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Abstract

In this paper we describe and analyze a fast approach for the evaluation of the
Newton potential for inhomogeneous partial differential equations in the particular
case of two–dimensional circular domains. The method is based on a suitable mesh
dicretization of the domain which enables to write the Newton potential in terms of
matrix–vector multiplication. Moreover, this multiplication can be speed up by uti-
lizing the fast Fourier transform (FFT) due to the circulant structure of the matrices.
We present an error analysis for the fully discretized equations and some numerical
results for the scalar Yukawa equation, and for the system of linear elasticity of
Yukawa type.

1 Introduction

In this paper we develop and analyze a boundary element method for the solution of the
scalar Yukawa problem in the particular case of a two–dimensional circular domain. But,
these results can also be applied in various type of problems having a logarithmic kernels
as the principal part [9, 10] such as the time dependent heat equation, time dependent
diffusion equation or time dependent elasticity equations after an implicit time discretiza-
tion. Therefore, reliable and efficient numerical algorithms for the solution of the scalar
Yukawa equation can be of great use in many different areas of solid mechanics.

In particular we include in the second part of this paper a plane linear elasticity model
problem of Yukawa type. The analysis of this problem as well as the error estimate are
similar to the above mentioned problem except the case of the double layer and the hyper-
singular integral operators which present some higher singularities and need to be treated
in a special way [12, 13, 17].
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In the first part we consider the inhomogeneous mixed boundary value problem in
a two–dimensional simply connected domain Ω (in particular a two–dimensional disc).
Applying the boundary integral equation method, the partial differential equations are
reduced equivalently to boundary integral equations on the boundary curve [23]. Due
to the shape of the domain, the boundary (circle) can easily be represented by a one–
periodical parametrization [20, 22]. Making use of this parametrization the eigensystems
of the boundary integral operators can be derived [2, 3, 14], which are crucial results for the
computation of eigenvalues of the discrete operators. The boundary integral equations are
approximated by using a Galerkin method with the help of B–splines as basis functions.
This yields an equivalent algebraic linear system involving dense matrices, but having
circulant structure [4, 5, 6]. The entries of those matrices are computed explicitly and
efficiently. Furthermore, the circulant property enables us to use the discrete Fourier
matrix as preconditioner within an iterative solver or the fast Fourier transform (FFT) as
direct solver [8, 16, 20, 21, 22]. However, the boundary element formulation (BEM) loses
at a first glance its attractiveness due to the fact that the equation is inhomogeneous which
requires an integration over the whole domain.

During the past two decades, much effort has been devoted to dealing with this issue
in the BEM community. One of the most widely used methods in engineering is the dual
reciprocity method (DRM) introduced by Nardini and Brebbia in 1982 [19]. This method
transfers the domain integrals to boundary integrals. The main idea is to approximate the
right hand side, for example by radial basis functions (RBF) [7], which help to determine
a particular solution of the partial differential equation. Furthermore, particular solutions
can be computed by finite difference methods or by finite element methods [11] by embed-
ding the domain into an auxiliary domain and solving the inhomogeneous equation with
homogeneous Dirichlet boundary conditions. The recent development for the evaluation of
the Newton potential is the fast multipole method [15, 18, 23]. The main idea of this tech-
nique is based on the multipole expansion of the fundamental solution in the far field of the
evaluation point. In [18], the computational domain is divided into the far and near field
so that in the near field the evaluation is done by using a standard collocation approach,
while in the far field the multipole expansion is used. Additionally, an error analysis is
given. In this work we present and analyze a new approach for an efficient evaluation of
the Newton potential in the boundary element method of the mixed boundary value prob-
lem by using the Steklov-Poincaré operator. The technique we present here is based on a
special mesh discretization of the circular domain. First, at each level of refinement the
disc is split into M rings in an adaptive way. Second, a uniform mesh is defined on each
ring in such a way that the mesh on the external ring has the same size as the boundary
mesh. Further, on each ring the right hand side is approximated by piecewise constant
functions. This enables us to write the Newton potential vector on each ring in terms of a
matrix-vector multiplication. Moreover, the FFT can be used to speed up this process due
to the circulant structure of the matrices on each ring [8, 16, 20, 21, 22]. Here we provide
a complete error analysis containing not only the theoretical Galerkin error but also the
errors due to the numerical approximation of the Newton potential. In the second part
the above approach is extended for the solution of a Dirichlet problem in linear elasticity
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of Yukawa type.
The paper is organized as follows: In Sect. 2 we describe the considered scalar mixed

boundary value problem of Yukawa type, establish the boundary integral equations and
derive the eigensystems of the operators involved. In Sect. 3 we are interested in the
standard Galerkin procedure for the boundary integral equations formulated in Sect. 2
with the help of one–periodical B–splines. The focus of Sect. 4 is the evaluation of the
Newton potential for the scalar Yukawa problem by using the method we described above
and the presentation of the numerical error analysis. In Sect. 5, we present some numerical
results for the scalar Yukawa problems. The main focus of Sect. 6 is the extension of the
procedure we elaborated in Sect. 4 for the linear elasticity problem of Yukawa type.

