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Modified combined field integral equations for
electromagnetic scattering

O. Steinbach, M. Windisch

Berichte aus dem
Institut für Numerische Mathematik

Bericht 2007/6





Technische Universit ät Graz
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Abstract

The boundary integral formulation of exterior boundary value problems for the
Maxwell system may not be equivalent to the original uniquely solvable problem if
the wave number corresponds to an eigenvalue of an associated interior eigenvalue
problem. To avoid these spurious modes one may use a combined boundary integral
approach. To analyze the resulting boundary integral equations in the energy func-
tion spaces suitable regularizations have to be introduced. Here we formulate and
analyze an alternative modified boundary integral equation which is based on the
use of standard boundary integral operators only. In particular we can avoid the use
of the Hodge decomposition in both the analysis and the implementation. A first
numerical example shows the applicability of the proposed approach.

1 Introduction

The modeling of electromagnetic scattering at a perfect conductor in the exterior of a
bounded domain Ω ⊂ R

3 leads to the Dirichlet boundary value problem [11, 18, 19]

curl curlU(x) + κ2U(x) = 0 for x ∈ Ωc = R
3 \ Ω, (1.1)

nx × (U(x) × nx) = g(x) for x ∈ Γ = ∂Ω (1.2)

where κ is purely imaginary, i.e. κ = ik with k > 0. This more general notation is used
since we will define some boundary integral operators for real κ too. In addition to the
exterior boundary value problem (1.1) we need to formulate the radiation condition of
electromagnetic scattering, i.e. the Silver–Müller radiation condition

lim
r=|x|→∞

∫

∂Br

|curlU(x) × nx − ikU(x)|2dsx = 0. (1.3)
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Note that the exterior Dirichlet boundary value problem (1.1)–(1.3) admits a unique solu-
tion. According to the partial differential operator in (1.1) we can formulate Green’s first
formula which is valid for sufficiently smooth functions as

∫

Ω

curl curlU(x) · V(x) dx =

∫

Ω

curlU(x) · curlV(x) dx

−
∫

Γ

(curlU(x)|Γ × nx) · (nx × (V(x)|Γ × nx)) dsx.

(1.4)

Based on (1.4) related Sobolev spaces and corresponding trace operators can be introduced
[3, 4, 5, 6, 7], these results will be summarized in Section 2. Then, the well known Stratton–
Chu representation formula will be discussed which implies the definition of appropriate
potential and boundary integral operators [5, 7, 10, 12, 15, 16, 19]. The corresponding
boundary integral equations can be used for a numerical treatment of the problem by
means of boundary element methods [5, 7, 10, 11, 12, 19]. But although the exterior
boundary value problem (1.1)–(1.3) is uniquely solvable, the standard boundary integral
equations are not uniquely solvable if the wave number κ corresponds to an eigenvalue of
an associated interior eigenvalue problem. To avoid these spurious modes Brakhage and
Werner [1] introduced a combined boundary integral approach for the acoustic problem
in 1965. In the same year Panich discussed this approach for the electromagnetic case
[20]. But the analysis of the approach of Brakhage and Werner is applicable for smooth
boundaries only. Hence modified boundary integral equations were discussed in [9] for the
acoustic case and in [8] for the electromagnetic case. Note that all of these approaches are
based on using some compact regularisation operators. In [14] an alternative approach was
introduced for the acoustic case which does not rely on compact perturbations. Here we
want to generalize this idea to obtain modified combined boundary integral equations for
the electromagnetic case. In addition we will not made use on a Hodge decomposition in
both the analysis and the implementation.

The paper is structured as follows: In Section 2 we first summarize the definitions of
Sobolev spaces to handle the variational formulation of the Maxwell system, and introduce
potential operators and related boundary integral operators as needed later. We also dis-
cuss standard boundary integral approaches to solve the exterior Dirichlet boundary value
problem, and comment on combined and already existent stabilized boundary integral for-
mulations. An alternative modified boundary integral equation is formulated and analyzed
in Section 3. In particular, we present a new boundary integral formulation which is based
on the use of standard, and therefore already available boundary integral operators, and
which is stable for all wave numbers. In Section 4 we describe a first numerical example to
show the applicability of the proposed approach. We finally end up with some conclusions
and an outlook on ongoing work.
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2 Function spaces and boundary integral equations

The formulation of boundary integral equations for the Maxwell system requires the use
of the correct function spaces. Here we will only recall the definitions and the properties
of Sobolev spaces for the Maxwell system, for a more detailed description see, e.g. [3, 4].

Let Ω ⊂ R
3 be a Lipschitz polyhedron [3] with a Lipschitz boundary Γ = ∂Ω which is

the union of plane faces Γi, i.e. Γ =
⋃

i Γi where ni is the exterior normal vector on Γi.
The partial differential equation in (1.1) and Green’s first formula (1.4) motivate the

definition of the energy space

H(curl , Ω) := {V ∈ L2(Ω) : curlV ∈ L2(Ω)}
as well as the space of the natural solutions

H(curl 2, Ω) := {V ∈ H(curl , Ω) : curl curlV ∈ L2(Ω)} .

