(
ui

ti

)
(2.6)
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where ti = ni · ∇ui is the normal derivative of ui on Γi. The boundary integral operators for
x ∈ Γi are given as the single layer potential

(Viti)(x) =

∫

Γi

U∗(x, y)ti(y)dsy,

the double layer potential

(Kiui)(x) =

∫

Γi

∂

∂ni(y)
U∗(x, y)ui(y)dsy ,

the adjoint double layer potential

(K ′
iti)(x) =

∫

Γi

∂

∂ni(x)
U∗(x, y)ti(y)dsy,

and the hypersingular boundary integral operator

(Diui)(x) = −
∂

∂ni(x)

∫

Γi

∂

∂ni(y)
U∗(x, y)ui(y)dsy.

The properties of all boundary integral operators are well known (see for example [19]). In par-
ticular, the local single layer potential Vi is H−1/2(Γi)–elliptic, in the two dimensional case we
assume diam(Ωi) < 1. From (2.6) we then obtain the local Dirichlet to Neumann map

ti(x) =

[
Di + (

1

2
I +K ′

i)V
−1
i (

1

2
I +Ki)

]
ui(x) = (Siui)(x) for x ∈ Γi, (2.7)

where Si : H1/2(Γi) → H−1/2(Γi) is the local Steklov–Poincaré operator.
Let H1/2(ΓS) = {u|ΓS

: u ∈ H1(Ω)} be the trace space of H1(Ω) on the skeleton ΓS , and let

H
1/2
0 (ΓS ,Γ) = {v ∈ H1/2(ΓS) : v = 0 on Γ}.

Then, for ĝ ∈ H1/2(ΓS) being an arbitrary but fixed extension of the given Dirichlet datum

g ∈ H1/2(Γ) it remains to find û ∈ H
1/2
0 (ΓS ,Γ) such that ui = û|Γi

+ ĝ|Γi
, and

αi(Siui)(x) + αj(Sjuj)(x) = 0 for x ∈ Γij (2.8)

is satisfied along all local coupling boundaries Γij . Hence we obtain a global variational problem

to find û ∈ H
1/2
0 (ΓS ,Γ) such that

p∑

i=1

∫

Γi

αi(Siû|Γi
)(x)v|Γi

(x)dsx = −

p∑

i=1

∫

Γi

αi(Siĝ|Γi
)(x)v|Γi

(x)dsx (2.9)

is satisfied for all v ∈ H
1/2
0 (ΓS ,Γ). Since the local Dirichlet to Neumann map (2.7) is defined

in an implicit way, it is in general not possible to discretize the variational problem (2.9) in an
exact manner. Hence we have to approximate the solution of all local Dirichlet boundary value
problems which occur in the definition of the local Dirichlet to Neumann maps.
For vi ∈ H1/2(Γi) the application of Si is given by

(Sivi)(x) = (Divi)(x) + (
1

2
I +K ′

i)wi(x) for x ∈ Γi,

where wi = V −1
i (1

2I +Ki)vi ∈ H−1/2(Γi) is the unique solution of the variational problem

〈Viwi, τi〉Γi = 〈(
1

2
I +Ki)vi, τi〉Γi for all τi ∈ H−1/2(Γi). (2.10)
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Let
Zi,h = span{ψi

k}
Ni

k=1 ⊂ H−1/2(Γi)

be a conforming trial space, for example the space of piecewise constant functions ψi
k with respect

to a local quasi uniform and regular boundary mesh with average mesh size hi. The Galerkin
variational problem of (2.10) is to find wi,h ∈ Zi,h such that

〈Viwi,h, τi,h〉Γi = 〈(
1

2
I +Ki)vi, τi,h〉Γi for all τi,h ∈ Zi,h.

The solution of this problem is uniquely determined and satisfies the a priori error estimate [7]

‖wi − wi,h‖H−1/2(Γi) ≤ ci inf
τi,h∈Zi,h

‖wi − τi,h‖H−1/2(Γi).