2 Scalar Yukawa type boundary value problems

As a model problem we consider the mixed boundary value problem for the Yukawa partial
differential equation

α2u−∆u = f in Ω, u = gD on ΓD, ∂nu :=
∂

∂n
u = gN on ΓN , (2.1)

where α ∈ R+ is the so called generalized wave number and n represents the outer unit
normal to the boundary Γ = ∂Ω which is divided into two mutually disjoint parts ΓD and
ΓN . Here we are interested in the particular case when Ω ⊂ R2 is a circular domain. The
solution u of the partial differential equation in (2.1) is given by the representation formula
for x ∈ Ω, see, e.g., [23],

u(x) =

∫

Γ

U∗(x, y)∂nu(y)dsy −

∫

Γ

∂

∂ny
U∗(x, y)u(y)dsy +

∫

Ω

U∗(x, y)f(y)dy, (2.2)

where U∗(x, y) denotes the fundamental solution of the Yukawa partial differential operator
in two dimensions given by

U∗(x, y) =
1

2π
K0(α|x− y|). (2.3)

Note that

K0(r) = (ln 2− E− ln r)I0(r) +

∞∑

k=1

[(
k∑

j=1

1

j

)
1

(k!)2

(r
2

)2k
]
,

I0(r) = 1 +
∞∑

k=1

1

(k!)2

(r
2

)2k
,

are the second and first kind modified Bessel functions respectively [1], and

E = lim
n→∞

[
n∑

j=1

1

j
− lnn

]
≈ 0.57721566490 . . .

represents the so–called Euler–Mascheroni constant.
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2.1 Boundary integral equations

The representation formula (2.2) states that u is determined uniquely for a point x ∈ Ω if
the complete Cauchy data [u, ∂nu]|Γ and the source f are known. But, it turns out that
[u, ∂nu]|Γ are given only partially on the boundary Γ, that are u||ΓD

= gD and ∂nu||ΓN
= gN .

Therefore, we have to determine u||ΓN
and ∂nu||ΓD

. By proceeding as in [23], we first apply
the Dirichlet trace operator to (2.2) to obtain, on a smooth boundary Γ,

u(x) = (V ∂nu)(x) +
1

2
u(x)− (Ku)(x) + (N0f)(x) for x ∈ Γ. (2.4)

Further, by applying the normal derivative again to (2.2) this gives

∂nu(x) =
1

2
∂nu(x) + (K ′∂nu)(x) + (Du)(x) + (N1f)(x) for x ∈ Γ. (2.5)

In (2.4) and (2.5) we have used the standard notations for boundary integral operators,
i.e., V : H−1/2(Γ) → H1/2(Γ) is the single layer integral operator, K : H1/2(Γ) → H1/2(Γ)
is the double layer integral operator with its adjoint K ′ : H−1/2(Γ) → H−1/2(Γ), and
D : H1/2(Γ) → H−1/2(Γ) is the hypersingular boundary integral operator which are defined
for x ∈ Γ as

(V t)(x) =

∫

Γ

U∗(x, y)t(y)dsy, (Ku)(x) =

∫

Γ

∂

∂ny
U∗(x, y)u(y)dsy,

(K ′t)(x) =

∫

Γ

∂

∂nx
U∗(x, y)t(y)dsy, (Du)(x) = −

∂

∂nx

∫

Γ

∂

∂ny
U∗(x, y)u(y)dsy.

Moreover, N0 : H̃−1(Ω) → H1/2(Γ) and N1 : H̃−1(Ω) → H−1/2(Γ) are the Newton or
volume potentials which are given for x ∈ Γ as

(N0f)(x) =

∫

Ω

U∗(x, y)f(y)dy, (N1f)(x) =
∂

∂nx

∫

Ω

U∗(x, y)f(y)dy.

Recall that the single layer integral operator V and the hypersingular integral operator D
satisfy the following properties.

Lemma 2.1 The single layer integral operator V : H−1/2(Γ) → H1/2(Γ) and the hypersin-

gular boundary integral operator D : H1/2(Γ) → H−1/2(Γ) are self–adjoint and elliptic on

H−1/2(Γ) and H1/2(Γ), respectively, i.e.

〈V τ, τ〉Γ ≥ cV1 ‖τ‖2H−1/2(Γ) for all τ ∈ H−1/2(Γ) with cV1 > 0

and

〈Dv, v〉Γ ≥ cD1 ‖v‖
2
H1/2(Γ) for all v ∈ H1/2(Γ) with cD1 > 0.
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Proof. See, e.g., [23], in the case of the Laplace equation. For the more general case of the
Yukawa equation with α ∈ R+ we need to use in addition the properties of the modified
Bessel functions [1].

Since the single layer integral operator V is H−1/2(Γ)–elliptic, the unique solvability of
the boundary integral equation (2.4) with respect to the normal derivative ∂nu follows
immediately, i.e.