In addition we need to introduce appropriate Sobolev spaces on the boundary. For |s| ≤ 1
and for scalar functions on the boundary the usual Sobolev spaces are denoted by Hs(Γ).
Let us define the Dirichlet traces

γDU := n × (U|Γ × n) = n× γ×U, γ×U := U|Γ × n

and the Neumann trace

γNU := curlU|Γ × n

which all are mappings into tangential spaces. Hence we introduce the space

L2,t(Γ) := {u ∈ L2(Γ) : u · n = 0}
of tangential L2(Γ) integrable functions. For higher order Sobolev spaces we use the piece-
wise definition

Hs
pw,t(Γ) := {u ∈ L2,t(Γ) : u ∈ Hs(Γk) , k = 1, . . . , NΓ}.

The trace spaces γDH1(Ω) and γ×H1(Ω) are denoted by H
1/2
‖ (Γ) and H

1/2
⊥ (Γ) respectively,

for an alternative definition see [3]. The dual spaces with respect to L2,t(Γ) are denoted

by H
−1/2
‖ (Γ) and H

−1/2
⊥ (Γ).

Before introducing the trace spaces of H(curlΩ) we need to define some boundary
differential operators. Here we just give definitions for smooth boundaries, for Lipschitz
polyhedrons see [3, 4]. For scalar functions u and vector fields U which are given on Γ we

denote by ũ and Ũ arbitrary bounded extensions into a three–dimensional neighborhood
of Γ. Then we can define the boundary differential operators

∇Γ u := [n× (∇ũ × n)]|Γ ,

curlΓ u := [curl (ũn)]|Γ ,

curlΓ U :=
[
n · curl Ũ

]
|Γ
,

divΓ U :=
[
div Ũ

]
|Γ
.
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Note that the operator curlΓ is the adjoint of curlΓ , and ∇Γ is the adjoint of −divΓ .
With the help of these operators we can finally define the Hilbert spaces

H
−1/2
⊥ (curlΓ , Γ) :=

{
u ∈ H

−1/2
⊥ (Γ) : curlΓ u ∈ H−1/2(Γ)

}
,

H
−1/2
‖ (divΓ , Γ) :=

{
u ∈ H

−1/2
‖ (Γ) : divΓ u ∈ H−1/2(Γ)

}
.

These spaces are dual to each other with respect to L2,t(Γ), and represent the trace spaces
γDH(curl , Ω) and γ×H(curl , Ω), respectively. Furthermore, there holds the following
theorem [3].

Theorem 2.1 The operators

γD : H(curl , Ω) → H
−1/2
⊥ (curlΓ , Γ),

γN : H(curl curl , Ω) → H
−1/2
‖ (divΓ , Γ)

are linear, continuous and surjective.

Now we are able to introduce some potential and boundary integral operators which are
relevant for electromagnetic scattering [10]. The solution of the exterior Dirichlet bound-
ary value problem (1.1)–(1.3) can be described by using the Stratton–Chu representation
formula [16]

U(x) = −Ψκ
M(γc

DU)(x) −Ψκ
S(γc

NU)(x) for x ∈ Ωc (2.1)

where the Maxwell single layer potential is given by

Ψκ
S(µ) := Ψκ

A(µ) − 1

κ2
gradΨκ

V (divΓ (µ)),

and the Maxwell double layer potential is defined by

Ψκ
M(λ)(x) := curlΨκ

A(λ × n)(x).

The operators Ψκ
A and Ψκ

S are the vectorial and the scalar single layer potentials which
are given by

Ψκ
A(λ)(x) :=

∫

Γ

gκ(x, y)λ(y)dsy, Ψκ
V (λ)(x) :=

∫

Γ

gκ(x, y)λ(y)dsy

whereas gκ(x, y) is the fundamental solution of the Helmholtz equation,

gκ(x, y) =
eκ|x−y|

|x − y| .

To use an indirect approach to represent the solution of (1.1)–(1.3) the following result is
essential [10, 12].
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Theorem 2.2 The Maxwell single and double layer potentials are solutions of the partial
differential equation in (1.1) and fulfill the Silver–Müller radiation condition (1.3). More-
over, the following mapping properties are valid:

Ψκ
S : H

−1/2
‖ (divΓ , Γ) → Hloc(curl 2, Ω ∪ Ωc),

Ψκ
M : H

−1/2
⊥ (curlΓ , Γ) → Hloc(curl 2, Ω ∪ Ωc).

