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Abstract

For tracking type distributed optimal control problems subject to second order
elliptic partial differential equations we analyze the regularization error of the state u̺
und the target u with respect to the regularization parameter ̺. The main focus is on
the regularization in the energy spaceH−1(Ω), but we also consider the regularization
in L2(Ω) for comparison. While there is no difference in the regularization error
estimates when considering suitable target functions u ∈ H1

0 (Ω), we obtain a higher
order convergence in the relaxation parameter ̺ when considering the control in the
enrgy space H−1(Ω) which also affects the approximation of the target u by the state
u̺.

1 Introduction

Optimal control [7, 9, 16] and inverse problems [4, 13] subject to partial differential equa-
tions often involve some parameter dependent cost or regularization terms. Our particular
interest is in the behavior of the solution approximating the target function when the regu-
larization parameter tends to zero, see also [2] for a related discussion. For different choices
of the underlying function space and depending on the regularity of the target function we
prove different orders of convergence.

As a model problem we consider a tracking type functional to reach a given target
u ∈ L2(Ω) subject to the Dirichlet boundary value problem for the Poisson equation with
distributed control. While the control is often considered in L2(Ω), we also consider the
control in the energy space H−1(Ω). It turns out that the order of convergence with respect
to the regularization parameter can be quite different when considering the control either
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in L2(Ω) or in H−1(Ω). While there is no difference when the target function is sufficient
regular, e.g., u ∈ C∞(Ω), in the general case of some restricted regularity assumptions on
u, in the case of energy control we can prove a convergence order which is twice compared
to the convergence order for the control in L2(Ω), see Theorem 3.2 and Theorem 4.1,
respectively. This different behavior is also reflected by the approximability of the target
function u by the related states u̺. In particular, considering the control in L2(Ω) always
results in a H1(Ω) regularity which never allows the use of discontinuous controls. In
contrast, the energy control approach to approximate a target function in L2(Ω) gives
L2(Ω) regularity for the control, i.e. discontinuous controls are included.

Although optimal control problems either in L2(Ω) or in H−1(Ω) may include control
constraints, regularization error estimates are less meaningful in this case. Thus we con-
sider, as in inverse problems, neither control nor state constraints. Then, in both cases the
optimality system can be reduced to a boundary value problem for the state, see (2.15)
and (4.6), respectively. In particular, for the energy control problem we obtain a singular
perturbed Dirichlet boundary value problem for the Poisson equation, while for the control
in L2(Ω) this is a singular perturbed problem for the BiLaplace operator.

This paper is structured as follows: In Section 2 we describe the distributed control
problem with energy regularization including box constraints for the control. We derive
the complementarity conditions for the constrained problem, and the optimality system
in the unconstrained case. Regularization error estimates for the energy control are given
in Theorem 3.2 in L2(Ω) and in H−1(Ω). For comparison we consider in Section 4 the
case of the control in L2(Ω) where the related results are given in Theorem 4.1. Since all
regularization error estimates also depend on the regularity of the given target function,
we study and discuss the behavior of the solutions of both approaches for different targets.
These numerical results are given in Section 4.

2 Distributed control problem in the energy space

Let Ω ⊂ R
n, n = 1, 2, 3, be a bounded Lipschitz domain with boundary Γ = ∂Ω. As a

model problem we consider the distributed control problem to minimize the cost functional,
for varying ̺ ∈ R+,

J (u̺, z̺) =
1

2

∫

Ω

[u̺(x)− u(x)]2 dx+
1

2
̺ ‖z̺‖2H−1(Ω) (2.1)

subject to the constraint

−∆u̺(x) = z̺(x) for x ∈ Ω, u̺(x) = 0 for x ∈ Γ, (2.2)

and where the control z̺ satisfies

z̺ ∈ U :=
{
w ∈ H−1(Ω) : w ≤ g in H−1(Ω)

}
. (2.3)
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We assume u ∈ L2(Ω) and g ∈ H−1(Ω). Note that w ≤ g in H−1(Ω) is equivalent to

〈w − g, ϕ〉Ω ≤ 0 for all ϕ ∈ H1
0(Ω), ϕ ≥ 0 in Ω.

The solution of the Dirichlet boundary value problem (2.2), i.e. the solution of the related
variational problem to find u̺ ∈ H1

0 (Ω) such that

∫

Ω

∇u̺(x) · ∇v(x) dx =

∫

Ω

z̺(x) v(x) dx for all v ∈ H1
0 (Ω), (2.4)

induces an operator H : H−1(Ω) → H1
0 (Ω), which implies an equivalent norm in H−1(Ω),

i.e. the energy norm

‖z̺‖2H−1(Ω) := 〈Hz̺, z̺〉Ω =

∫

Ω

u̺(x)z̺(x) dx =

∫

Ω

|∇u̺(x)|2dx = ‖∇u̺‖2L2(Ω) . (2.5)

By using u̺ = Hz̺ we can write the cost functional (2.1) as the reduced cost functional

J̃(z̺) =
1

2
〈H∗Hz̺, z̺〉Ω − 〈H∗u, z̺〉Ω +

1

2
‖u‖2L2(Ω) +

1

2
̺〈Hz̺, z̺〉Ω, (2.6)

where H∗ : L2(Ω) → H1
0 (Ω) is the adjoint operator of H : H−1(Ω) → H1

0 (Ω) ⊂ L2(Ω). For
the application H∗ψ ∈ H1

0 (Ω), ψ ∈ L2(Ω), and for ϕ ∈ H−1(Ω) we have

〈H∗ψ, ϕ〉Ω = 〈ψ,Hϕ〉Ω = 〈∇p,∇Hϕ〉Ω = 〈p, ϕ〉Ω,

where p ∈ H1
0(Ω) is the unique solution of the Dirichlet boundary value problem

−∆p(x) = ψ(x) for x ∈ Ω, p(x) = 0 for x ∈ Γ. (2.7)

To characterize the minimizer of the reduced cost functional (2.6) we introduce the self–
adjoint and bounded operator

T̺ : H∗H + ̺H : H−1(Ω) → H1
0 (Ω)

and we define
f := H∗u ∈ H1

0 (Ω).