∂nu = V −1
(1
2
I +K

)
u− V −1N0f on Γ. (2.6)

But, by using the representation (2.6) in a Galerkin discretization may lead to a non–
symmetric discrete matrix for the symmetric Dirichlet to Neumann map. To avoid such
an inconvenience, let us use the symmetric representation which is obtained by inserting
the representation (2.6) into the second boundary integral equation (2.5):

∂nu =
(1
2
I +K ′

)
∂nu+Du+N1f

=
[(1

2
I +K ′

)
V −1

(1
2
I +K

)
+D

]
u+N1f −

(1
2
I +K ′

)
V −1N0f. (2.7)

The representations (2.6) and (2.7) involve two different representations of the Steklov–
Poincaré operator

S = V −1
(1
2
I +K

)
=
(1
2
I +K ′

)
V −1

(1
2
I +K

)
+D, (2.8)

which coincide in the continuous case, but which may yield different representations when
considering Galerkin approximations of the underlying boundary integral operators. In
particular, the Steklov–Poincaré operator S : H1/2(Γ) → H−1/2(Γ) is self–adjoint and
H1/2(Γ)–elliptic, i.e. S admits the same ellipticity estimate as the hypersingular boundary
integral operator D,

〈Sv, v〉Γ ≥ cD1 ‖v‖
2
H1/2(Γ) for all v ∈ H1/2(Γ). (2.9)

Furthermore, by equating (2.6) and (2.7) one obtains

−V −1N0f = N1f −
(1
2
I +K ′

)
V −1N0f =: −Nf on Γ (2.10)

and

N1f =

(
−
1

2
I +K ′

)
V −1N0f on Γ.

As a consequence of (2.10), the normal derivative ∂nu can take the following form

∂nu = Su−Nf on Γ. (2.11)

Let us now return to our problem where we have to find the unknown Dirichlet datum
u|ΓN

and the unknown Neumann datum ∂nu|ΓD
. There exists a wide range of different
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boundary integral formulations to solve the mixed boundary value problem (2.1), see, e.g.
[23]. Here we consider the formulation by using the Dirichlet to Neumann map (2.11) to
find u ∈ H1/2(Γ) such that

u = gD on ΓD, ∂nu = Su−Nf = gN on ΓN . (2.12)

Let g̃D ∈ H1/2(Γ) be a suitable extension of the given Dirichlet datum gD ∈ H1/2(ΓD) and

satisfying g̃D|ΓD
= gD. Then we have to find û := u− g̃D ∈ H̃1/2(ΓN) such that

〈Sû, v〉ΓN
= 〈gN +Nf − Sg̃D, v〉ΓN

(2.13)

is satisfied for all v ∈ H̃1/2(ΓN). Since the Steklov–Poincaré operator S : H1/2(Γ) →

H−1/2(Γ) is bounded and H̃1/2(ΓN )–elliptic, see, e.g., [23, p. 149], the unique solvability
of (2.13) is therefore shown. Before moving to the Galerkin discretization of the problem
(2.12), we determine the eigensystems of different operators involved in the equation.

2.2 Eigensystems of integral operators

In general it is not possible to obtain the eigenfunctions of boundary integral operators
for arbitrary boundaries [2]. In the particular case of a two–dimensional circular domain
Ω = BR(O) of radius R and centered at the origin it is possible to give an explicit rep-
resentation of the eigenfunctions of the single and double layer boundary integral opera-
tors, and of the hypersingular boundary integral operator as well. The parametrization of
Γ = ∂BR(O) is given by

Γ :=

{
x ∈ R

2 : x(τ) = R

(
cos 2πτ
sin 2πτ

)
, 0 ≤ τ < 1

}
. (2.14)

By using the parametrization (2.14), the boundary integral operators can be written as
follows:

(V t)(τ) = R

∫ 1

0

K0(2Rα | sinπ(τ − s)|) t(s) ds,

(Ku)(τ) = −αR

∫ 1

0

K1(2Rα| sinπ(τ − s)|) | sinπ(τ − s)| u(s) ds,

(Du)(τ) = −α2

∫ 1

0

[
RK0(2Rα| sinπ(τ − s)|) sin2 π(τ − s) +

K1(2Rα| sinπ(τ − s)|)

2αR sin π(τ − s)

]
u(s)ds.

Lemma 2.2 Let Γ be given as in (2.14). The Fourier functions

vn(s) = e∓i2πns for n = 0, 1, . . .
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are eigenfunctions of the single layer boundary integral operator V , of the double layer

boundary integral operator K, and of the hypersingular boundary integral operator D, as-

sociated to the eigenvalues

λV,n = RKn(αR) In(αR),

λK,n = −
1

2
+ (αR) I ′n(αR)Kn(αR) =

1

2
+ (αR) In(αR)K ′

n(αR),

λD,n = −(αR)2 I ′n(αR)K ′
n(αR)

for n = 0, 1, . . . respectively, where In and Kn denote the first kind and the second kind

modified Bessel functions, respectively, while I ′n and K ′
n represent the first derivatives of

the modified Bessel functions In and Kn, respectively.

Proof. The derivation of the eigenvalues follows as in the case of the Helmholtz equation,
see, e.g., [2, 3, 14], by using the wave number k = iα. In addition, we used the relations
between modified Bessel functions and Bessel functions [1] to obtain the desired result.