Hence we can represent the solution of the exterior Dirichlet boundary value problem
(1.1)–(1.3) either by the single layer potential

U(x) = Ψκ
S(µ)(x) for x ∈ Ωc (2.2)

or by using the double layer potential

U(x) = Ψκ
M(λ)(x) for x ∈ Ωc. (2.3)

To find the yet unknown density functions µ ∈ H
−1/2
‖ (divΓ , Γ) and λ ∈ H

−1/2
⊥ (curlΓ , Γ)

we have to formulate appropriate boundary integral equations which can be derived from
the Dirichlet boundary condition (1.2). For this we first use the trace operators γD and
γN as given in Theorem 2.1 to define related boundary integral operators, in particular for
the interior trace we obtain

γDΨκ
Sµ(x) =: Sκµ(x),

γDΨκ
Mλ(x) =:

(
1

2
I + Cκ

)
λ(x),

γNΨκ
Sµ(x) =:

(
1

2
I + Bκ

)
µ(x),

γNΨκ
Mλ(x) =: Nκλ(x),

while for the exterior trace we get

γc
DΨκ

Sµ(x) =: Sκµ(x),

γc
DΨκ

Mλ(x) =:

(
−1

2
I + Cκ

)
λ(x),

γc
NΨκ

Sµ(x) =:

(
−1

2
I + Bκ

)
µ(x),

γc
NΨκ

Mλ(x) =: Nκλ(x).

While the single layer boundary integral operator

Sκ : H
−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

and the hypersingular integral operator

Nκ : H
−1/2
⊥ (curlΓ , Γ) → H

−1/2
‖ (divΓ , Γ)

are self–adjoint with respect to the complex inner product, the double layer potentials Cκ

and Bκ are related to each other as follows.
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Lemma 2.3 [10] For all µ ∈ H
−1/2
‖ (divΓ , Γ) and λ ∈ H

−1/2
⊥ (curlΓ , Γ) there holds

〈Bκµ, λ〉 = −〈µ, Cκλ〉.

When using the single layer potential (2.2) we have to find µ ∈ H
−1/2
‖ (divΓ , Γ) by solving

the boundary integral equation

Sκµ(x) = g(x) for x ∈ Γ (2.4)

while for the double layer potential (2.3) λ ∈ H
−1/2
⊥ (curlΓ , Γ) is the solution of the bound-

ary integral equation

−1

2
λ(x) + Cκλ(x) = g(x) for x ∈ Γ. (2.5)

When applying the exterior Dirichlet and the exterior Neumann trace to the Stratton–Chu
representation formula (2.1) we obtain a system of boundary integral equations,

γc
DU = −Sκγ

c
NU + (1

2
I − Cκ)γ

c
DU,

γc
NU = (1

2
I − Bκ)γ

c
NU + −Nκγ

c
DU.

(2.6)

In particular, to describe the solution of the exterior Dirichlet boundary value problem
(1.1)–(1.3) we may use the first equation in (2.6) to find γc

NU ∈ H
−1/2
‖ (divΓ , Γ) such that

Sκγ
c
NU(x) = −1

2
g(x) − Cκg(x) for x ∈ Γ. (2.7)

Proposition 2.4 [11] If k2 = λ is an eigenvalue of the interior Dirichlet eigenvalue prob-
lem

curl curlUλ(x) = λUλ(x) for x ∈ Ω, γDUλ(x) = 0 for x ∈ Γ, (2.8)

then γNUλ(x) is in the kernel of Sκ and (−1
2
I + Bκ), i.e.

SκγNUλ = 0, (
1

2
I − Bκ)γNUλ = 0

where κ = ik.
On the other hand, if k2 is not an eigenvalue of the interior Dirichlet eigenvalue problem

(2.8), then Sκw = 0 implies w = 0.

Hence, if k2 = λ is an eigenvalue of the interior Dirichlet eigenvalue problem (2.8), we
conclude that the single layer potential operator Sκ is not invertible, and therefore, the
boundary integral equations (2.4) and (2.7) are in general not solvable. However, due to

〈−1

2
g − Cκg, γNUλ〉 = 〈g, (−1

2
I + Bκ)γNUλ〉 = 0

we conclude that the right hand side of the boundary integral equation (2.7) is in the
image of the single layer potential Sκ, i.e. the boundary integral equation (2.7) of the
direct approach is solvable, but the solution is not unique.
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Proposition 2.5 [11] If k2 = µ is an eigenvalue of the interior Neumann eigenvalue
problem

curl curlUµ(x) = µUµ(x) for x ∈ Ω, γNUµ(x) = 0 for x ∈ Γ, (2.9)

then γDUµ(x) is in the kernel of Nκ and (1
2
I − Cκ), i.e.

NκγDUµ = 0, (
1

2
I − Cκ)γDUµ = 0

where κ = ik.

Hence, if k2 = µ is an eigenvalue of the interior Neumann eigenvalue problem (2.9), we
conclude that the boundary integral operator 1

2
I − Cκ is not invertible, and therefore the

boundary integral equation (2.5) of the indirect approach is in general not solvable.
To overcome the problem of non–solvability of boundary integral equations due to

interior eigenfrequencies one may use a combined approach such as the formulation of
Brakhage and Werner who introduced a combined field integral equation for the acoustic
scattering problem [1]. The same idea was used by Panich in [20] for the electromagnetic
case. In general, the idea is to consider complex linear combinations of the single and
double layer potential, i.e.

