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7. Workshop on

Fast Boundary Element Methods in
Industrial Applications
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Program

Thursday, 15.10.2009
15.00–16.20 Coffee
16.20–16.30 Opening
16.30–17.00 M. Bebendorf (Bonn)

Adaptive Cross Approximation of Trivariate Functions
17.00–17.30 G. Riekh (Wien)

The use of frames in BEM
17.30–18.00 L. Banjai (Leipzig)

Multistep and multistage convolution quadratures of the
wave equation

18.30 Dinner
Friday, 16.10.2009

9.00–9.30 A. Salvadori (Brescia)
A variational integral formulation for fracture mechanics

9.30–10.00 W. Weber (Erlangen)
Non–linear stress analyzes of cracked structures by the
boundary element method

10.00–10.30 W. Kreuzer (Wien)
A BEM model of a tunnel in a layered orthotropic medium

10.30–11.00 Coffee
11.00–11.30 W. Lemster (Göttingen)

A MHD problem on unbounded domains: Coupling of FEM and BEM
11.30–12.00 S. Engleder (Graz)

Boundary element methods for the eddy current model
12.00–12.30 A. von Graefe (Hamburg)

The Rankine boundary element method for the calculation
of the potential flow around ships

12.30 Lunch
15.00–15.30 Coffee
15.30–16.00 S. Ferraz–Leite (Wien)

Convergence of adaptive BEM
16.00–16.30 P. Goldenits (Wien)

Adaptive BEM for mixed boundary value problems
16.30–17.00 D. Praetorius (Wien)

ASBEST – Adaptive Symmetric Boundary Element Simulation Tool
17.00–17.30 Break
17.30–18.00 G. Of (Graz)

BEM/FEM coupling for transient Maxwell problems
18.00–18.30 Ma. Messner (Graz)

A general purpose Fast BEM library for the solution of
time domain elastodynamic problems

18.30 Dinner
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Saturday, 17.10.2009
9.00–9.30 C. Hofreither (Linz)

Boundary element based Trefftz methods for potential problems
9.30–10.00 S. Weißer (Saarbrücken)

Adaptive FEM with local Trefftz trial functions for elliptic
equations

10.00–10.30 M. Fleck (Saarbrücken)
BEM–based FEM for eddy current problems

10.30–11.00 Coffee
11.00–11.30 T. Klug (Baden)

Parallelization strategies in CASOPT
11.30–12.00 M. Windisch (Graz)

Preconditioned BETI for Helmholtz
12.00–12.30 O. Steinbach, P. Urthaler (Graz)

Boundary element methods in dielectric media
12.30 Lunch
13.30–17.00 Hiking tour
17.30–18.00 C. Pechstein (Linz)

Explicit constants for some boundary integral operators
18.00–18.30 O. Steinbach (Graz)

Stable coupling of finite and boundary elements
18.30 Dinner

Sunday, 18.10.2009
9.00–9.30 Z. Andjelic (Baden)

Reactor simulation using BEM
9.30–10.00 W. L. Wendland (Stuttgart)

Boundary integral equations for two–dimensional low Reynolds
number flow past a porous body

10.00–10.30 L. Raguin (Zürich)
Spectral BIE methods for Engineering Moonlit Night at Nanoscale

10.30–11.00 Coffee
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Reactor simulation using BEM

Z. Andjelic

ABB Schweiz, Baden

Typical reactor components of the HV power systems are either fix shunt reactors
or controllable shunt reactors. In this paper we shall illustrate the computational
approach used for the simulation of the controllable shunt reactors used for compen-
sation of the reactive power in energetic systems. There are several approaches how
to achieve the controlling effects in the reactor. Here we analyze the orthogonal flux
type controllable reactor using integral equation approach where by the controlling
effect is achieved by the control of the saturation level of magnetic core. From the
simulation point of view this type of problems has several peculiarities: complex
structure of the controlling discs / windings, online changes of the saturation levels,
online calculation of the inductances i.e. induced voltages etc.
In the paper we present the methodic for computation of the required field quantities
using advanced integral approach. Although the treatment of the nonlinearities
requires the volumetric meshing, the nice feature of this approach is that the matrix
size is determined by the size of the surface discretization. The paper demonstrates
usage of IEM for the computation of the inductances as a function of the DC
current changes depending on the saturation levels of the magnetic material. The
results are compared with the calculation results based on equivalent magnetic
circuit calculation model.
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Multistep and multistage convolution quadratures of the wave equation