Note that the Fourier functions vn are also eigenfunctions to the double layer integral
operator 1

2
I +K and of the Steklov–Poincaré operator S associated to the eigenvalues

λ 1

2
I+K,n = (αR) I ′n(αR)Kn(αR),

λS,n =
λ2

1

2
I+K,n

λV,n

+ λD,n =
α2R (I ′n(αR))2Kn(αR)

In(αR)
− (αR)2 I ′n(αR)K ′

n(αR)

for n = 0, 1, . . ., respectively.

3 Boundary element methods for the mixed boundary

value problem

In this section we describe the standard Galerkin boundary element method to solve the
boundary integral equation (2.13) numerically with the help of one–periodic B–splines of
order ν ≥ 0. First, we consider the one–periodic parametrization of the boundary Γ as
given in (2.14), further we divide the interval [0, 1) into N > ν + 1 subintervals of mesh
size h = 1/N and define as follows

[0, 1) =
N⋃

ℓ=1

[sℓ, sℓ+1) with sℓ = (ℓ− 1)h for ℓ = 1, . . . , N + 1.

Moreover, we introduce the N–dimensional subspace Hν
N of one–periodic functions, see,

e.g., [20, 22], i.e.,

H
ν
N = span

(
φ
(ν)
1 (s), . . . , φ

(ν)
N (s)

)
,
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where φ
(ν)
k (s), k = 1, . . . , N are the B–splines of order ν defined by the following recurrence

formulae

φ
(0)
1 (s) =

{
1 for − h/2 ≤ s < h/2,

0 for − 1/2 ≤ s < −h/2, h/2 ≤ s < 1/2,
(3.1)

φ
(ν)
1 (s) =

1

h

∫ 1/2

−1/2

φ
(ν−1)
1 (τ)φ

(0)
1 (s− τ) dτ for ν = 1, 2, . . . , (3.2)

and

φ
(ν)
k (s) = φ

(ν)
1 (s− (k − 1)h) for k = 1, 2, . . . , N, φ

(ν)
k (s+m) = φ

(ν)
k (s) for m ∈ Z.

In addition, we will use the Fourier series representation of the basis functions φ
(ν)
ℓ , i.e.,

φ
(ν)
ℓ (t) =

∑

k∈Z

cνℓ (k)e
i2πkt, ℓ = 1, . . . , N, ν = 0, 1, . . . ,

where the Fourier coefficients are given by [20]

cν1(k) =





h if k = 0,

sinν+1(πkh)

hν(πk)ν+1
if k 6= 0,

and
cνℓ (k) = cν1(k)e

−i2πk(ℓ−1)h for ℓ = 1, . . . , N.

The Galerkin boundary element formulation of the boundary integral equation (2.13) is to

find ûh ∈ Hν
N ∩ H̃1/2(ΓN) such that

〈Sûh, vh〉ΓN
= 〈gN − Sg̃D, vh〉ΓN

+ 〈Nf, vh〉ΓN
for all vh ∈ H

ν
N ∩ H̃1/2(ΓN). (3.3)

By using (2.9) and the Lax–Milgram lemma we conclude the unique solvability of the
Galerkin formulation (3.3). In addition, Cea’s lemma and the approximation property of
H

ν
N [23, Theorem 10.9] yield the following error estimate

‖û− ûh‖H1/2(Γ) ≤ chν+1/2|û|Hν+1(Γ), (3.4)

when assuming that û ∈ Hν+1(Γ).
The boundary element formulation (3.3) is equivalent to the algebraic system of linear

equations
Shû = f

1
+ f

2
, (3.5)

where the stiffness matrix is defined by

Sh[i, j] = 〈Sφ
(ν)
j , φ

(ν)
i 〉ΓN

for i, j = 1, . . . ,M := dimH
ν
N ∩ H̃1/2(ΓN ),

8



and the right hand side

f1i = 〈gN − Sg̃D, φ
(ν)
i 〉ΓN

, f2i = 〈Nf, φ
(ν)
i 〉ΓN

for i = 1, . . . ,M.

Remember that Nf = V −1N0f .
Note that for this particular case, the Galerkin discretization of the Steklov–Poincaré

operator can be carried out explicitly by means of its eigenfunctions defined above. This
is only possible for the scalar Yukawa case. But, since we are interested in using the
discrete Fourier matrix as a preconditioning matrix, we will define and use in this work a
symmetric approximation of the continuous Steklov–Poincaré operator S. To this end let
us first define the Galerkin discretizations of the boundary integral operators V , K, K ′

and D as follows:

Vh[i, j] = 〈V φ
(ν−1)
j , φ

(ν−1)
i 〉Γ, Dh[i, j] = 〈Dφ

(ν)
j , φ

(ν)
i 〉Γ, K̂h[i, j] = 〈(

1

2
I+K)φ

(ν)
j , φ

(ν−1)
i 〉Γ,

for i, j = 1, . . . , N . These matrices can be computed explicitly and in an efficient way by
using the following results [24]:

Lemma 3.1 Let Γ be given as in (2.14). The discrete single and double layer integral

operators Vh and K̂h, and the discrete hypersingular integral operator Dh are circulant

matrices. Moreover, Vh and Dh are symmetric and positive definite. In addition, their

eigenvalues are given respectively by

λVh,j
=





hR I0(αR)K0(αR) for j = 1,

hR

(
sin πs

π

)2ν
(

∞∑

k=0

I(j−1+kN)(αR)K(j−1+kN)(αR)

(k + s)2ν

+

∞∑

k=1

I(1−j+kN)(αR)K(1−j+kN)(αR)

(k − s)2ν

)
for j = 2, . . . , N,

λK̂h,j
=





h(αR) I1(αR)K0(αR) for j = 1,

h(αR)

(
sin πs

π

)2ν+1
(

∞∑

k=0

I ′(j−1+kN)(αR)K(j−1+kN)(αR)

(k + s)2ν+1
(−1)k(2ν−1)

+

∞∑

k=1

I ′(1−j+kN)(αR)K(1−j+kN)(αR)

(k − s)2ν+1
(−1)(k+1)(2ν−1)

)
for j = 2, . . . , N,

λDh,j
=





h(αR)2 I1(αR)K1(αR) for j = 1,

−h(αR)2
(
sin πs

π

)2ν+2
(

∞∑

k=0

I ′(j−1+kN)(αR)K ′
(j−1+kN)(αR)

(k + s)2ν+2

+
∞∑

k=1

I ′(1−j+kN)(αR)K ′
(1−j+kN)(αR)

(k − s)2ν+2

)
for j = 2, . . . , N

for s = (j − 1)/N . In and Kn represent the first and second kind of modified Bessel

functions, respectively, while I ′n and K ′
n represent their first derivative, respectively.
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The most important property of the circulant matrices [4, 6, 20, 22] is that they are
diagonalizable and easily invertible if the inverse exists,

Vh =
1

N
QDVQ, K̂h =

1

N
FDK̂F

∗, Dh =
1

N
QDDQ,

where F ∈ CN×N and Q ∈ RN×N are the Fourier matrices given by

F [k, ℓ] = ei2π(k−1)(ℓ−1)h, Q[k, l] = cos[2π(k − 1)(ℓ− 1)h] + sin[2π(k − 1)(ℓ− 1)h]

for k, ℓ = 1, . . . , N and DV , DK̂ as well as DD are diagonal matrices which are defined by

the eigenvalues of Vh, K̂h, and Dh respectively.
The Steklov–Poincaré operator S can now be approximated by

S̃h := K̂⊤
h V

−1
h K̂h +Dh. (3.6)

Remark that from Lemma 3.1 the entries of the discrete approximate Steklov–Poincaré
operator S̃h can be computed explicitly and exactly. Moreover, its eigenvalues are given
by

λS̃h,j
:=

λ2
K̂h,j

λVh,j

+ λDh,j
for j = 1, . . . , N.

The discretization of the boundary integral equation (2.13) can be written as follows

S̃hũ = f
1
+ f

2
. (3.7)

Note that S̃h defines a positive definite approximation of the exact Galerkin matrix Sh

which arises from the direct Galerkin approximation of the Steklov–Poincaré operator S.
The additional error can be analyzed by using the Strang lemma, see, e.g., [23]. Moreover,

S̃h is defined with respect to the whole boundary Γ = BR(0), but it has to be applied only

to ũ ∈ RM ↔ ũh ∈ Hν
N ∩ H̃1/2(ΓN ) which can be realized easily within iterative solvers.

It remains to describe the evaluation of the vector f
2
which results from the Newton

potential Nf . This will be done again by using circulant matrices which are efficient for
a matrix–vector multiplication, and for an efficient memory storage. For ℓ = 1, . . . ,M we
have

f2,ℓ = 〈Nf, φ
(ν)
ℓ 〉ΓN

= 〈V −1N0f, φ
(ν)
ℓ 〉ΓN

= 〈w, φ
(ν)
ℓ 〉ΓN

, (3.8)

where w = V −1N0f ∈ H−1/2(Γ) is the unique solution of the variational problem

〈V w, z〉Γ = 〈N0f, z〉Γ for all z ∈ H−1/2(Γ), (3.9)

and with the Galerkin boundary element formulation to find wh ∈ H
ν−1
N such that

〈V wh, zh〉Γ = 〈N0f, zh〉Γ for all zh ∈ H
ν−1
N . (3.10)
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Hence we need to determine the Newton potential N0f as the right hand side of (3.10). In
particular, we have to compute for ℓ = 1, . . . , N

N0f [ℓ] =

∫

Γ

φ
(ν−1)
ℓ (x)

∫

Ω

U∗(x, y)f(y)dydsx. (3.11)

With this we can define an approximate right hand side f̃
2
where the additional error can

be analyzed again by using the Strang lemma, and which does not disturb the optimal
order of convergence, see, e.g., [18, 23].