Hence we can define an approximate Steklov–Poincaré operator S̃i as

(S̃ivi)(x) = (Divi)(x) + (
1

2
I +K ′

i)wi,h(x) for x ∈ Γi. (2.11)

Now, the perturbed variational problem of (2.9) is to find û ∈ H
1/2
0 (ΓS ,Γ) such that

p∑

i=1

∫

Γi

αi(S̃iû|Γi
)(x)v|Γi

(x)dsx = −

p∑

i=1

∫

Γi

αi(S̃iĝ|Γi
)(x)v|Γi

(x)dsx (2.12)

is satisfied for all v ∈ H
1/2
0 (ΓS ,Γ). Let Wh be a boundary element subspace of H

1/2
0 (ΓS ,Γ), e.g.,

Wh = span{ϕn}
M
n=1 ⊂ H

1/2
0 (ΓS ,Γ),

of piecewise linear basis functions ϕn which are defined with respect to a globally quasi uniform
and regular mesh with average mesh size hS . The spaces

Wi,h = span{ϕi
n}

Mi
n=1

denote the restrictions of Wh onto the local subdomain boundaries Γi, i = 1, . . . , p. The resulting
Galerkin variational formulation of (2.12) is to find uh ∈ Wh such that

p∑

i=1

∫

Γi

αi(S̃iuh|Γi
)(x)vh|Γi

(x)dsx = −

p∑

i=1

∫

Γi

αi(S̃iĝ|Γi
)(x)vh|Γi

(x)dsx (2.13)

is satisfied for all vh ∈ Wh. This variational problem has a unique solution uh ∈ Wh which satisfies
the a priori error estimate, see, e.g., [20],

‖û− uh‖H1/2(ΓS) ≤ c1 inf
vh∈Wh

‖û− vh‖H1/2(ΓS) + c2

p∑

i=1

inf
τi,h∈Zi,h

‖Siû|Γi
− τi,h‖H−1/2(Γi).

When assuming û ∈ H2(ΓS) and Siû|Γi
∈ H1

pw(Γi) for i = 1, . . . , p, we then obtain the a priori
estimate [20]

‖û− uh‖H1/2(ΓS) ≤ c1 h
3/2
S ‖û‖H2(ΓS) + c2

p∑

i=1

h
3/2
i ‖Siû|Γi

‖H1
pw(Γi).

The Galerkin variational problem (2.13) is equivalent to a linear system of algebraic equations,

p∑

i=1

αiA
>
i S̃

BEM

i,h Aiu =

p∑

i=1

A>
i f i

, (2.14)
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where the connectivity matrices Ai ∈ R
Mi×M map the global vector v ∈ R

M originating from
the global discretization on ΓS onto their local components vi ∈ R

Mi corresponding to the local
discretization on Γi. In (2.14), the discrete approximate Steklov–Poincaré operator is given as

S̃BEM

i,h = Di,h + (
1

2
MT

i,h +KT
i,h)V −1

i,h (
1

2
Mi,h +Ki,h)

with the local boundary element matrices

Vi,h[`, k] = 〈Viψ
i
k, ψ

i
`〉Γi ,

Di,h[m,n] = 〈Diϕ
i
n, ϕ

i
m〉Γi ,

Ki,h[`, n] = 〈Kiϕ
i
n, ψ

i
`〉Γi ,

Mi,h[`, n] = 〈ϕi
n, ψ

i
`〉Γi ,

for k, ` = 1, ..., Ni and m,n = 1, ...,Mi.

2.2 Tearing

The linear system (2.14) is equivalent to the solution of the minimization problem

J̃(u) = min
v∈RM

J̃(v), (2.15)

where the linear functional J̃ is given as

J̃(v) =

p∑

i=1

[
1

2
αi(S̃

BEM

i,h Aiv,Aiv) − (fi, Aiv)

]
.