Hence we can rewrite the reduced cost functional (2.6) as

J̃(z̺) =
1

2
〈T̺z̺, z̺〉Ω − 〈f, z̺〉Ω +

1

2
‖u‖2L2(Ω). (2.8)

Since U ⊂ H−1(Ω) is convex and closed, and since T̺ is self–adjoint and H−1(Ω)–elliptic,
i.e. for all z ∈ H−1(Ω) implying u = Hz ∈ H1

0 (Ω) we have

〈T̺z, z〉Ω = ̺ 〈Hz, z〉Ω + ‖Hz‖2L2(Ω) = ̺ ‖∇u‖2L2(Ω) + ‖u‖2L2(Ω) =: ‖u‖2H1(Ω),̺, (2.9)
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the minimization of (2.8) is equivalent to solving a variational inequality to find z̺ ∈ U
such that

〈T̺z̺, w − z̺〉Ω ≥ 〈f, w − z̺〉Ω for all w ∈ U . (2.10)

Note that ‖ · ‖2H1(Ω),̺ defines, for ̺ > 0, an equivalent norm in H1(Ω). Since (2.10) is an
elliptic variational inequality of the first kind, we can use standard arguments as given, for
example in [5, 9], to establish unique solvability of the variational inequality (2.10). For
z̺ ∈ H−1(Ω) being the unique solution of the variational inequality (2.10) we rewrite

T̺z̺ − f = H∗(Hz̺ − u) + ̺Hz̺ = p̺ + ̺u̺,

where p̺ ∈ H1
0 (Ω) is the unique solution of the adjoint boundary value problem

−∆p̺(x) = u̺(x)− u(x) for x ∈ Ω, p̺(x) = 0 for x ∈ Γ. (2.11)

By using the energy norm in H−1(Ω) we finally obtain

‖u̺ − u‖2H−1(Ω) = 〈H(u̺ − u), u̺ − u〉Ω = 〈p̺, u̺ − u〉Ω =

∫

Ω

∇p̺ · ∇p̺ dx = ‖∇p̺‖2L2(Ω).

(2.12)
Recall that the complementarity conditions of the variational inequality (2.10) are given
as

p̺ + ̺u̺ ≤ 0 in H1
0 (Ω), z̺ ≤ g in H−1(Ω), [p̺ + ̺u̺][z̺ − g] = 0 in Ω a.e. (2.13)

In the particular case z̺ ∈ H−1(Ω), i.e. no constraints on the control z̺, we conclude the
optimality condition

p̺(x) + ̺u̺(x) = 0 for x ∈ Ω, (2.14)

and for the adjoint boundary value problem (2.11) we obtain

−̺∆u̺(x) + u̺(x) = u(x) for x ∈ Ω, u̺(x) = 0 for x ∈ Γ. (2.15)

The variational formulation of the Dirichlet boundary value problem (2.15) reads to find
u̺ ∈ H1

0 (Ω) such that

̺

∫

Ω

∇u̺(x) · ∇v(x) dx+
∫

Ω

u̺(x) v(x) dx =

∫

Ω

u(x) v(x) dx for all v ∈ H1
0 (Ω). (2.16)

Note that for ̺→ 0 (2.15) is a singular perturbed boundary value problem, see, e.g., [6, 8],
implying boundary layers. Finally, the control is given, by using −∆u̺ = z̺, as

z̺ =
1

̺
(u− u̺) ∈ L2(Ω). (2.17)

Obviously, higher regularity of u will imply higher regularity of z̺ as well, e.g. u ∈ H1(Ω)
implies z̺ ∈ H1(Ω).
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Example 2.1 For n = 1 and Ω = (0, 1) we choose u = 1 and we consider the Dirichlet

boundary value problem (2.15),

−̺u′′̺(x) + u̺(x) = 1 for x ∈ (0, 1), u̺(0) = u̺(1) = 0. (2.18)

For different values of ̺ the state u̺ and the related control z̺ are given in Fig. 1. Already

for ̺ = 10−4 we observe a rather good approximation u̺ of u while the control z̺ is concen-

trated near to the boundary points. Although the control is not identically zero between, the

values inside and near to the boundary differ by magnitudes, and hence may be neglected.

̺ = 1 ̺ = 10−2 ̺ = 10−4

Figure 1: State and control for Ω = (0, 1), u = 1, control in H−1(0, 1).