4 Evaluation of Newton potentials for the scalar

Yukawa equation

In what follows we discuss an efficient evaluation of the Newton potential (3.11) in the
particular case when considering piecewise constant basis functions, i.e. ν = 1. To compute
the discrete Newton potential, the order of integration is interchanged first. In particular,
for a B–spline of order zero φ

(0)
ℓ we have

N0f [ℓ] =

∫

Ω

f(y)

∫

τℓ

U∗(x, y)dsxdy.

Further, a special volume mesh is considered in the domain Ω, see [24] for the detailed
procedure. First, the domain Ω is split into rings, and on each ring suitable meshes are
constructed in an adaptive way. For simplicity, we assume the mesh size of the volume
elements near the boundary to be equal to the mesh size of the boundary elements. Ad-
ditionally, from the ring close to the boundary to the inner rings the mesh size is reduced
with a certain rate, see [24]. We then obtain

N0f [ℓ] =

Mr∑

j=1

N∑

k=1

∫

Tjk

f(y)

∫

τℓ

U∗(x, y)dsxdy, (4.1)

where Mr and N are the number of rings and the number of elements on each ring,
respectively. Note that N is also the number of boundary elements and Ω = ∪Mr

j=1∪
N
k=1Tjk.

Then, an approximation of (4.1) can be given by applying the simple mid point rule

Ñ0f [ℓ] =

Mr∑

j=1

N∑

k=1

|Tjk| f(yjk)

∫

τℓ

U∗(x, yjk)dsx, (4.2)

where |Tjk| and yjk are the volume and the center of mass of the element Tjk, respectively.
Note that the remaining boundary integral corresponds to the discretization of the single
layer potential by using the collocation method which can be computed easily. From (4.2)
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the vector Ñ0f of the approximate Newton potential can be written in matrix form as
follows

Ñ0f :=
Mr∑

j=1

Ajf j
, (4.3)

where for j = 1, . . . ,Mr, f j
and Aj represent the piecewise constant approximation of the

function f and the matrix obtained by computing the remaining boundary integral on the
jth ring, respectively. Moreover, we have for j = 1, . . . ,Mr

f
j
[k] = |Tjk| f(yjk) for k = 1, . . . , N (4.4)

and

Aj [ℓ, k] =

∫

τℓ

U∗(x, yjk)dsx for ℓ, k = 1, . . . , N. (4.5)

Since the meshes on the boundary and on each ring are uniform, i.e. of the same size, and
since the fundamental solution U∗(·, ·) is invariant with respect to rotations, we obtain for
j = 1, . . . ,Mr

Aj[ℓ + 1, k + 1] = Aj [ℓ, k] for ℓ, k = 1, . . . , N, (4.6)

which means that, for j = 1, . . . ,Mr the matrices Aj are circulant. This reduces the effort
to generate the matrices Aj from quadratic to linear, i.e. from O(N2) to O(N) as well as
the matrix–vector multiplication effort from O(N2) to O(N log(N)), see, e.g., [20].

5 Numerical results

For the numerical examples we presented here, we consider the domain Ω to be a disc
centered at c = (1.0, 1.0)⊤ with radius r = 1.0. First we consider the Dirichlet boundary
value problem

u(x)−∆u(x) = −4 + x2
1 + x2

2 for x ∈ Ω, u(x) = x2
1 + x2

2 for x ∈ Γ = ∂Ω, (5.1)

where the exact solution is u(x) = x2
1 + x2

2. The boundary element discretization of the
boundary value problem (5.1) results in the linear system

Vht = (
1

2
Mh +Kh)g − Ñ0f,

which is solved by using the Fast Fourier transform (FFT) since the matrix Vh is circulant.
The numerical results are given in Table 1 below.

The first, the second and the third column contain the level of refinement, the number
N of boundary elements, and the number of volume elements in each ring and the number
Mr of rings, respectively. In addition, the time in seconds is given for the evaluation of
the Newton potential Ñ0f , and the setup and solving the linear system. In columns 5
and 6, the L2 norm of the error t − th and the estimated order of convergence are given
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refinement CPU time (sec) L2 error
Level N Mr setup and solve ‖t− th‖L2(Γ) eoc
3 32 8 0.00 2.84 –1
4 64 16 0.00 1.42 –1 1.00
5 128 32 0.01 7.10 –2 1.00
6 256 64 0.05 3.55 –2 1.00
7 512 128 0.20 1.78 –2 1.00

Theory 1

Table 1: L2 error, order of convergence and CPU time, Dirichlet problem.

respectively. According to the standard error estimate for the Dirichlet problem, see, e.g.
[23] a linear convergence is observed. As N and Mr increase both by a factor of 2, the
times for the evaluation of Ñ0f , setup and solving the linear system increase by a factor
of 4 which corresponds to a quadratic order as expected. Note that a standard evaluation
would be of cubic order.