By introducing local vectors vi = Aiv ∈ R
Mi we obtain

J(v1, . . . , vp) =

p∑

i=1

[
1

2
(αiS̃

BEM

i,h vi, vi) − (f
i
, vi)

]
(2.16)

to be minimized subject to some continuity constraints across the interface. With

W =

p∏

i=1

Wi, Wi = R
Mi , S = diag

(
αiS̃

BEM

i,h

)
i=1...p

the functional (2.16) can be rewritten as

J(v̂) =
1

2
(Sv̂, v̂) − (f, v̂), v̂ := (v1, . . . , vp)

> ∈W. (2.17)

2.3 Interconnecting

It remains to impose the constraints that correspond to the continuity of the primal variables u
across the interface, i.e. ui(x) = uj(x) for x ∈ Γij . In the classical tearing and interconnecting
FETI/BETI approach the global continuity of the potentials ui is enforced by the constraints

p∑

i=1

Biui = 0

interconnecting the local potential vectors across the subdomain boundaries. Each row of the
matrix B = (B1, . . . , Bp) is connected with a pair of matching nodes, and with entries 1, −1, or 0.
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The basic idea of BETI–DP is to consider the degrees of freedom corresponding to some strong

connectivity points as global degrees of freedom. Let

uC =




uC,1

...
uC,MC




be the vector of degrees of freedom corresponding to the strong connectivity points, where MC

is the total number of the strong connectivity points. By WC = R
MC we denote the vector

space which is associated with the degrees of freedoms in the strong connectivity points. Let
Ri

C : WC → Wi be the matrix operator between the Euclidean spaces WC and Wi in such a way
that Ri

CuC = uC,i ∈Wi for uC ∈WC . After reordering we have

ui =

(
uR,i

uC,i

)

where uR,i corresponds to all degrees of freedom which are not associated with strong connectivity
points. Now the continuity conditions have to be enforced only on the remainder degrees of
freedom,

p∑

i=1

BR,iuR,i = 0.

Then we have to solve the following constrained minimization problem to find û ∈ W such that

J(û) = min
v̂∈W,

pP
i=1

BR,ivR,i=0, RC,ivC=vC,i,i=1,...,p

J(v̂). (2.18)

Recall that the primal space WC is the subspace of W which corresponds to all global degrees of
freedom in the strong connectivity points. In addition, we introduce the dual spaces W∆,i which
correspond to the local remainders vR,i. Hence we introduce

W̃ = WC ⊕

p∏

i=1

W∆,i = WC ⊕W∆,

where we have used the isomorphism

v̂ =




v1
...
vp


 ∈ W, vi =

(
vR,i

vC,i

)
, vR,i ∈W∆,i, vC,i = Ri

CvC , vC ∈WC ,

in particular
ṽ = (vC , vR,1, . . . , vR,p)

> ∈ W̃ .

Therefore, we have to find ũ ∈ W̃ ↔ û ∈ W such that

J(û) = min
v̂∈W↔ev∈fW :

pP
i=1

BR,ivR,i=0

J(v̂).

After introducing Lagrange multipliers λ ∈ R
dim W∆ the resulting linear system is given by




α1
eSRR
1,h

α1
eSRC
1,h

R1

C
B

1,>
R

. . .
.
.
.

.

.

.

αp
eSRR

p,h
αp

eSRC
p,h

R
p
C

B
p,>
R

α1R
1,>

C
eSRC,>

1,h
. . . αpR

p,>

C
eSRC,>

p,h

pX

i=1

αiR
i
C

T eSCC
i,h Ri

C

B1

R
. . . B

p
R







uR,1

.

.

.

uR,p

uC

λ




=




f
R,1

.

.

.

f
R,p

pX

i=1

R
i,>

C
f

C,i

0




(2.19)
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where the block partitioning of the discrete Steklov–Poincaré operators S̃BEM

i,h corresponds to the

reordering of ui = (u>R,i, u
>
C,i)

>. In compact form we can write




SRR SRCRC B>
R

(SRCRC)> SCC 0
BR 0 0






uR

uC

λ


 =




f
R
f

C
0


 . (2.20)

After eliminating the primal variables uR and uC we obtain the Schur complement system

Fλ = g (2.21)

where
F = BRS̃

−1B>
R (2.22)

is symmetric and positive definite, and

S̃ = SRR − SRCRCS
−1
CC(SRCRC)>. (2.23)

Hence we can solve (2.21) by using a preconditioned conjugate gradient method.