3 Regularization error estimates for energy control

Although the regularization parameter ̺ > 0 is required to ensure well posedness of the
optimal control problem (2.1)–(2.3), and in particular the H−1(Ω)–ellipticity (2.9) of T̺,
we are interested in the approximability of the target u by the state u̺, in particular in
the error ‖u̺ − u‖L2(Ω). Let us start to consider the optimal control problem without
constraints, where we finally have to solve the variational problem (2.16), i.e. for ̺ ∈ R+

we consider u̺ ∈ H1
0 (Ω) to be the unique solution of the variational formulation

̺

∫

Ω

∇u̺(x) · ∇v(x) dx+
∫

Ω

u̺(x) v(x) dx =

∫

Ω

u(x) v(x) dx for all v ∈ H1
0 (Ω). (3.1)
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Lemma 3.1 For any ̺ > 0, there exists a unique solution u̺ ∈ H1
0 (Ω) of the variational

formulation (3.1) satisfying

‖u̺‖L2(Ω) ≤ ‖u‖L2(Ω),
√
̺ ‖∇u̺‖L2(Ω) ≤ ‖u‖L2(Ω). (3.2)

Proof. Unique solvability of the variational formulation (3.1) follows from the Lax–
Milgram lemma due to the ellipticity of T̺, see (2.9). By chosing v = u̺ and applying the
Cauchy–Schwarz inequality this gives

̺ ‖∇u̺‖2L2(Ω) + ‖u̺‖2L2(Ω) = 〈u, u̺〉L2(Ω) ≤ ‖u‖L2(Ω)‖u̺‖L2(Ω), (3.3)

from which the estimates (3.2) follow.

When assuming some regularity of the target u ∈ L2(Ω) in some higher order interpolation
spaces, see, e.g., [10, 12, 15], we can also derive regularization error estimates for u̺ − u in
L2(Ω), and in H−1(Ω), respectively.

Theorem 3.2 Let u̺ ∈ H1
0 (Ω) be the unique solution of the variational formulation (3.1).

Assume u ∈ Hs
0(Ω) := [L2(Ω), H

1
0 (Ω)]s for some s ∈ [0, 1]. Then there hold the estimates

‖u̺ − u‖H−1(Ω) ≤ c ̺(1+s)/2 ‖u‖Hs(Ω) (3.4)

and

‖u̺ − u‖L2(Ω) ≤ c ̺s/2 ‖u‖Hs(Ω) . (3.5)

The error estimate (3.5) remains true if we have u ∈ H1
0 (Ω) ∩Hs(Ω) for some s ∈ (1, 2].

Proof. By using the energy norm (2.12), the optimality condition (2.14) in H1
0 (Ω), and

the stability estimate (3.2), we have

‖u̺ − u‖2H−1(Ω) = ‖∇p̺‖2L2(Ω) = ̺2 ‖∇u̺‖2L2(Ω) ≤ ̺ ‖u‖2L2(Ω),

i.e.
‖u̺ − u‖H−1(Ω) ≤

√
̺ ‖u‖L2(Ω) . (3.6)

From the variational formulation (3.1) we obtain

̺

∫

Ω

∇u̺(x) · ∇v(x) dx =

∫

Ω

[u(x)− u̺(x)] v(x) dx for all v ∈ H1
0 (Ω), (3.7)

and in particular for v = u̺ ∈ H1
0 (Ω) we then conclude

̺ ‖∇u̺‖2L2(Ω) = ̺

∫

Ω

∇u̺(x) · ∇u̺(x) dx =

∫

Ω

[u(x)− u̺(x)] u̺(x) dx

=

∫

Ω

[u(x)− u̺(x)] u(x) dx−
∫

Ω

[u̺(x)− u(x)][u̺(x)− u(x)] dx,
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and therefore,

̺ ‖∇u̺‖2L2(Ω) + ‖u̺ − u‖2L2(Ω) =

∫

Ω

[u(x)− u̺(x)] u(x) dx ≤ ‖u̺ − u‖L2(Ω)‖u‖L2(Ω)

follows, i.e. we have
‖u̺ − u‖L2(Ω) ≤ ‖u‖L2(Ω). (3.8)

Now we assume u ∈ H1
0 (Ω), then we can choose v = u − u̺ ∈ H1

0 (Ω) as a test function in
(3.7) to obtain

‖u̺ − u‖2L2(Ω) =

∫

Ω

[u(x)− u̺(x)][u(x)− u̺(x)] dx

= ̺

∫

Ω

∇u̺(x) · ∇[u(x)− u̺(x)] dx

= ̺

∫

Ω

∇u(x) · ∇[u(x)− u̺(x)] dx− ̺

∫

Ω

∇[u(x)− u̺(x)] · ∇[u(x)− u̺(x)] dx,

and therefore,

‖u̺ − u‖2L2(Ω) + ̺‖∇(u̺ − u)‖2L2(Ω) = ̺

∫

Ω

∇u(x) · ∇[u(x)− u̺(x)] dx (3.9)

≤ ̺ ‖∇u‖L2(Ω)‖∇(u− u̺)‖L2(Ω)

follows. From this we conclude

‖∇(u̺ − u)‖L2(Ω) ≤ ‖∇u‖L2(Ω),

as well as
‖u̺ − u‖L2(Ω) ≤

√
̺ ‖∇u‖L2(Ω). (3.10)

Moreover, the energy norm (2.12), the optimality condition (2.14), and the equality (3.3)
imply

‖u̺ − u‖2H−1(Ω) = ̺2 ‖∇u̺‖2L2(Ω) = ̺ 〈u− u̺, u̺〉L2(Ω)

= ̺
[
〈u− u̺, u̺ − u〉L2(Ω) + 〈u− u̺, u〉L2(Ω)

]
,

i.e.
‖u̺ − u‖2H−1(Ω) + ̺‖u̺ − u‖2L2(Ω) = ̺ 〈u− u̺, u〉L2(Ω).