In the second example, we consider the mixed boundary value problem (2.1) where the
Neumann boundary ΓN is the boundary of the first sector of the disc, that is between 0
and π/2, and the Dirichlet boundary is ΓD = Γ \ ΓN . As in the first example we chose
the given data such that u(x) = x2

1 + x2
2 is the exact solution. The mixed boundary

value problem (2.1) is equivalent to the linear system (3.7) where the stiffness matrix is as

given in (3.6). Since the Galerkin discretization S̃h of the approximate Steklov-Poincaré
operator is symmetric and positive definite we solve the linear system (3.7) by using the
preconditioned conjugate gradient algorithm, with the preconditioning matrix [23]

CD := MhV
−1

h Mh,

where Mh and V h are the mass matrix and the discrete single layer matrix, respectively,
defined by using piecewise linear B–splines. Moreover, V h is circulant, symmetric and
positive definite, and its eigenvalues are given by as in Lemma 3.1 where we have to set
ν = 2. Therefore, V h is diagonalizable. Hence, all matrix–vector multiplications with the
approximate stiffness matrix S̃h as with the preconditioning matrix C−1

D can be performed
by utilizing the Fast Fourier Transform (FFT). In Table 2 we present the numerical results,
where we have used the same number of ring as in the first example. For the same reason
as in the first example the overall setup time for the linear system increases by a factor of
4. The L2 norms of the errors u− uh and t− th are given, and we observe a quadratic and
linear convergence, as expected.

6 Linear elasticity of Yukawa type

In this section, we consider the inhomogeneous Dirichlet problem given by

s2u(x)− µ∆u(x)− (λ+ µ)graddivu(x) = f(x) for x ∈ Ω, u(x) = g(x) for x ∈ Γ, (6.1)
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Iterations L2 error L2 error CPU time (sec)
N PCG ‖u− uh‖L2(Γ) eoc ‖t− th‖L2(Γ) eoc setup and solve
32 4 1.23 –2 2.71 –1 0.00
64 8 3.04 –3 2.01 1.35 –1 1.00 0.02
128 12 7.57 –4 2.01 6.77 –2 1.00 0.08
256 12 1.89 –4 2.00 3.39 –2 1.00 0.34
512 12 4.71 –5 2.00 1.69 –2 1.00 1.36

Theory 2 1

Table 2: L2 error, order of convergence and CPU time, mixed problem.

where µ and λ represent the Lamé constants and s may come from a time discretization
of the elastodynamic wave equation. The fundamental solution of the partial differential
operator in (6.1) is given for r = |x− y| and ri = xi − yi, i = 1, 2 by

U∗
ij(x, y) =

1

2πs2

{(
k2
2 K0(k2r) +

1

r

[
k2K1(k2r)− k1K1(k1r)

])
δij

−
rirj
r2

([
k2
2K0(k2r)− k2

1K0(k1r)
]
+

2

r

[
k2K1(k2r)− k1K1(k1r)

])}

with

k2
1 =

s2

λ+ 2µ
, k2

2 =
s2

µ
.

Related boundary integral equations for the boundary value problem (6.1) can be derived
as in the scalar Yukawa case, or similar to linear elastostatics, e.g., [23], see also [24]:

V t = (
1

2
I +K)u−N0f on Γ.

In particular, the single layer integral operator can be written in the matrix form as follows

V =

(
V 1
11 0
0 V 1

22

)
+

(
V 2
11 V12

V12 −V 2
11

)
,

where

(V 1
11w1)(x) =

1

2πs2

∫

Γ

[
k2
2 K0(k2r) +

[k2K1(k2r)− k1K1(k1r)]

r

]
w1(y) dsy,

(V 1
22w2)(x) =

1

2πs2

∫

Γ

[
k2
1 K0(k1r)−

[k2K1(k2r)− k1K1(k1r)]

r

]
w2(y) dsy,

(V 2
11w1)(x) = −

1

2πs2

∫

Γ

[
[k2

2K0(k2r)− k2
1K0(k1r)] +

2[k2K1(k2r)− k1K1(k1r)]

r

]
r21
r2
w1(y)dsy,

(V12w2)(x) = −
1

2πs2

∫

Γ

[
[k2

2K0(k2r)− k2
1K0(k1r)] +

2[k2K1(k2r)− k1K1(k1r)]

r

]
r1r2
r2

w2(y)dsy.
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Proposition 6.1 [24] Let Γ be given as in (2.14). The Fourier functions vn(τ) = e∓i2πnτ

for n = 0, 1, . . . are the eigenfunctions of the boundary integral operators V 1
11 and V 1

22,

respectively, i.e.

(V 1
11vn)(τ) =

1

2s2

[
Λn(k1, k2) + 2 Γn,n−1,n+1(k1, k2)

]
vn(τ),

(V 1
22vn)(τ) =

1

2s2

[
Λn(k1, k2)− 2 Γn,n−1,n+1(k1, k2)

]
vn(τ),

where

Γm,n,k(k1, k2) = λD
m(k1)− λD

m(k2) +
1

4

[
k2
2λ

V
n (k2)− k2

1λ
V
n (k1) + k2

2λ
V
k (k2)− k2

1λ
V
k (k1))

]
,

and

Λn(k1, k2) = k2
1λ

V
n (k1) + k2

2λ
V
n (k2), k2

1 =
s2

λ+ 2µ
, k2

2 =
s2

µ
.