3 Preconditioning

As in FETI–DP [2, 9] we may introduce the Dirichlet preconditioner

M =

p∑

i=1

αiB
i
RS̃

RR
i,h B

i,>
R . (3.1)

Using ideas and spectral equivalence inequalities as proved in [12] we may also define the hyper-

singular boundary integral operator preconditioner

M =

p∑

i=1

αiB
i
RD

RR
i,h B

i,>
R . (3.2)

For large variations in the coefficients αi we introduce the scaled Dirichlet preconditioner

M =

p∑

i=1

αiCα,iB
i
RS̃

RR
i,h B

i,>
R C>

α,i (3.3)

and the scaled hypersingular boundary integral operator preconditioner

M =

p∑

i=1

αiCα,iB
i
RD

RR
i,h B

i,>
R C>

α,i (3.4)

where Cα,i are diagonal scaling matrices as defined in [9].
To prove spectral equivalence inequalities of the above defined preconditioners M with the Schur
complement matrix F as defined in (2.22) we first introduce finite element approximations of the
local Steklov–Poincaré operators,

S̃FEM

i,h = KCC,i −KCI,iK
−1
II,iKIC,i, (3.5)

where the finite element stiffness matrix KII,i corresponds to interior degrees of freedom with
respect to some quasi–uniform auxiliary finite element discretization within the subdomain Ωi,
see also [11].
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Lemma 3.1 The local boundary element approximations S̃BEM

i,h and the local finite element approx-

imations SFEM

i,h are spectrally equivalent to the exact Galerkin matrices Si,h of the local Steklov–

Poincaré operators Si and to the boundary element stiffness matrices Di,h of the local hypersingular

boundary integral operators Di, i.e.,

S̃BEM

i,h ' S̃FEM

i,h ' Si,h ' Di,h, i = 1, . . . , p.

Here, A ' B means that the matrices A and B are spectrally equivalent with spectral equivalence

constants which are independent of discretization parameters.

Since the system matrix F of the BETI–DP method as defined in (2.22) differs from the system ma-

trix of the FETI–DP approach only in the approximation S̃BEM/FEM

i,h of the local Steklov–Poincaré
operators Si, all spectral equivalence inequalities of FETI–DP transfer to the BETI–DP approach.
Therefore, from Lemma 3.1 and the FETI-DB anlysis given in [9, 16], we immediately obtain the
following theorem:

Theorem 3.1 Let F be the system matrix of the BETI–DP approach as defined in (2.22). Let M
be the Dirichlet preconditioner (3.1). Then, for d = 2, we have

cond2(MF ) =
λmax(MF )

λmin(MF )
≤ C

(
1 + log

H

h

)2

, (3.6)

whereas, for d = 3, we only have

cond2(MF ) =
λmax(MF )

λmin(MF )
≤ C

(
1 + log

H

h

)2
H

h
, (3.7)

where H/h = maxHi/hi and C is a positive constant which does not depend on the subdomain

size Hi and on the local mesh sizes hi.

Obviously, the hypersingular boundary integral operator preconditioner (3.2) yields the same
asymptotical bounds for cond2(MF ) as given in Theorem 3.1. In order to get rid of the dependence
of the constant C on possible large jumps of the coefficient α(·), one should use the scaled versions
(3.3) and (3.4) of the preconditioners (3.1) and (3.2), respectively.

4 A More General Approach for the 3D Case

4.1 Dual–Primal Spaces

As we have seen in Theorem 3.1, the condition number of the preconditioned system when using
the Dirichlet preconditioner (3.1) behaves not optimal in the three–dimensional case. Therefore,
the algorithm seems not to be very competitive. This is the reason why we have to modify the
FETI/BETI–DP algorithms.