U(x) = −iηΨκ
Sw(x) −Ψκ

Mw(x) for x ∈ Ωc

where η ∈ R+ is some parameter to be chosen. The unknown density w ∈ L2(Γ) can then
be determined from the resulting boundary integral equation

γc
DU(x) = −iηSκw(x) + (

1

2
I − Cκ)w(x) = g(x) for x ∈ Γ (2.10)

which can be proved to be uniquely solvable if the boundary Γ = ∂Ω is sufficiently smooth.
But this proof is essentially based on the compactness of the double layer potential operator
Cκ which is not satisfied if Ω is a Lipschitz polyhedron. Hence one may introduce a
regularisation operator B : H

−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ) such that the stabilized

boundary integral equation

γc
DU(x) = −iηSκw(x) + (

1

2
I − Cκ)Bw(x) = g(x) for x ∈ Γ (2.11)

admits a unique solution w ∈ H
−1/2
‖ (divΓ , Γ). A suitable compact operator B was intro-

duced by Buffa and Hiptmair in [8]. The unique solvability of the stabilized boundary
integral equation (2.11) is then based on a generalized G̊ardings inequality for the single
layer potential Sκ, and on the injectivity of the composed boundary integral operator in
(2.11). But this approach requires an appropriate splitting, i.e. a Hodge decomposition,

of the space H
−1/2
‖ (divΓ , Γ) to achieve such a generalized G̊ardings inequality, which does

not carry over to a Galerkin discretization of the stabilized boundary integral equation.
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Therefore further considerations are needed to establish a stability and error analysis of
the stabilized formulation [8, 17]. Moreover, a numerical implementation of this approach
seems to be a difficult task.

Hence, in the next section we will describe an alternative approach which is based on
standard boundary integral operators only. To analyze the proposed modified boundary
integral formulation we will need some auxiliary results as given in the following.

Due to the boundary integral equations (2.6) we define the Calderon projector

C =

(
1
2
I − Cκ −Sκ

−Nκ
1
2
I − Bκ

)

which satisfies the projection property

C2

(
λ

µ

)
= C

(
λ

µ

)
(2.12)

for all λ ∈ H
−1/2
⊥ (curlΓ , Γ) and µ ∈ H

−1/2
‖ (divΓ , Γ). As a corollary of the projection

property (2.12) we then conclude the relations

SκNκ =
1

4
I − C

2
κ, (2.13)

NκSκ =
1

4
I − B

2
κ, (2.14)

−NκCκ = BκNκ, (2.15)

−CκSκ = SκBκ. (2.16)

If the single layer potential operator Sκ is invertible we can define the Steklov–Poincaré
operator

Tκ := S
−1
κ (

1

2
I − Cκ) : H

−1/2
⊥ (curlΓ , Γ) → H

−1/2
‖ (divΓ , Γ) (2.17)

which allows an alternative symmetric representation

Tκ := Nκ + (
1

2
I + Bκ)S

−1
κ (

1

2
I − Cκ). (2.18)

Theorem 2.6 [5] The operators

A0 = γc
DΨ0

A : H
−1/2
‖ (Γ) → H

1/2
‖ (Γ)

and
V0 = γc

DΨ0
V : H−1/2(Γ) → H1/2(Γ)

are self–adjoint as well as H
−1/2
‖ (Γ)– and H−1/2(Γ)–elliptic, respectively. Moreover, for

real κ < 0 the single layer potential

Sκ : H
−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

is H
−1/2
‖ (divΓ , Γ)–elliptic and selfadjoint.
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3 Modified boundary integral equations

In this section we propose an alternative approach of a modified boundary integral equation
without using a compact operator B. Because of symmetry reasons we choose

B = S
∗
0
−1(

1

2
I + Bκ) : H

−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

whereas S
∗
0 : H

−1/2
⊥ (curlΓ , Γ) → H

−1/2
‖ (divΓ , Γ) is given by

S
∗
0u := n × A0(u × n) + curlΓ V0 curlΓ u.

By using Theorem 2.6 one can prove that S∗
0 is H

−1/2
⊥ (curlΓ , Γ)–elliptic and selfadjoint.

Now we can describe the solution of the exterior Dirichlet boundary value problem
(1.1)–(1.3) by

U(x) = Ψκ
Sw(x) − iηΨκ

MBw(x) for x ∈ Ωc.

When applying the exterior Dirichlet trace we find the unknown density w ∈ H
−1/2
‖ (divΓ , Γ)

from the modified boundary integral equation

Zκw(x) = Sκw(x) + iη(
1

2
I − Cκ)S

∗
0
−1(

1

2
I + Bκ)w(x) = g(x) for x ∈ Γ. (3.1)

To establish the unique solvability of the modified boundary integral equation (3.1) we first
prove that Zκ is coercive. In difference to the usual approach we show the coercivity in
the second part, because the single layer potential Sκ does not fulfill a G̊ardings inequality.
Note that Buffa and Hiptmair used a Hodge decomposition which is not possible in our
case.