In addition, the following relations hold

Γm,n,k(k1, k2) = Γ−m,−n,−k(k1, k2) = Γm,k,n(k1, k2), Λn(k1, k2) = Λ−n(k1, k2),

where λV
n and λD

n , n = 0, 1, . . . are the eigenvalues of the single layer integral operator and

of the hypersingular integral operator for the scalar Yukawa problem, respectively, as given

in Lemma 2.2.

In a straightforward manner as in Sect. 4, the evaluation of the Newton potential takes
the form

(N0f)ℓ[i] =

Mr∑

j=1

N∑

k=1

2∑

m=1

∫

Tjk

fm(y)

∫

τi

U∗
ℓm(x, y)dsxdy for i = 1, . . . , N ; ℓ = 1, 2, (6.2)

where Tjk is the kth element on the jth ring, and Ω = ∪Mr
j=1 ∪

N
k=1 Tjk. As before, Tjk is

an isoparametric triangle or an isoparametric quadrangle whether it is on the last inner
ring or others rings. If we approximate the functions f1 and f2 on each ring by piecewise
constant functions, respectively, the approximation of the vector N0f denoted by Ñ 0f can
then be written in the matrix form as follows

Ñ 0f =
Mr∑

j=1

[(
A1j

11 0

0 A1j
22

)
+

(
A2j

11 Aj
12

Aj
12 −A2j

11

)](
f j

1

f j

2

)
,

where for j = 1, . . . ,Mr

A1j
ℓℓ [i, k] =

∫

τi

U∗1
ℓℓ (x, yjk)dsx for i, k = 1, . . . , N, ℓ = 1, 2,

A2j
11[i, k] =

∫

τi

U∗2
11 (x, yjk)dsx for i, k = 1, . . . , N,

Aj
12[i, k] =

∫

τi

U∗
12(x, yjk)dsx for i, k = 1, . . . , N
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and
f j

ℓ
[k] = |Tjk| fℓ(yjk) for k = 1, . . . , N, ℓ = 1, 2,

where |Tjk| and yjk represent the volume and the center of mass of the element Tjk, respec-
tively. Note that for j = 1, . . . ,Mr the matrices A1j

11 and A1j
22 are derived from the boundary

integral operators V 1
11 and V 1

22, respectively. Hence, A
1j
11 and A1j

22 are circulant matrices, see
Proposition 6.1. Finally, by using the Fast Fourier Transform (FFT) we obtain

Ñ0f =
Mr∑

j=1




F−1
(
F (Cj

1)F (f j

1
)
)
+ A2j

11f
j

1
+ Aj

12f
j

2

F−1
(
F (Cj

2)F (f j

2
)
)
+ Aj

12f
j

1
− A2j

11f
j

2


 ,

where for j = 1, . . . ,Mr, C
j
1 and Cj

2 are the first columns of the circulant matrices A1j
11

and A1j
22, respectively. Note that on each ring the approximate Newton potential vector

Ñ 0f is given in terms of a matrix–vector multiplication like for the scalar Yukawa problem
presented in Sect. 4, but the matrix in this case has a block structure, the first block is
made from circulant matrices A1j

11 and A1j
22, therefore the matrix–vector multiplication of

this first part can be speed up by applying the Fast Fourier Transform (FFT), while the
second block has a symmetric structure, this permits us to compute only two matrices A2j

11

and Aj
12.

For the numerical test, we consider the domain Ω = Br(c) to be the same disc as in the
first example. We take λ := 115.3846, µ := 76.9231 and s := 10.0. In addition, we chose
the given data such that u(x) = (x2

1 + x2, x
2
2 − x1)

⊤ is the exact solution. The resulting
linear system is solved by a CG method and the results are given in Table 3.

refinement CPU time (sec) Iter. L2 error
Level N Mr setup solve CG ‖t− th‖L2(Γ) eoc
3 32 8 0.29 0.00 8 137.499
4 64 16 1.54 0.00 8 68.7058 1.00
5 128 32 8.86 0.00 7 34.3466 1.00
6 256 64 56.7 0.00 6 17.1724 1.00
7 512 128 401.1 0.02 6 8.58611 1.00

Theory 1

Table 3: L2 error, order of convergence and CPU time, linear elasticity.

In columns 4 and 5, the times in seconds are given for the evaluation of the Newton
potential Ñ0f , setup and solving the linear system, respectively. In column 6, the number
of iterations for the CG method is given, while in columns 7 and 8, the L2 norm of the
error t − th and the estimated order of convergence are given, respectively. As expected,
a linear convergence is observed. As N and Mr increase both by a factor of 2, the time
for the evaluation of the first part of Ñ0f , increases by a factor of 4 due to the circulant
property of the matrices involved. But, the time for the evaluation of the second part of
Ñ0f , increases by a factor of 8, i.e. cubic.
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7 Conclusions

In this work we have presented an efficient method for the fast evaluation of volume or
Newton potentials in boundary element methods, in the particular case of a circular do-
main. This is of interest, e.g., when considering time–dependent boundary value problems
and explicit or implicit time discretization schemes. Applications in mind involve dynamic
contact problems with friction [24]. Extensions to three–dimensional problems using the
presented approach seem to be possible for rotational–symmetric domains, as considered
in [16, 21].
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