As discussed in subsection 2.3 we have to solve the minimization problem to find ũ ∈ W̃ ↔ û ∈W
such that

J(û) = min
v̂∈W↔ev∈fW :

pP
i=1

BR,ivR,i=0

J(v̂)

where

W̃ = WC ⊕W∆, W∆ =

p∏

i=1

W∆,i.

In particular, WC is the primal space which corresponds to all global degrees of freedom in the
strong connectivity points while the dual spaces W∆,i cover the remaining degrees of freedom
which are linked by nodal constraints. Instead of the strong connectivity points we now may
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consider any other definition of the primal space WC and therefore of the implicitly derived dual
spaces W∆,i.
After eliminating the primal variables we end up to find the dual variables u∆ and the associated
Lagrange multipliers λ ∈ V = rangeB∆ from

(
S̃∆ B>

∆

B∆

)(
u∆

λ

)
=

(
f

∆

0

)

where, as before, B∆ is the matrix describing the nodal continuity of the dual variables u∆,i,

and S̃∆ is the associated Schur complement. Since the latter is invertible we obtain the Schur
complement system

Fλ = g

with
F = B∆S̃

−1
∆ B>

∆, g = B∆S̃
−1
∆ f

∆
. (4.1)

In order to construct appropriate preconditioners for the Schur complement F we have to define
suitable matrices S̃∆,i and D̃∆,i by the restriction of S̃i,h and D̃i,h onto the local dual spaces
W∆,i. In the original method (Choice A) this was done by a simple elimination of the rows and
columns which correspond to the primal space WC . For more details on the realization of this
approach we refer to [21] and [9]. Now we are able to introduce the modified scaled Dirichlet

preconditioner

M =

p∑

i=1

C∆,iB
i
RS̃∆,iB

i,>
R C>

∆,i (4.2)

and the modified scaled hypersingular boundary integral operator preconditioner

M =

p∑

i=1

C∆,iB
i
RD̃∆,iB

i,>
R C>

∆,i (4.3)

where C∆,i are suitable diagonal scaling matrices.

4.2 Some Choices for the Dual–Primal Spaces

Now we discuss few choices for the Dual–Primal spaces for BETI–DP as it was originally done in
[9] for the FETI–DP method. For each subdomain Ωi we denote by F ij , εik, and vil the faces,
edges and vertices, respectively.

4.2.1 Choice A: Corner Points

The primal space WC is spanned by vectors which are one in all vertices and zero in all remaining
nodes. The local spaces W∆,i are then spanned by local vectors from Wi which are zero in the
vertices. This first choice corresponds to the original FETI/BETI–DP method.

4.2.2 Choice B: Corner Points and Edges

The primal space WC is spanned by vectors which correspond to the nodal basis functions from
Wh which take the value one in the vertices, and to cutoff functions which are one along the edges.
The dual subspaces W∆,i are then spanned by local vectors from Wi which correspond to basis
functions which vanish in the vertices, and to functions with zero average on each edge, i.e.,

ūεik =
1

|εik|

∫

εik

u(x)dsx = 0. (4.4)

For both the Dirichlet and the hypersingular boundary integral operator precondition-

ers, the following result holds:
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Theorem 4.1 Let F be the system matrix of the modified BETI–DP approach as defined in (4.1).
Let M be the scaled Dirichlet preconditioner (4.2) or the scaled hypersingular boundary integral

operator preconditioner (4.3). Then the following estimate of the condition number of the precon-

ditioned system is valid:

cond2(MF ) ≤ C(1 + log(H/h))2, (4.5)

where the constant C is again independent of Hi, hi, and the coefficient jumps.