L. Banjai

Max-Planck Institute for Mathematics in the Sciences, Leipzig

We describe how a time-discretized wave equation in a homogeneous medium can be
solved by boundary integral methods. The time discretization can be a multistep,
Runge-Kutta, or a more general multistep-multistage method.
We describe an efficient, robust, and easily parallelizable method for solving the
resulting discretized system that has the main advantages of time-stepping methods
and of Fourier synthesis: at each time-step a system of linear equations with the
same system matrix needs to be solved, yet computations can easily be done in
parallel, the computational cost is almost linear in the number of time-steps, and
only the Laplace transform of the time-domain fundamental solution is needed.
We will give results of a series of 3D experiments with a range of multistep and mul-
tistage time discretization methods: backward difference formula of order 2 (BDF2),
Trapezoid rule, and the 3-stage Radau IIA methods are investigated in detail. The
3-stage Radau IIA method often performs overwhelmingly better than the multi-
step methods, especially for problems with many reflections, yet, in connection with
hyperbolic problems backward difference formulas have so far been predominant in
the literature on convolution quadrature.
We end with some comments and an outlook.
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Adaptive Cross Approximation of Trivariate Functions

M. Bebendorf

Universität Bonn

We present a new scheme for the approximation of trivariate functions by sums of
products of univariate functions. The method is based on the Adaptive Cross Ap-
proximation (ACA) initially designed for the approximation of bivariate functions.
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Boundary Element Methods for the Eddy Current Model

S. Engleder, O. Steinbach

TU Graz

Magnetic Induction Tomography is a contactless imaging modality, which aims to
obtain the conductivity distribution of the human body. The method is based on
exciting the body by magnetic induction using an array of transmitting coils to
induce eddy currents. A change of the conductivity distribution in the body results
in a perturbed magnetic field, which can be measured as a voltage change in the
receiving coils. Based on these measurements, the conductivity distribution can be
reconstructed by solving an inverse problem.
The forward problem of this method can be described by the eddy current model.
In this talk a boundary element method for this eddy current problem will be
presented. The use of suitable preconditioners and fast boundary element methods
will be discussed.
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Convergence of adaptive BEM

M. Aurada, S. Ferraz–Leite, D. Praetorius

TU Wien

A posteriori error estimators and adaptive mesh-refinement have themselves proven
to be an important tool for scientific computing. For error control in finite element
methods (FEM), there is a broad variety of a posteriori error estimators available,
and convergence as well as optimality of adaptive FEM is well-studied in the litera-
ture. This is in sharp contrast to the boundary element method (BEM). Although
a posteriori error estimators and adaptive algorithms are also successfully applied to
boundary element schemes, even convergence of adaptive BEM is hardly understood
mathematically. In our contribution, we present and discuss recent mathematical
results [1, 3] which give first positive answers for adaptive BEM.
As BEM model problem for our talk serves the weakly-singular integral equation

V u = f

associated with the Laplace operator in 2D and 3D and stated in the energy space

H̃−1/2(Γ). We use the lowest-order Galerkin method with piecewise constant ansatz
and test functions and consider standard adaptive algorithms of the type

Solve −→ Estimate −→ Mark −→ Refine

It is a simple consequence of functional analysis that the sequence uℓ of Galerkin

solutions generated by this algorithm, tends to some limit u
∞

∈ H̃−1/2(Γ). It is,
however, a priori unknown whether u

∞
coincides with the unique exact solution

u ∈ H̃−1/2(Γ) of the integral equation.
For a posteriori error estimation, we use certain (h − h/2)-type error estimators µℓ

from [4], and element marking is done by the ℓ2-criterion introduced by Dörfler [2].
We then treat the convergence

lim
ℓ→∞

uℓ = u as well as lim
ℓ→∞

µℓ = 0

for both, isotropic and anisotropic mesh-refinement.

References

1. M. Aurada, S. Ferraz–Leite, D. Praetorius: Estimator reduction and conver-
gence of adaptive FEM and BEM. ASC Report 27/2009, Institute for Analysis
and Scientific Computing, Vienna University of Technology, 2009.

2. W. Dörfler: A convergent adaptive algorithm for Poisson’s equation. SIAM J.
Numer. Anal. 33 (1996) 1106–1124.

3. S. Ferraz–Leite, C. Ortner, D. Praetorius: Convergence of simple adaptive Ga-
lerkin schemes based on h–h/2 error estimators. Submitted for publication,
2009.