In particular for u ∈ H1
0 (Ω) we further obtain from the variational formulation of the

adjoint boundary value problem (2.11)

‖u̺ − u‖2H−1(Ω) + ̺‖u̺ − u‖2L2(Ω) = ̺ 〈u− u̺, u〉Ω = −̺
∫

Ω

∇p̺(x) · ∇u(x) dx

≤ ̺ ‖∇p̺‖L2(Ω)‖∇u‖L2(Ω) = ̺ ‖u̺ − u‖H−1(Ω)‖∇u‖L2(Ω).
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Hence we conclude
‖u̺ − u‖H−1(Ω) ≤ ̺ ‖∇u‖L2(Ω). (3.11)

Now, using an interpolation argument, the estimate (3.4) follows from (3.6) and (3.11),
while (3.5) follows from (3.8) and (3.10).

Finally we consider the case u ∈ H1
0 (Ω) ∩H2(Ω). From (3.9) we then conclude, using

integration by parts,

‖u̺ − u‖2L2(Ω) + ̺‖∇(u̺ − u)‖2L2(Ω) = ̺

∫

Ω

∇u(x) · ∇[u(x)− u̺(x)] dx

= ̺

∫

Ω

[−∆u(x)] [u(x)− u̺(x)] dx

≤ ̺ ‖∆u‖L2(Ω)‖u̺ − u‖L2(Ω),

i.e.
‖u̺ − u‖L2(Ω) ≤ ̺ ‖∆u‖L2(Ω). (3.12)

Using an interpolation argument for u ∈ H1
0 (Ω)∩Hs(Ω), s ∈ (1, 2), concludes the proof.

Remark 3.1 While the error estimate (3.5) remains valid for u ∈ H1
0 (Ω) ∩ Hs(Ω) and

s ∈ (1, 2], this is not the case for the estimate (3.4). This behavior is also observed in our

numerical experiments.

In the case of a convex polygonal (d = 2) or polyhedral (d = 3) bounded domain Ω, or if
Γ = ∂Ω is smooth, we can conclude u̺ ∈ H2(Ω). However, in the related norm estimate
there will be some dependency on the regularization parameter ̺.

Corollary 3.3 Assume that u̺ ∈ H2(Ω) is the unique solution of the variational problem

(2.16). Assume u ∈ Hs(Ω) for some s ∈ [0, 1], or u ∈ H1
0 (Ω) ∩Hs(Ω) for some s ∈ (1, 2].

Then,

‖∆u̺‖L2(Ω) ≤ c ̺(s−2)/2 ‖u‖Hs(Ω) . (3.13)

Proof. By using (2.15) and (3.8) we first have

̺ ‖∆u̺‖L2(Ω) = ‖u̺ − u‖L2(Ω) ≤ ‖u‖L2(Ω),

and with (3.12) we have

̺ ‖∆u̺‖L2(Ω) = ‖u̺ − u‖L2(Ω) ≤ ̺ ‖∆u‖L2(Ω) ≤ ̺ ‖u‖H2(Ω).

Now the assertion follows from an interpolation argument.

Now we are in a position to state some regularity results for the unconstrained control
z̺ ∈ H−1(Ω).

8



Corollary 3.4 Assume u ∈ H1
0 (Ω). Then we have

‖z̺‖H−1(Ω) ≤ c ‖u‖H1(Ω)

with a constant c independent of ̺. If we assume u ∈ H1
0 (Ω) ∩H2(Ω) we further obtain

‖z̺‖L2(Ω) ≤ c ‖u‖H2(Ω)

with a constant c independent of ̺.

Proof. By using the optimality condition (2.17) and the error estimate (3.4) we obtain

‖z̺‖H−1(Ω) = ̺−1‖u̺ − u‖H−1(Ω) ≤ c̺(s−1)/2‖u‖Hs(Ω)

if we assume u ∈ Hs(Ω) for some s ∈ [0, 1]. In particular for s = 1 we conclude the desired
estimate. The second estimate follows by using the optimality condition (2.17) and the
error estimate (3.5).

Remark 3.2 In fact, for u ∈ H1
0 (Ω) and ̺ = 0 we obtain u0 = u and z0 = −∆u ∈ H−1(Ω)

as optimal solution. In particular, u ∈ H1
0 (Ω) ensures that u is in the image of the solution

operator H : H−1(Ω) → H1
0 (Ω).

Finally we turn back to the optimal control problem with constraints. It is obvious that in
general we can not expect such kind of error estimates as given in Theorem 3.2. However,
we can bound the state u̺ as follows.

Lemma 3.5 Let (u̺, p̺, z̺) ∈ H1
0 (Ω) × H1

0 (Ω) × H−1(Ω) be the unique solution of the

optimality system (2.2), (2.11), and (2.13). Then there hold

‖u̺‖L2(Ω) ≤ ‖u‖L2(Ω),
√
̺ ‖∇u̺‖L2(Ω) ≤ ‖u‖L2(Ω).