To prove the coercivity of the operator Zκ we first define an appropriate equivalent
norm in H

−1/2
⊥ (curlΓ , Γ) by, see Theorem 2.6,

‖u‖
S
−1
κ

:=
√

〈S−1
κ u,u〉, u ∈ H

−1/2
⊥ (curlΓ , Γ).

As in the case of a formally elliptic partial differential operator [22] we can prove a con-
traction property of the double layer potential 1

2
I − Cκ.

Theorem 3.1 For all u ∈ H
−1/2
⊥ (curlΓ , Γ) and for all real κ < 0 there holds

(1 − cK)‖u‖
S
−1
κ

≤ ‖(1
2
I − Cκ)u‖S

−1
κ

≤ cK‖u‖
S
−1
κ

where

cK =
1

2
+

√
1

4
− cS

1 cN
1 < 1,

and cS
1 , cN

1 are the ellipticity constants of the single layer potential Sκ and of the hypersin-
gular operator Nκ.
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Proof: For u ∈ H
−1/2
⊥ (curlΓ , Γ) with ‖u‖

H
−1/2

⊥ (curlΓ ,Γ)
> 0 we first have

‖(1
2
I − Cκ)u‖2

S
−1
κ

= 〈S−1
κ (

1

2
I − Cκ)u, (

1

2
I − Cκ)u〉 = 〈Tκu,u〉 − 〈Nκu,u〉

where the Steklov–Poincaré operator Tκ is defined as in (2.18). Let

J : H
−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

be the Riesz operator, then

A := J S
−1
κ : H

−1/2
⊥ (curlΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

is self–adjoint and H
−1/2
⊥ (curlΓ , Γ)–elliptic.

Hence we can consider the splitting A = A1/2A1/2 to obtain

〈Tκu,u〉 = 〈S−1
κ (

1

2
I − Cκ)u,u〉

= 〈JS
−1
κ (

1

2
I − Cκ)u,u〉

H
−1/2

⊥ (curlΓ ,Γ)

= 〈A1/2(
1

2
I − Cκ)u, A1/2u〉

H
−1/2

⊥ (curlΓ ,Γ)

≤ ‖A1/2(
1

2
I − Cκ)u‖

H
−1/2

⊥ (curlΓ ,Γ)
‖A1/2u‖

H
−1/2

⊥ (curlΓ ,Γ)
.

With

‖A1/2v‖2

H
−1/2

⊥ (curlΓ ,Γ)
= 〈A1/2v, A1/2v〉

H
−1/2

⊥ (curlΓ ,Γ)

= 〈JS
−1
κ v,v〉

H
−1/2

⊥ (curlΓ ,Γ)
= 〈S−1

κ v,v〉 = ‖v‖2
S
−1
κ

we then obtain

〈Tκu,u〉 ≤ ‖(1
2
I − Cκ)u‖S

−1
κ
‖u‖

S
−1
κ

.

On the other hand, for the hypersingular boundary integral operator we have

〈Nκu,u〉 ≥ cN
1 ‖u‖2

H
−1/2

⊥ (curlΓ ,Γ)
≥ cN

1 cS
1 〈S−1

κ u,u〉 = cN
1 cS

1‖u‖2
S
−1
κ

.

Altogether, this gives

‖(1
2
I − Cκ)u‖2

S
−1
κ

= 〈Tκu,u〉 − 〈Nκu,u〉 ≤ ‖(1
2
I − Cκ)u‖S

−1
κ
‖u‖

S
−1
κ

− cN
1 cS

1 ‖u‖2
S
−1
κ

which is equivalent to (a

b

)2

− a

b
+ cN

1 cS
1 ≤ 0

where

a := ‖(1
2
I − Cκ)u‖S

−1
κ

≥ 0, b := ‖u‖
S
−1
κ

> 0.

10



Hence we finally conclude

1

2
−

√
1

4
− cN

1 cS
1 ≤ a

b
≤ 1

2
+

√
1

4
− cN

1 cS
1

which gives the assertion.

A similar estimate can also be shown for the operator 1
2
I + Cκ.

Theorem 3.2 For v ∈ H
−1/2
⊥ (curlΓ , Γ) there holds

(1 − cK)‖v‖
S
−1
κ

≤ ‖(1
2
I + Cκ)v‖S

−1
κ

≤ cK‖v‖
S
−1
κ

.