4. S. Ferraz–Leite, D. Praetorius: Simple a posteriori error estimators for the
h-version of the boundary element method. Computing 83 (2008) 135–162.
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BEM-based FEM for eddy current problems

M. Fleck

Universität des Saarlandes, Saarbrücken

We analyse a method related to Domain Decomposition Methods and Trefftz-FEM.
A Boundary Element Method is used to construct trial functions for Finite Element
Methods on arbitrary polyhedral meshes. The functions are determined by their
Dirichlet values on the boundaries of mesh elements.
While the choice of Dirichlet data for trial functions of polynomial degree is natural
in the case of 2-dimensional scalar-valued problems, treatment of 3D vector-valued
equations is more complicated. We go into the special case of eddy current problems
and discuss strategies for constructing suited trial functions.

References

1. D. Copeland, U. Langer, D. Pusch: From the Boundary Element Domain De-
composition Methods to local Trefftz Finite Element Methods on Polyhedral
Meshes. In: Domain Decomposition Methods in Science and Engineering XVIII
(M. Bercovier, M. J. Gander, R. Kornhuber, O. Widlund eds.), Springer Lec-
ture Notes in Computational Science and Engineering, vol. 70, pp. 315–322,
2009.

2. D. Copeland: Boundary–element–based finite element methods for Helmholtz
and Maxwell equations on general polyhedral meshes. Technical Report 11,
RICAM, 2008.

3. R. Hiptmair: Boundary Element Methods for Eddy Current Computation. In
Computational electromagnetics (Kiel, 2001), volume 28 of Lect. Notes Com-
put. Sci. Eng., pp. 103–126, Springer, Berlin, 2003.
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Adaptive BEM for Mixed Boundary Value Problems

M. Aurada, P. Goldenits, M. Karkulik, D. Praetorius

TU Wien

In our talk, we consider an adaptive BE scheme for the equivalent integral for-
mulation of the Laplace equation in 2D with mixed boundary conditions. In the
proposed scheme, the given boundary data and the non-homogeneous volume force
are appropriately approximated by piecewise polynomials. Besides the possible sin-
gularities of the (in general unknown) solution, the adaptive mesh-refinement aims
at a sufficient resolution of the data. We prove that the adaptive algorithm drives an
extended estimator quantity, given as sum of an (h−h/2)-type error estimator and
data oscillations, to zero. Under certain assumptions, this implies that the sequence
of (computed) discrete solutions, in fact, tends to the (unknown) exact solution.

References

1. M. Aurada, S. Ferraz–Leite, D. Praetorius: Estimator reduction and conver-
gence of adaptive FEM and BEM, submitted for publication (2009).

2. M. Aurada, P. Goldenits, M. Karkulik, D. Praetorius: Adaptive BEM for some
mixed boundary value problem, work in progress (2009).

3. G. Of, O. Steinbach, P. Urthaler: Fast evaluation of Newton potentials in the
boundary element method, Institute for Numerical Mathematics, Graz Univer-
sity of Technology, 2008.
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The Rankine boundary element method for the calculation of the
potential flow around ships

A. von Graefe

Germanischer Lloyd, Hamburg

GL Rankine is a seakeeping code for the calculation of ship motions and loads. It is
a potential method using the Rankine boundary element method. Mainly, it consists
of two parts: The calculation of the stationary and periodical flow around the ship.
In both cases, water is assumed to be inviscid, incompressible and non rotational.
Therefore, the Laplace equation with the corresponding boundary conditions has
to be solved. The free water surface as well as the wet ship hull is discretized by a
panel mesh.
In the stationary part, the ship moves forward steadily in plain water. The free
surface is treated ’fully nonlinearly’. Hence, an iterative method is necessary. The
waterline of the ship changes in every iteration step. Correspondingly, the panel
mesh has to be adapted during the iteration.
Based on the stationary solution, a perturbation formulation is used in the periodical
part. Here, the ships motions are caused by a harmonic wave with a given direction
and encountering frequency. The ship is treated as a rigid body with six degrees of
freedom. The boundary conditions are linearized in the periodical part. Therefore,
the problem can be described and efficiently solved in the frequency domain.
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Boundary Element based Trefftz Methods for Potential Problems