4.2.3 Choice C: Corner Points, Edges and Faces

The primal space WC is spanned by vectors which correspond to nodal basis functions which are
one in the vertices, and to cutoff functions which take the value one along the edges and over
the faces. The dual subspaces W∆,i are then spanned by local vectors which correspond to basis
functions which vanish in the vertices, and to functions that have zero average over each edge and
each face, i.e., beside (4.4) we also have

ūF il =
1

|F il|

∫

F il

u(x)dSx . (4.6)

For both the scaled Dirichlet and the scaled hypersingular boundary integral operator

preconditioners, the same results as formulated in Theorem 4.1 are valid.
We immediately see that the number of primal constraints enforced in choices B and C is much
larger than the one corresponding to choice A. However, we have a much better bound of the
spectral condition number. As it was already shown in [9] we have to distinguish between the
primal constraints in the strong connectivity points and the remainders of the primal constraints
from choices B and C. The last ones are called optional constraints because they were introduced
not to guarantee the solvability of the subproblems (this was already done by the corner points
provided that in each subdomain there is a certain number of corner points which is at least
equal to the dimension of the subproblem kernel) but to improve the convergence rate. The
optional constraints can be handled as corner points after a suitable change of basis, but also by
introducing an additional set of Lagrange multipliers which are computed exactly in each iteration
step to enforce the required optional constraints of the primal space (see [21], [9] and [17]).
Several other choices can be found in [21] and [9] for the FETI–DP method, and as we have already
seen, they are suitable for BETI–DP as well.

5 Numerical Results

As an example we consider the Dirichlet boundary value problem

−div[α(x)∇u(x)] = 0 for x ∈ Ω, u(x) = x1 + x2 for x ∈ Γ = ∂Ω,

where Ω = (0, 1)2 is divided into 9 subdomains Ωi with piecewise constant coefficients α(x) = αi

for x ∈ Ωi, i = 1, . . . , 9. Note that Ω5 = (1/3, 2/3)2 is a floating subdomain.
Here we consider only the iterative solution of the linear system (2.21) by using a preconditioned
conjugate gradient scheme with a relative error reduction of ε = 10−7 as stopping criteria. As pre-
conditioners we consider the Dirichlet preconditioner (3.1), the hypersingular boundary integral
operator preconditioner (3.2), the scaled Dirichlet preconditioner (3.3), and the scaled hypersin-
gular boundary integral operator preconditioner (3.4).

6 Conclusions

The main benefit of the BETI–DP approach is that all local subproblems are invertible, i.e., there
is no need to characterize the kernels of the local Steklov–Poincaré operators. Moreover, we can
use standard preconditioned conjugate gradient schemes in parallel without using any projection
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Ni (3.1) (3.2) (3.3) (3.4)
40 8 12 8 12
60 8 12 8 12
80 9 13 9 13
104 9 13 9 13

Table 1: Number of CG iterations, no jumps: αi = 1 for i = 1, . . . , 9.

Ni (3.1) (3.2) (3.3) (3.4)
40 15 19 14 17
60 15 21 15 17
80 16 22 16 18
104 16 23 16 19

Table 2: Number of CG iterations, small jumps: α5 = 0.1, αi = 1 for i 6= 5.

as used in standard BETI methods. The use of the hypersingular boundary integral operator pre-
conditioners (3.2) and (3.4) may not yield so effective bounds as the Dirichlet preconditioners (3.1)
and (3.3), but the application of (3.2) and (3.4) only require some matrix by vector multiplications
instead of solving local boundary value problems as in (3.2) and (3.4).
As it is known from previous papers on BETI and coupled FETI/BETI, the method formulation is
strictly analytical based on suitable Dirichlet to Neumann maps. In the recent work of Mandel and
Tezaur [17] the FETI and FETI–DP methods were investigated in a strictly algebraic formulation
which is totally independent of the underlying partial differential equation. The advantage of
BETI and BETI–DP is that once we have proven spectral equivalence inequalities of the finite
and boundary element approximations of the local Steklov–Poincaré operators, all results from
FETI can be applied for BETI. This also leads to the further use of coupled FETI/BETI–DP as
well as using the hypersingular boundary integral operator preconditioner for FETI methods, see,
e.g., [13].
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