Proof: With the contraction property of 1
2
I − Cκ we obtain

‖v‖
S
−1
κ

= ‖(1
2
I + Cκ)v + (

1

2
I − Cκ)v‖S

−1
κ

≤ ‖(1
2
I + Cκ)v‖S

−1
κ

+ ‖(1
2
I − Cκ)v‖S

−1
κ

≤ ‖(1
2
I + Cκ)v‖S

−1
κ

+ cK‖v‖
S
−1
κ

and therefore the first inequality. On the other hand, by using the representations (2.17)
and (2.18) we get

‖(1
2
I + Cκ)v‖2

S
−1
κ

= ‖(I − (
1

2
I − Cκ))v‖2

S
−1
κ

= ‖v‖2
S
−1
κ

+ ‖(1
2
I − Cκ)v‖2

S
−1
κ

− 2〈S−1
κ (

1

2
I − Cκ)v,v〉

= ‖v‖2
S
−1
κ

+ ‖(1
2
I − Cκ)v‖2

S
−1
κ

− 2〈Tκv,v〉

= ‖v‖2
S
−1
κ

− ‖(1
2
I − Cκ)v‖2

S
−1
κ

− 2〈Nκv,v〉

≤ [1 − (1 − cK)2 − 2cS
1 cN

1 ] ‖v‖2
S
−1
κ

= c2
K‖v‖2

S
−1
κ

and therefore the upper estimate.

As for the operators 1
2
± Cκ we can prove related estimates for the operators 1

2
± Bκ when

considering an equivalent norm in H
−1/2
‖ (divΓ , Γ) which is induced by the single layer

potential Sκ, i.e. for κ < 0 there holds

(1 − cK) ‖w‖Sκ ≤ ‖(1
2
I ± Bκ)w‖Sκ ≤ cK ‖w‖Sκ. (3.2)

for all w ∈ H
−1/2
‖ (divΓ , Γ).

For u ∈ H
−1/2
‖ (divΓ , Γ) we finally define the operator

Sκ,0u := A0u− 1

κ2
∇Γ V0 divΓ u.

Now we are able to prove the coercivity of the operator Zκ.
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Theorem 3.3 The operator

Zκ = Sκ + iη(
1

2
I − Cκ)S

∗
0
−1(

1

2
I + Bk) : H

−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

satisfies a G̊ardings inequality, i.e. there holds

Im[〈Zκµ, µ〉 + c1(µ, µ)] ≥ cZ ‖µ‖2

H
−1/2

‖
(divΓ ,Γ)

for all µ ∈ H
−1/2
‖ (divΓ , Γ) with a positive constant cZ where c1(µ, µ) is a compact bilinear

form.

Proof: Since 〈Sκ,0w,w〉 is real, the same holds true for the duality product

〈S∗
0
−1(

1

2
I + Bκ)w, (

1

2
I + Bκ)w〉 ∈ R.

Because of the contraction property (3.2) we get for some κ′ < 0

‖(1
2
I + Bκ′)w‖

H
−1/2

‖
(divΓ ,Γ)

≥ c ‖w‖
H

−1/2

‖
(divΓ ,Γ)

for all w ∈ H
−1/2
‖ (divΓ , Γ). Since the operator S

∗
0
−1 is H

−1/2
‖ (divΓ , Γ)–elliptic, we have

〈S∗
0
−1(

1

2
I + Bκ′)w, (

1

2
I + Bκ′)w〉 ≥ c ‖w‖2

H
−1/2

‖
(divΓ ,Γ)

for all w ∈ H
−1/2
‖ (divΓ , Γ). The operator Zκ can now be written in the following form

Zκ = Sκ,0 + (Sκ − Sκ,0)︸ ︷︷ ︸
compact

+iη
(
(
1

2
I − Ck′)S∗

0
−1(

1

2
I + Bk′)

+ (Cκ′ − Cκ)S
∗
0
−1(

1

2
I + Bκ) + (

1

2
I − Cκ′)S∗

0
−1(Bκ − Bκ′)

︸ ︷︷ ︸
compact

)

which implies

Im [〈Zκw,w〉 + c1(w,w)] = Im

[
〈Sκ,0w,w〉+ iη〈S∗

0
−1(

1

2
I + Bk)w, (

1

2
I + Bk)w〉

]

= Im

[
〈S∗

0
−1(

1

2
I + Bk)w, (

1

2
I + Bk)w〉

]

≥ c ‖w‖2

H
−1/2

‖
(divΓ ,Γ)

.

Hence, to use Fredholms alternative to establish the unique solvability of the modified
boundary integral equation (3.1) it remains to prove the injectivity of the operator Zκ.
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Theorem 3.4 If the wave number κ = ik is imaginary then there holds

Im[〈Sκu,u〉] ≥ 0

for all u ∈ H
−1/2
‖ (divΓ , Γ).

Proof: From Green’s first formula we have
∫

Ω

curlU(x) · curlV(x)dx−
∫

Γ

γNU(x) · γDV(x)dsx = k2

∫

Ω

U(x) ·V(x)dx.

For V = U it follows that
∫

Ω

(
|curlU(x)|2 − k2|U(x)|2

)
dx =

∫

Γ

γNU(x) · γDU(x)dsx.