C. Hofreither

Johannes Kepler Universität Linz

We present a Trefftz method employing locally harmonic ansatz functions for the
solution of potential equations in two- or three-dimensional domains.
The method supports heterogeneous meshes consisting of various non-standard po-
lygonal/polyhedral element shapes, as well as grids with hanging nodes. In the
special case of a conforming triangular (in 2-D) or tetrahedral (in 3-D) mesh, the
method is equivalent to the corresponding nodal finite element method with piece-
wise linear and continuous ansatz functions.
Using element-local Steklov-Poincaré operators, the formulation is reduced Boun-
dary element discretization is then employed in order to obtain a numerical scheme.
We give error estimates and present first numerical results.
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Parallelization strategies in CASOPT

T. Klug

ABB Schweiz, Baden

One of the main objectives in the EU project CASOPT (Controlled Component-
and Assembly Level Optimization of Industrial Devices) is to establish an auto-
mated optimization-based design process for electromagnetically-driven industrial
products. Up to now, the POLOPT simulation software is used within ABB as a
BEM solver which utilizes different fast methods like Fast Multipole or Adaptive
Cross Approximation. In order to achieve an acceptable performance for multiple
optimization runs, these methods have to be parallelized. This talk gives an intro-
duction to parallel computer architectures and parallel programming paradigms.
The basic design of distributed and shared memory machines is explained and ap-
propriate programming models are covered. Latest developments with respect to
Multi- and Many-core architectures are presented.
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A BEM model of a tunnel in a layered orthotropic medium

W. Kreuzer, G. Rieckh, H. Waubke

Austrian Academy of Sciences, Acoustics Research Institute, Wien

When using the boundary element method in combination with a layered anisotro-
pic medium, one of the main problems is the lack of a usable closed form of the
Green’s function for such a medium. In this talk, we present a method to numeri-
cally calculate the fundamental solution on a given grid. This method is based on
Fourier transforming the whole system with respect to time as well as space. To
avoid numerical problems the BIE is solved in the Fourier domain. As an example
we present a 3D-model of a tunnel in a layered orthotropic medium.
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A MHD problem on unbounded domains: Coupling of FEM and BEM

W. Lemster, G. Lube

Universität Göttingen

We consider the magnetohydrodynamic (MHD) problem:

∂tB = −∇× E in Ωc,

∇×
1

µ
B =

{
σ(E + u ×B + jc) in Ωc,

0 in Ωv,

∇ · B = 0 in Ω.

In the so-called direct problem, the magnetic induction B and the electric field E
are unknown and u is a given incompressible flow field. The domain Ω consists of
conducting regions Ω and insulating regions ΩE . We apply a finite element approach
(FEM) in Ω. A boundary element approach (BEM) is used in ΩE . We use a sym-
metric coupling of both methods. We present results on the well–posedness of the
continuous problem.
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A general purpose Fast BEM library for the solution
of time domain elastodynamic problems

Ma. Messner, Mi. Messner, F. Rammerstorfer, P. Urthaler

TU Graz

Wave propagation phenomena in reality occur often in semi–infinite regions. It is
well known that such problems can be handled well with the Boundary Element
Method (BEM). However, it is also known that the BEM, with its dense matrices,
becomes prohibitive with respect to storage and computing time. The present work
focuses on time dependent elastic problems. Their solution is speed up by using
a BEM approach that is based on the ACA. This is enabled by introducing the
Convolution Quadrature Method (CQM) as time stepping scheme. Thus the solution
of time dependent problems ends up in the solution of a system of decoupled Laplace
domain problems. This detour is worth since the resulting problems are elliptic and
the ACA can be used in its standard fashion. The main advantage of this approach
in accelerating a time dependent BEM is that it can be easily applied to other
fundamental solution as, e.g., visco– or poroelasticity.
When dealing with wave propagation phenomena the computational effort does not
only increase with the size of the boundary (for the present approach O(n log n)),
but also linearly in time. This motivates the development of efficient solvers and
equally important their efficient implementation. Instead of writing one single pro-
gram that can handle anything, our aim is to implement low level, general purpose,
and completely ”orthogonal” modules. This approach results in a library structure
and allows the design of specific high level solvers. In this sense, different programs,
which lack unnecessary control instructions, can be build in order to solve specific
problems. This library is written in C++ and is heavily templatized. Hierarchi-
cal Matrices and their algebra are included since they can be used in a black box
manner.
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BEM/FEM coupling for transient Maxwell problems