Proof. From the optimality condition (2.10) we first find

〈p̺ + ̺u̺, w − z̺〉Ω ≥ 0 for all w ∈ U ,
or, by using (2.4) for v = p̺ + ̺u̺ ∈ H1

0 (Ω),

0 ≤ 〈p̺ + ̺u̺, w〉Ω − 〈p̺ + ̺u̺, z̺〉Ω
= 〈p̺ + ̺u̺, w〉Ω − 〈∇u̺,∇p̺ + ̺∇u̺〉Ω
= 〈p̺ + ̺u̺, w〉Ω − ̺‖∇u̺‖2L2(Ω) − 〈∇p̺,∇u̺〉Ω
= 〈p̺ + ̺u̺, w〉Ω − ̺‖∇u̺‖2L2(Ω) − 〈u̺ − u, u̺〉Ω,

i.e.
̺‖∇u̺‖2L2(Ω) + ‖u̺‖2L2(Ω) ≤ 〈p̺ + ̺u̺, w〉Ω + 〈u, u̺〉Ω for all w ∈ U .

In particular for w = g − z̺ ∈ U we conclude, by the complementarity condition,

̺‖∇u̺‖2L2(Ω) + ‖u̺‖2L2(Ω) ≤ 〈u, u̺〉Ω ≤ ‖u‖L2(Ω)‖u̺‖L2(Ω),

from which we further conclude

‖u̺‖L2(Ω) ≤ ‖u‖L2(Ω), ̺‖∇u̺‖2L2(Ω) ≤ ‖u‖2L2(Ω).
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4 Distributed control in L2(Ω)

Instead of the energy space H−1(Ω), the space L2(Ω) is often considered for distributed
control problems, i.e. the cost functional reads

J (u, z) =
1

2

∫

Ω

[u(x)− u(x)]2 dx+
1

2
̺ ‖z‖2L2(Ω) (4.1)

subject to the constraint (2.2),

−∆u(x) = z(x) for x ∈ Ω, u(x) = 0 for x ∈ Γ.

For simplicity in the presentation we do not include box constraints which can be handled
by using a suitable projection operator, see, e.g., [3, 16]. By using u = Hz we can write
the cost functional (4.1) in its reduced form,

J̃(z) =
1

2
〈H∗Hz, z〉Ω − 〈H∗u, z〉Ω +

1

2
‖u‖2L2(Ω) +

1

2
̺〈z, z〉L2(Ω), (4.2)

and where the adjoint state p = H∗(Hz − u) ∈ H1
0 (Ω) still solves the adjoint Dirichlet

boundary value problem (2.11),

−∆p(x) = u(x)− u(x) for x ∈ Ω, p(x) = 0 for x ∈ Γ.

From minimizing the reduced cost functional (4.2) we now obtain the optimality condition

p(x) + ̺ z(x) = 0 for x ∈ Ω. (4.3)

Using the optimality condition (4.3) we obtain the variational formulation of the primal
Dirichlet boundary value problem (2.2): Find u ∈ H1

0 (Ω) such that
∫

Ω

∇u(x) · ∇v(x) dx+ 1

̺

∫

Ω

p(x)v(x) dx = 0 for all v ∈ H1
0 (Ω). (4.4)

On the other hand, the adjoint p ∈ H1
0 (Ω) is the unique solution of

∫

Ω

∇p(x) · ∇q(x) dx =

∫

Ω

[u(x)− u(x)]q(x) dx for all q ∈ H1
0 (Ω). (4.5)

Using standard arguments we can ensure unique solvability of the reduced optimality sys-
tem (4.4) and (4.5). In fact, using the optimality condition (4.3) within the primal Dirichlet
boundary value problem (2.2) this gives

p(x) = ̺∆u(x) for x ∈ Ω.

Inserting this into the adjoint Dirichlet boundary value problem (2.11) this finally gives

̺∆2u(x) + u(x) = u(x) for x ∈ Ω, u(x) = 0, ∆u(x) = 0 for x ∈ Γ. (4.6)

Note that (4.6) is a singularly perturbed problem for the biharmonic operator with Dirichlet
boundary conditions, in contrast to the singularly perturbed problem (2.15) for the Laplace
operator in case of the energy control.

As in Theorem 3.2 we have the following result:
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Theorem 4.1 Assume u ∈ Hs
0(Ω) := [L2(Ω), H

1
0 (Ω)]S for some s ∈ [0, 1]. Then there hold

the estimates

‖u− u‖H−1(Ω) ≤ c ̺(1+s)/4 ‖u‖Hs(Ω), (4.7)

and

‖u− u‖L2(Ω) ≤ c ̺s/4 ‖u‖Hs(Ω). (4.8)

If we assume z ∈ H1
0(Ω) ∩H2(Ω) we further have the error estimate

‖u− u‖L2(Ω) ≤ ̺ ‖∆z‖L2(Ω). (4.9)

Proof. By using (2.12) and the optimality condition (4.3) we first have

‖u− u‖2H−1(Ω) = ‖∇p‖2L2(Ω) = ̺2 ‖∇z‖2L2(Ω) . (4.10)

From the variational formulation (4.5), using the optimality condition (4.3), i.e. p = −̺z,
and choosing q = −z this gives

̺

∫

Ω

∇z(x) · ∇z(x) dx+
∫

Ω

u(x) z(x) dx =

∫

Ω

u(x) z(x) dx. (4.11)

Since u ∈ H1
0 (Ω) is the solution of the primal problem (2.2) this is equivalent to

̺ ‖∇z‖2L2(Ω) + ‖∇u‖2L2(Ω) ≤ ‖u‖L2(Ω)‖z‖L2(Ω).

For z ∈ H1
0 (Ω) we have, by considering the primal problem (2.2),

‖z‖2L2(Ω) =

∫

Ω

z(x) z(x) dx =

∫

Ω

∇u(x) · ∇z(x) dx ≤ ‖∇u‖L2(Ω)‖∇z‖L2(Ω).