Let U(x) = Ψκ
Sw(x), x ∈ Ω, be a solution of the partial differential equation (1.1), i.e. we

have for x ∈ Γ

γNΨκ
Sw(x) =

1

2
w(x) + Bκw(x),

γDΨκ
Sw(x) = Sκw(x).

To handle the exterior domain Ωc we consider a sphere BR such that Ω ⊂ BR is satisfied.
Moreover, let ΩR = BR \ Ω. As above we then have
∫

ΩR

(
|curlU(x)|2 − k2|U(x)|2

)
dx =

∫

∂ΩR

γNU(x) · γDU(x)dsx

=

∫

∂BR

γNU(x) · γDU(x)dsx −
∫

Γ

γc
NU(x) · γc

DU(x)dsx.

For the exterior traces of U(x) = Ψκ
Sw(x), x ∈ Ωc, we have for x ∈ Γ

γc
NΨκ

Sw(x) = −1

2
w(x) + Bκw(x),

γc
DΨκ

Sw(x) = Sκw(x).

Hence we find by summing up the above expressions and when inserting the jump conditions
∫

BR

(
|curlU(x)|2 − k2|U(x)|2

)
dx = 〈w, Sκw〉 +

∫

∂BR

γNU(x) · γDU(x)dsx

and therefore

Im[〈w, Sκw〉] = −Im




∫

∂BR

γNU(x) · γDU(x)dsx


 .
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From the Silver–Müller radiation condition, i.e.

lim
r=|x|→0

∫

∂BR

|curlU(x) × n− ik(n ×U(x)) × n|2dsx = 0,

we further conclude
∫

∂BR

|γNU − ikγDU|2dsx =

∫

∂BR

(
|γNU|2 + |ikγDU|2 − 2Re[γNU · ikγDU]

)
dsx

=

∫

∂BR

(
|γNU|2 + |kγDU|2 − 2k Im

[
γNU · γDU

])
dsx

=

∫

∂BR

(
‖γNU‖2 + ‖kγDU‖2

)
dsx + 2k Im[〈w, Sκw〉]

and therefore

lim
r=|x|→∞

∫

∂BR

|γNU − ikγDU|2dsx = 0

which implies
2k Im[〈w, Sκw〉] ≤ 0

and thus
2k Im[〈Sκw,w〉] ≥ 0.

Now we are in a position to prove the injectivity of Zκ.

Theorem 3.5 For an imaginary wave number κ = ik the modified boundary integral op-
erator

Zκ = Sκ + iη(
1

2
I − Cκ)S

∗
0
−1(

1

2
I + Bκ) : H

−1/2
‖ (divΓ , Γ) → H

−1/2
⊥ (curlΓ , Γ)

is injective.

Proof: Let w ∈ H
−1/2
‖ (divΓ , Γ) be a solution of the homogeneous equation

Zκw(x) = 0 for x ∈ Γ.

Then it follows that

0 = 〈Zκw,w〉 = 〈Sκw,w〉 + iη〈S∗
0
−1(

1

2
I + Bκ)w, (

1

2
I + Bκ)w〉
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and therefore

Im

[
〈Sκw,w〉 + iη〈S∗

0
−1(

1

2
I + Bκ)w, (

1

2
I + Bκ)w〉

]
= 0.

By using Theorem 3.4 we then get

η〈S∗
0
−1(

1

2
I + Bκ)w, (

1

2
I + Bκ)w〉 = −Im[〈Sκw,w〉] ≤ 0

and hence we conclude

(
1

2
I + Bκ)w = 0.

But then we also have
Sκw(x) = 0 for x ∈ Γ

which only admits a non–trivial solution if k2 = λ is an eigenvalue of the interior Dirichlet
eigenvalue problem (2.8) implying

(
1

2
I − B±

√
λ)γNUλ(x) = 0,

or

(
1

2
I + B±

√
λ)w(x) = 0, (

1

2
I − B±

√
λ)w(x) = 0.

Hence we conclude w = 0 for all frequencies k.

When combining the coercivity (Theorem 3.3) and the injectivity (Theorem 3.4) of the
operator Zκ we therefore conclude the unique solvability of the modified boundary integral
equation (3.1). The related variational formulation is to find w ∈ H

−1/2
‖ (divΓ , Γ) such that

〈Sκw, τ 〉 + iη〈(1
2
I − Cκ)S

∗
0
−1(

1

2
I + Bκ)w, τ 〉 = 〈g, τ 〉. (3.3)

is satisfied for all test functions τ ∈ H
−1/2
‖ (divΓ , Γ). Note that the variational problem (3.3)

has a similar structure as the symmetric boundary integral representation of the Steklov–
Poincaré operator. Due to the composite structure a direct Galerkin discretization of (3.3)
will not be possible. Hence we introduce

z = S
∗
0
−1(

1

2
I + Bκ)w ∈ H

−1/2
⊥ (curlΓ , Γ)

which is the unique solution of the variational problem such that

〈S∗
0z,v〉 = 〈(1

2
I + Bκ)w,v〉

is satisfied for all v ∈ H
−1/2
⊥ (curlΓ , Γ). Finally we obtain a saddle point formulation to

find (w, z) ∈ H
−1/2
‖ (divΓ , Γ) × H

−1/2
⊥ (curlΓ , Γ) such that

〈Sκw, τ 〉 + iη〈(1
2
I − Cκ)z, τ 〉 = 〈g, τ 〉

−〈(1
2
I + Bκ)w,v〉 + 〈S∗

0z,v〉 = 0
(3.4)
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is satisfied for all (τ ,v) ∈ H
−1/2
‖ (divΓ , Γ)×H