G. Of, O. Steinbach, S. Zaglmayr

TU Graz

For the discretization of the transient Maxwell equations we consider the coupling
of finite and boundary element methods. In particular, we will focus on hp finite
element methods and a fast multipole approach. We will discuss several formulations
to handle general smooth interfaces.
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Explicit constants for some boundary integral operators

C. Pechstein

Johannes Kepler Universität Linz

Among the well-known constants in the theory of boundary integral equations are
the ellipticity constants of the single layer potential and the hypersingular boun-
dary integral operator, and the contraction constant of the double layer potential.
Whereas there have been rigorous studies how these constants depend on the size
and aspect ratio of the domain, only little is known on their dependency on the
shape of the boundary.
In this talk, we consider the homogeneous Laplace equation and derive explicit
estimates for the above mentioned constants. It turns out that using an alternative
trace norm, the dependency can be made explicit in two geometric paramters, the
so-called Jones parameter and the constant in an isoperimetric inequality. There
are many domains with quite irregular, ragged boundaries, where these parameters
stay bounded.
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ASBEST — Adaptive Symmetric Boundary Element Simulation Tool

M. Aurada, M. Ebner, S. Ferraz–Leite, P. Goldenits, M. Karkulik,
M. Mayr, D. Praetorius

TU Wien

Currently, we develop a MATLAB library ASBEST for the lowest-order adaptive
boundary element method for use in academic teaching and research. The library in-
cludes functions for the assembly of the Galerkin matrices for the integral operators
associated with the 2D Laplacian as well as certain error estimators and certain ad-
aptive mesh-refining strategies. ASBEST realizes the outcome of our recent research
and makes it available to other researchers working in the field.
In our talk, we give a short overview on the current stage of ASBEST, which includes
the integral formulations of the Laplace equation with Dirichlet and/or Neumann
boundary conditions and with/without volume forces.

References

1. Library and documentation are available online at
http://www.asc.tuwien.ac.at/abem/

18



Spectral BIE methods for Engineering Moonlit Night at Nanoscale1

L. Raguin, D. Bowler, C. Hafner, R. Vahldieck, R. Hiptmair

ETH Zürich

Light is a powerful force affecting many aspects of natural and material life on the
planet earth. Light can even bring nano-sized noble-metal particles to life, causing
strong resonant oscillations of their conduction band electrons known as plasmon
resonance [1]. The effect is so promising that plasmonic nanostructures have become
the basis for novel applications in surface-enhanced Raman spectroscopy, chemical
and biological sensing, and imaging. When looking for innovative nano-engineering
ideas why not follow the tradition of being inspired by nature [2] and try to reconnect
with the sky by taking a wide range of shapes and complex structural motifs from
the starry, moonlit heavens as templates? Noble-metal moonlit nights at nanoscale
have already been engineered by use of an isolated silver crescent nano-moon struc-
ture [3], resembling the real one but shining in seemingly infinite darkness as if the
sky has been emptied of stars, planets and galaxies. Various shape modifications
were considered, the real shape was forgotten in favour of creating man-made nano-
moons featuring the desired properties but at any time of the day or night. Stars
taken from sky, leaving behind a vacant haze that mirrors human fear of the dar-
kness and the unknown, give rise to uniquely-shaped gold nanoparticles to be used
in a range of applications from disease diagnostics through to the identification of
contraband [4]. Planets, taken as templates for tiny spheres of silica, coated with a
thin layer of noble-metal, known also as nanoshells, offer an efficient approach not
only to detect cancer cells but also to destroy them. Coupling multiple nanoparticles
in chain-like structures, resembling the Milky Way may be an approach to nanosca-
le optical waveguiding [5]. Galaxies of nanostars and nanoshells gathered together
may form hot spots with a field enhancement dramatically larger than that for a
single noble-metal nanoparticle. Such hot spots may be used to attract molecules
just like insects clustering around streetlights. The investigation of noble-metal na-
noparticles, their dimmers and clusters, using the ideas taken a velvet night are the
subject of this work. Therefore, for all configurations considered in this work exact
electro-dynamical calculations of plasmonic properties are based on the Boundary
Integral Equation (BIE) method in combination with spectral Fourier discretization
and regularization by means of Mie solution to reveal all of nature’s secrets.