Hence,
‖∇u‖2L2(Ω) ≤ ‖u‖L2(Ω)‖z‖L2(Ω) ≤ ‖u‖L2(Ω)‖∇u‖1/2L2(Ω)‖∇z‖

1/2
L2(Ω),

i.e.
‖∇u‖3/2L2(Ω) ≤ ‖u‖L2(Ω)‖∇z‖1/2L2(Ω).

With this we further conclude

̺ ‖∇z‖2L2(Ω) ≤ ‖u‖L2(Ω)‖z‖L2(Ω) ≤ ‖u‖L2(Ω)‖∇u‖1/2L2(Ω)‖∇z‖
1/2
L2(Ω) ≤ ‖u‖4/3L2(Ω)‖∇z‖

2/3
L2(Ω),

i.e.
̺ ‖∇z‖4/3L2(Ω) ≤ ‖u‖4/3L2(Ω), ̺3/2 ‖∇z‖2L2(Ω) ≤ ‖u‖2L2(Ω).

From (4.10) we now conclude

‖u− u‖2H−1(Ω) = ̺2 ‖∇z‖2L2(Ω) ≤ ̺1/2 ‖u‖2L2(Ω),

i.e.
‖u− u‖H−1(Ω) ≤ ̺1/4 ‖u‖L2(Ω). (4.12)
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For u ∈ H1
0 (Ω) we find from (4.11)

̺ ‖∇z‖2L2(Ω) + ‖∇u‖2L2(Ω) =

∫

Ω

z(x) u(x) dx

=

∫

Ω

∇u(x) · ∇u(x) dx ≤ ‖∇u‖L2(Ω)‖∇u‖L2(Ω),

from which we conclude

‖∇u‖L2(Ω) ≤ ‖∇u‖L2(Ω), ̺ ‖∇z‖2L2(Ω) ≤ ‖∇u‖2L2(Ω).

Together with (4.10) this gives

‖u− u‖2H−1(Ω) = ̺2 ‖∇z‖2L2(Ω) ≤ ̺ ‖∇u‖2L2(Ω),

i.e.
‖u− u‖H−1(Ω) ≤ ̺1/2 ‖∇u‖L2(Ω). (4.13)

By using an interpolation argument, the estimate (4.7) follows from (4.12) and (4.13).
Next we derive a bound for the primal solution u in L2(Ω): By chosing q = u in (4.5)

this gives

‖u‖2L2(Ω) =

∫

Ω

∇p(x) · ∇u(x) dx+
∫

Ω

u(x) u(x) dx

≤ ‖∇p‖L2(Ω)‖∇u‖L2(Ω) + ‖u‖L2(Ω)‖u‖L2(Ω),

and by using

‖∇u‖2L2(Ω) =

∫

Ω

∇u(x) · ∇u(x) dx =

∫

Ω

z(x) u(x) dx ≤ ‖z‖L2(Ω)‖u‖L2(Ω)

we further obtain

‖u‖2L2(Ω) ≤ ‖∇p‖L2(Ω)‖z‖1/2L2(Ω)‖u‖
1/2
L2(Ω) + ‖u‖L2(Ω)‖u‖L2(Ω)

= ̺ ‖∇z‖L2(Ω)‖z‖1/2L2(Ω)‖u‖
1/2
L2(Ω) + ‖u‖L2(Ω)‖u‖L2(Ω)

≤ ̺ ‖∇z‖5/4L2(Ω)‖∇u‖
1/4
L2(Ω)‖u‖

1/2
L2(Ω) + ‖u‖L2(Ω)‖u‖L2(Ω)

≤ ‖u‖3/2L2(Ω)‖u‖
1/2
L2(Ω) + ‖u‖L2(Ω)‖u‖L2(Ω),

which is equivalent to (
‖u‖1/2L2(Ω)

‖u‖1/2L2(Ω)

)3

−
‖u‖1/2L2(Ω)

‖u‖1/2L2(Ω)

− 1 ≤ 0,

and from which we obtain

‖u‖1/2L2(Ω)

‖u‖1/2L2(Ω)

≤ c0 =
1

6

12 + (108 + 12
√
69)2/3

(108 + 12
√
69)1/3

≈ 1.324718.
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Hence we conclude the estimate

‖u− u‖L2(Ω) ≤ (1 + c0) ‖u‖L2(Ω). (4.14)

For u ∈ H1
0 (Ω) we finally consider the variational formulation of the adjoint problem to

obtain, for q = u− u, and by using the previous estimates,

‖u− u‖2L2(Ω) =

∫

Ω

[u(x)− u(x)][u(x)− u(x)] dx =

∫

Ω

∇p(x) · ∇[u(x)− u(x)] dx

≤ ‖∇p‖L2(Ω)‖∇(u− u)‖L2(Ω) = ̺ ‖∇z‖L2(Ω)‖∇(u− u)‖L2(Ω)

≤ 2 ̺1/2 ‖∇u‖2L2(Ω),

i.e.
‖u− u‖L2(Ω) ≤

√
2 ̺1/4 ‖∇u‖L2(Ω). (4.15)

Finally, (4.8) follows by an interpolation argument from (4.14) and (4.15).
For z ∈ H1

0 (Ω) ∩ H2(∆) we obtain from the optimality condition p + ̺z = 0 and by
applying integration by parts,

‖u− u‖2L2(Ω) =

∫

Ω

[u(x)− u(x)][u(x)− u(x)] dx =

∫

Ω

∇p(x) · ∇[u(x)− u(x)] dx

= ̺

∫

Ω

∇z(x) · ∇[u(x)− u(x)] dx = ̺

∫

Ω

[−∆z(x)] [u(x)− u(x)] dx

≤ ̺ ‖∆z‖L2(Ω)‖u− u‖L2(Ω),

and therefore, (4.9) follows.