−1/2
⊥ (curlΓ , Γ). Since the modified boundary

integral equation (3.1) is the Schur complement system of the mixed formulation (3.4) the
unique solvability of (3.4) follows immediately.

Remark 3.6 In this paper we just presented a modified boundary integral formulation
for the exterior Dirichlet boundary value problem (1.1)–(1.3). For an exterior Neumann
boundary value problem a similar modified formulation can be derived and analyzed as well
[23].

4 Numerical example

As a numerical example to show the applicability of the proposed approach we consider the
exterior Dirichlet boundary value problem (1.1)–(1.3) where Ω = (0, 1)3 is the unit cube
whose boundary Γ = ∂Ω is decomposed into N triangular plane elements. For this domain
we can easily deduce the eigenvalues and eigenfrequencies of the interior Dirichlet eigenvalue
problem. In particular we will consider the smallest eigenvalue which corresponds to the
wave number k =

√
2π ≈ 4.44288. As exact solution of the exterior Dirichlet boundary

value problem (1.1)–(1.3) we consider [2]

U(x) =


κ2r2 + κr + 1

r3




1
0
0


 − κ2r2 + 3κr + 3

r5
(x1 − x̂1)




x1 − x̂1

x2 − x̂2

x3 − x̂3





 eκr

for x ∈ Ωc, where the source point is x̂ = (1
2
, 1

2
, 1

2
)⊤ ∈ Ω, and r = |x− x̂|. For a comparison

of different approaches we consider the indirect single layer potential ansatz leading to the
boundary integral equation (2.4), the proposed modified formulation (η = 1) where we have
to solve (3.1), and a direct approach which results in the boundary integral equation (2.7).
In all cases the Galerkin discretization is done by using linear Raviart–Thomas elements,
see e.g. [2, 21] for details. The resulting linear systems are solved by a GMRES method
with a relative error reduction of ε = 10−8. Then we compute approximate solutions Uh

and the related pointwise error in the evaluation point x̄ = (1.4, 1.8, 2.0)⊤ ∈ Ωc. All results
are documented in Table 1.

indirect, (2.4) modified, (3.1) direct, (2.7)
N Iter |U(x̄) − Uh(x̄)| Iter |U(x̄) − Uh(x̄)| Iter |U(x̄) −Uh(x̄)|
72 53 7.64 110 1.27632 53 0.64908
288 107 10.85 197 0.19541 107 0.19153
1152 238 15.52 280 0.04874 209 0.04677
4608 554 43.20 403 0.01308 469 0.01222
18432 665 0.00730 834 0.00529

Table 1: Number of GMRES iterations and pointwise error.
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It is obvious that the indirect single layer potential approach fails since the wave number
k corresponds to an eigenvalue of the interior Dirichlet eigenvalue problem. The results
of the modified formulation (3.1) and of the direct approach (2.7) are comparable in this
example. However, for the latter one has to ensure a solvability condition also in the
discrete case which requires in general the knowledge of the related eigenfrequency. Here
we only considered a direct Galerkin discretization of (2.7) which may fail in more general
situations.

Related to the numerical results there are several points to be discussed, first of all the
numerical analysis to establish the quadratic order of pointwise convergence. Moreover, we
have to investigate a suitable choice of the scaling parameter η ∈ R+, and the construction
of efficient preconditioned iterative solution methods. It is obvious that these questions
are strongly related to the case of exterior boundary value problems for the Helmholtz
equation [13].

5 Conclusions

In this paper we have described and analyzed a modified boundary integral equation to
solve an exterior Dirichlet boundary value problem for the Maxwell system which is stable
for all wave numbers. Note that a similar formulation can be given in the case of an
exterior Neumann boundary value problem as well. The proposed regularization operator
relies on boundary integral operators which are already available when considering standard
boundary integral equations for the Maxwell system. In particular we avoid to use a Hodge
decomposition in both the analysis and in the implementation. The modified boundary
integral equation is finally reformulated as a saddle point formulation which allows a direct
Galerkin discretization. A first numerical example shows the applicability of the proposed
approach.

In a forthcoming paper we will present the numerical analysis of the related boundary
element method to solve the saddle point formulation (3.4). This may also include the
use of fast boundary element methods, and the design of preconditioned iterative solution
strategies to solve the resulting linear systems of algebraic equations.
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