References

1. V. M. Shalaev, S. Kawata: Nanophotonics with surface plasmons. Elsevier,
Amsterdam, 2007.

2. L. Raguin: Imitation is the sincerest form of flattery. SEREC Newsletters 7
(2008) 6–8.

3. H. Rochholz, N. Bocchio, M. Kreiter: Tuning resonances on crescent-shaped
noble–metal nanoparticles. New Journal of Physics 9 (2007).

4. E. N. Esenturk, A. R. H. Walker: Surface–enhanced Raman scattering spec-
troscopy via gold nanostars. J. Raman Spectrosc. 40 (2009) 86–91.

5. X. Cui, D. Erni: Ultracompact surface plasmon polariton beam focusing with
metal–coated nanoshell structures. J. Comput. Theor. Nanosci. 6 (2009) 744–
748.

1This work is supported financially by Swiss National Science Foundation project no. 200021-119976 ”Spectral

Galerkin Boundary Integral Equaiton methods for plasmonic nanostructures”.
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The Use of Frames in BEM

G. Rieckh

Austrian Academy of Sciences, Acoustics Research Institute, Wien

Although one might associate redundancy and low compression rate with the con-
cept of frames, it has several advantages over using basis. Frames are generally easier
to construct and, if chosen in a way that fits the problem, can add to the stability
of the method, and promote sparcity.
In our talk we present how the use of frames, rather than basis, can be advantageous
when combined with the boundary element method, especially for the numerical
solution of the Helmholtz equation. By using an overlapping decompostion of the
respective domain, we obtain a frame for the solution space.
The solutions techniques for this kind of problems will also be looked into.

References

1. S. Dahlke, M. Fornasier, T. Raasch: Adaptive frame methods for elliptic ope-
rator equations. Adv. Comput. Math. 27 (2007) 27–63.

2. R. Stevenson: Adaptive solution of operator equations using wavelet frames,
SIAM J. Numer. Anal. 41 (2003) 1074–1100.
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A variational integral formulation for fracture mechanics

A. Salvadori

Universita di Brescia

The fracturing process rveals three distinct phases [1]: loading without crack growth,
stable crack growth, and unstable crack growth. During crack advancing, energy
dissipation takes place in the process region, in the plastic region outside the process
region, and eventually in the wake of the plastic region. When the fracture process
is idealized to infinitesimally small scale yielding, energy dissipation during crack
growth is concentrated at the crack tip.
For linear elastic fracture mechanics, the crack propagation has been studied in [2]
exploiting its analogy with plasticity theory. A maximum principle was stated, that
expressed the maximum dissipation at the crack tip during propagation; from it,
associated flow rule and a propagation criteria for angle determination descend. Con-
sistency conditions led to the formulation of an algorithm for crack advancing, which
was driven by the increment of external actions (under the simplifying assumption
of proportional loading) and allowed the evaluation of crack length increment and
curvature at the crack tips of several cracks contemporarily advancing. This idea
is here further pursued, by noting that Amestoy–Leblond [3] asymptotic expansion
has an effect superposition interpretation thus allowing a Colonnetti’s approach. As
a consequence, a minimum variational formulation is obtained in terms of crack tip
velocity. It reminds to Ceradini’s theorem for plasticity.
Stability of crack path [4] is discussed as well. By the analogy with plasticity theory,
general conditions for stability are stated for a general mixed mode crack growth,
showing the role of the T stress in crack advancing.
Accurate evaluation of SIFs and T stress is achieved by means of boundary integral
equations. Actual features and future developments are presented.

References

1. K. B. Broberg: Cracks and fracture. Academic Press, 1999.

2. A. Salvadori: A plasticity framework for (linear elastic) fracture mechanics.
J. Mech. Phys. Solids 56 (2008) 2092–2116.

3. M. Amestoy, J. B. Leblond: Crack paths in plane situations – ii. detailed form
of the expansion of the stress intensity factor. Internat. J. Solids Structures 29
(1992) 465–501.