Example 4.1 For n = 1 and Ω = (0, 1) we chose u = 1 and we consider the Dirichlet

boundary value problem (4.6),

̺u′′(x) + u(x) = 1 for x ∈ (0, 1), u(0) = u(1) = 0, u′′(0) = u′′(1) = 0. (4.16)

For different values of ̺ the state u and the related control z are given in Fig. 2.

When comparing these results with those for the energy control, see Example 2.1, one

observes that a comparable solution is obtained for ̺ = 10−8 which corresponds to the

theoretical estimates. However, in the case of the L2 control both the state and the control

show some oscillations near to the boundary points.

5 Numerical results

In this section we provide some numerical experiments in order to confirm the theoretical
results of Theorem 3.2 and Theorem 4.1, and to give a comparison when considering the
control either in the energy space H−1(Ω) or in L2(Ω). Since additional constraints on the

13



̺ = 10−2 ̺ = 10−4 ̺ = 10−6 ̺ = 10−8

Figure 2: State and control for Ω = (0, 1), u = 1, control in L2(0, 1).

control do not affect such a comparison, we consider unconstrained problems only. For
simplicity we consider the two–dimensional domain Ω = (0, 1)2, and for the discretization
we use an adaptive finite element approach to neglect the influence of the discretization
error. In fact, let Vh := S1

h(Ω) ∩ H1
0 (Ω) be a conforming finite element space of piecewise

linear and continuous functions, which is defined with respect to a family of locally quasi–
uniform, admissible and shape regular finite elements of mesh size h.

As a first example we consider the control problem (2.1) subject to the Poisson equation
(2.2) but with inhomogeneous Dirichlet boundary conditions u̺(x) = 1 for x ∈ Γ, and the
target

u(x) =

{
2 for x ∈ (1

4
, 3
4
)2,

1 for x ∈ Ω\(1
4
, 3
4
)2,

u ∈ H1/2−ε(Ω), ε > 0.

Note that we can easily derive homogeneous Dirichlet boundary conditions by subtracting
1 from u̺ and u, respectively. For the difference u − u we can expect, by using Theorem
3.2, an order of convergence of 1.5 when considering the energy norm ‖u − u‖2H−1(Ω), and

of 0.5 when considering ‖u− u‖2L2(Ω), see Table 1 for the numerical results, and Fig. 3 for

the state and the control. If we consider the control z ∈ L2(Ω), by using Theorem 4.1, we
obtain the orders 0.75 and 0.25 only, see Table 2 and Fig. 4.

As a second example we consider a piecewise linear function u ∈ H3/2−ε(Ω), ε > 0,
which is one in the mid point (1

2
, 1
2
), zero in all corner points, and piecewise linear else.

Here we can apply the estimate (3.4) for s = 1 only, but the estimate (3.5) for all s < 3
2
.

Hence we can expect the orders 2.0 and 1.5, respectively, see Table 3. Correspondingly,
when considering the control z ∈ L2(Ω), we expect the orders, by Theorem 4.1, to be 1.25
and 0.75, see Table 4.
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̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 7.99492 –3 2.33624 –1
10−1 4.05982 –3 0.29 1.49893 –1 0.19
10−2 3.72475 –4 1.04 5.00162 –2 0.48
10−3 1.45381 –5 1.41 1.58114 –2 0.50
10−4 4.87268 –7 1.47 5.00000 –3 0.50
10−5 1.56841 –8 1.49 1.58114 –3 0.50
10−6 4.98727 –10 1.50 5.00000 –4 0.50
10−7 1.57987 –11 1.50 1.58114 –4 0.50
10−8 4.99872 –13 1.50 5.00000 –5 0.50

Theory 1.5 0.5

Table 1: Approximation of u ∈ H1/2−ε(Ω) for control z ∈ H−1(Ω).

Figure 3: State u and control z ∈ H−1(Ω), ̺ = 10−6.

̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 8.74344 –3 2.49152 –1
10−1 8.37405 –3 0.02 2.41801 –1 0.01
10−2 5.72646 –3 0.17 1.88957 –1 0.11
10−3 1.05087 –3 0.74 9.15551 –2 0.31
10−4 1.77164 –4 0.77 5.32357 –2 0.24
10−5 3.14348 –5 0.75 2.98236 –2 0.25
10−6 5.59017 –6 0.75 1.67705 –2 0.25
10−7 9.94088 –7 0.75 9.43075 –3 0.25
10−8 1.76777 –7 0.75 5.30330 –3 0.25

Theory 0.75 0.25

Table 2: Approximation of u ∈ H1/2−ε(Ω) for control z ∈ L2(Ω).

For the next example we consider the smooth target function

u(x) = sin πx1 sin πx2, u ∈ H1
0 (Ω) ∩H2(Ω)

15



Figure 4: State u and control z ∈ L2(Ω), ̺ = 10−6.

̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 1.88752 –3 3.77961 –1
10−1 9.19206 –4 0.31 1.86380 –2 0.31
10−2 5.78152 –5 1.20 1.39486 –3 1.13
10−3 8.65836 –7 1.82 4.47214 –5 1.49
10−4 9.57574 –9 1.96 1.41421 –6 1.50
10−5 9.86584 –11 1.99 4.47214 –8 1.50
10−6 9.95757 –13 2.00 1.41421 –9 1.50
10−7 9.98658 –15 2.00 4.47214 –11 1.50
10−8 9.99576 –17 2.00 1.41421 –12 1.50

Theory 2.0 1.5

Table 3: Approximation of u ∈ H3/2−ε(Ω) for control z ∈ H−1(Ω).

̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 2.07270 –3 4.14567 –2
10−1 1.98052 –3 0.02 3.96370 –2 0.02
10−2 1.32035 –3 0.18 2.66030 –2 0.17
10−3 1.66385 –4 0.90 3.79982 –3 0.85
10−4 4.71747 –6 1.55 4.40375 –4 0.94
10−5 2.82461 –7 1.22 8.91439 –5 0.69
10−6 1.58115 –8 1.25 1.58114 –5 0.75
10−7 8.89140 –10 1.25 2.81171 –6 0.75
10−8 5.00000 –11 1.25 5.00000 –7 0.75

Theory 1.25 0.75

Table 4: Approximation of u ∈ H3/2−ε(Ω) for control z ∈ L2(Ω).

where we can expect second order convergence in all cases, see Table 5 and Table 6.
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̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 1.14732 –2 2.26472 –1
10−1 5.57970 –3 0.31 1.10139 –1 0.31
10−2 3.44189 –4 1.21 6.79402 –3 1.21
10−3 4.74560 –6 1.86 9.36745 –5 1.86
10−4 4.91538 –8 1.98 9.70257 –7 1.98
10−5 4.93285 –10 2.00 9.73706 –9 2.00
10−6 4.93461 –12 2.00 9.74052 –11 2.00
10−7 4.93478 –14 2.00 9.74087 –13 2.00
10−8 4.93480 –16 2.00 9.74091 –15 2.00

Theory 2.0 2.0

Table 5: Approximation of u ∈ C∞(Ω) for control z ∈ H−1(Ω).

̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 1.26004 –2 2.48722 –1
10−1 1.20392 –2 0.02 2.37645 –1 0.02
10−2 8.02014 –3 0.18 1.58311 –1 0.18
10−3 9.95696 –4 0.91 1.96543 –2 0.91
10−4 1.78127 –5 1.75 3.51608 –4 1.75
10−5 1.90788 –7 1.97 3.76601 –6 1.97
10−6 1.92128 –9 2.00 3.79246 –8 2.00
10−7 1.92263 –11 2.00 3.79512 –10 2.00
10−8 1.92276 –13 2.00 3.79538 –12 2.00

Theory 2.0 2.0

Table 6: Approximation of u ∈ C∞(Ω) for control z ∈ L2(Ω).

As a last example we consider the smooth target function

u(x) = 1 + sin πx1 sin πx2

wich does not satisfy the zero boundary condition. Hence we can apply all error estimates
for s < 1

2
only, and we expect the same orders of convergence as in the first example, see

Table 7 and Table 8.

6 Conclusions

In this paper we have considered regularization error estimates ‖u̺ − u‖ of the optimal
state u̺ and the target u of distributed control problems subject to the Poisson equation
with the control either in L2(Ω), or in the energy space H−1(Ω). While in the case of a
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̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 8.06523 –2 1.89526 –0
10−1 3.99099 –2 0.31 1.06681 –0 0.25
10−2 2.95004 –3 1.13 2.28887 –1 0.67
10−3 7.82848 –5 1.58 6.36429 –2 0.56
10−4 2.15759 –6 1.56 2.00041 –2 0.50
10−5 6.48289 –8 1.52 6.32460 –3 0.50
10−6 2.01584 –9 1.51 2.00000 –3 0.50
10−7 6.34040 –11 1.50 6.32456 –4 0.50
10−8 2.00158 –12 1.50 2.00000 –4 0.50

Theory 1.5 0.5

Table 7: Approximation of u ∈ C∞(Ω), u 6∈ H1
0 (Ω), for control z ∈ H−1(Ω).

̺ ‖uh − u‖2H−1(Ω) eoc ‖uh − u‖2L2(Ω) eoc

1 8.84281 –2 2.05175 –0
10−1 8.45700 –2 0.02 1.97536 –0 0.02
10−2 5.69295 –2 0.17 1.42743 –0 0.14
10−3 8.42752 –3 0.83 4.49599 –1 0.50
10−4 7.84224 –4 1.03 2.14435 –1 0.32
10−5 1.26548 –4 0.79 1.19310 –1 0.25
10−6 2.23688 –5 0.75 6.70822 –2 0.25
10−7 3.97643 –6 0.75 3.77230 –2 0.25
10−8 7.07108 –7 0.75 2.12132 –2 0.25

Theory 0.75 0.25

Table 8: Approximation of u ∈ C∞(Ω), u 6∈ H1
0 (Ω), for control z ∈ L2(Ω).

suitable target function u ∈ H1
0 (Ω) there is no difference in the estimates when considering

the control in L2(Ω) or in H−1(Ω), in all other cases we obtain higher order convergence
in the relaxation parameter ̺ when considering the control in the energy space H−1(Ω),
which also affects the approximability of the target u by the state u̺.
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