4. B. Cotterell, J. R. Rice: Slightly curved or kinked cracks. Int. J. Fract. 16
(1980) 155–169.
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Boundary element methods in dielectric media

G. Of, O. Steinbach, P. Urthaler

TU Graz

The modelling of electric fields in dielectric media results in a transmission boundary
value problem for the potential equation with piecewise constant coefficients. A
well established approach is based on an indirect single layer potential ansatz which
results in a global system of second kind boundary integral equations. In addition we
also describe a boundary element domain decomposition approach. We will discuss
pros and cons of both approaches, and we will present first numerical reults for a
comparison of both methods.
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Stable coupling of finite and boundary elements

O. Steinbach

TU Graz

We prove in the case of a Lipschitz interface the stability of the coupling of finite
and boundary element methods when the direct boundary integral equation with
single and double layer potentials is used only. In particular we prove an ellipticity
estimate of the coupled bilinear form. Hence we can use standard arguments to
derive stability and error estimates for the Galerkin discretization for all pairs of
finite and boundary element trial spaces.

References

1. O. Steinbach: A note on the stable coupling of finite and boundary elements.
Berichte aus dem Institut für Numerische Mathematik, Bericht 2009/4, TU
Graz, 2009.
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Non–linear stress analyzes of cracked structures by the boundary
element method

W. Weber, K. Willner, P. Steinmann, G. Kuhn

Universität Erlangen–Nürnberg

For the assessment of the structural integrity of cracked structures numerical stress
analyzes have to be carried out. On the one hand, the state of stress and strain
assuming linear-elastic material behavior is determined for the simulation of fatigue
crack propagation. On the other hand, elastic-plastic stress analyzes of the cracked
structures are used for an assessment of the grown crack configurations according
to established procedures, e.g. the failure assessment diagram.
The boundary element method (BEM) has been proven as a powerful tool for stress
concentration problems like the present crack problem. In this talk the coincident
crack surfaces are separated by the dual discontinuity method (DDM). The boun-
dary integral equations are evaluated in the framework of a collocation procedure.
Since the discontinuities of the displacements and tractions are utilized as primary
variables at the crack the interaction of the crack surfaces are taken into account.
The hard contact is softened by the penalty-method. A radial-return mapping sche-
me is applied for the solution of the frictional contact problem.
Although a domain discretization is needed in case of plasticity, the BEM is not
losing its advantage of a reduced complexity concerning the mesh generation. As
local plasticity has mainly to be considered in the crack near field, only this area
has to be meshed with volume cells. Here, the talk is focused on the regularization
process and the numerical evaluation of the domain integrals.
Several numerical examples are presented to demonstrate the influence of friction
and plasticity on the stability of structures containing cracks.
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Adaptive FEM with local Trefftz trial functions for elliptic equations

S. Weißer

Universität des Saarlandes, Saarbrücken

We discuss a special finite element method that solves the stationary isotropic heat
equation with Dirichlet boundary conditions on arbitrary polygonal and polyhedral
meshes. The method uses a space of locally harmonic trial functions to approximate
the solution of the boundary value problem. According to this choice, we obtain a
variational formulation on the skeleton of the domain. This formulation contains
one Steklov-Poincaré-Operator for each element. These operators are constructed
by means of boundary integral formulation. Therefore, the proposed finite element
method can be used on general polygonal non-conform meshes. Hanging nodes are
treated quite naturally. The material properties are assumed to be constant on
each element. We also discuss adaptive mesh refinement to handle cases, when the
material properties are given as a continuous function.
In a second step we have a look at a posteriori error estimates which can be used for
further mesh refinement. Standard methods are based on triangular or quadrilateral
meshes. The challenging part is to handle the arbitrary polygonal and polyhedral
meshes. Therefore, we make use of functional analytic estimates to overcome these
problems.
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Preconditioned BETI for Helmholtz

O. Steinbach, M. Windisch

TU Graz

In this talk we will present a boundary element tearing and interconnecting approach
for the Helmholtz equation. In contrary to the Laplace equation it is in general not
known if local Dirichlet or Neumann problems admit a unique solution. So one has
to stabilize the standard approach to get rid of artificial eigenfrequencies of the local
problems.
So we will present a stabilized approach which leads to a uniquely solvable discrete
system. This will be done in two steps: First Robin boundary conditions are in-
troduced to ensure the solvability of the local problem. But the Steklov-Poincare
operator, which is used in the formulation may not well defined if the local Dirichlet
problem is not uniquely solvable. So we introduce an alternative formulation for the
local problem which leads to an always well defined and uniquely solvable formula-
tion. Additionally, one can prove that also the discrete local and the discrete global
problem have a unique solution. Then we present a preconditioning technique which
was introduced by Farhat for Helmholtz-FETI, and finally we give some numerical
examples.
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