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Program

Thursday, October 3, 2019
15.00 Coffee
16.25–16.30 Opening
16.30–17.00 J. Stocek (Edinburgh)

Optimal operator preconditioning for pseudodifferential boundary
problems on adaptive meshes

17.00–17.30 M. Ruggeri (Wien)
The saturation assumption yields optimal convergence of two–level
adaptive BEM

17.30–18.00 M. Bauer (Bayreuth)
The proof of the cross approximation using interpolation by radial
basis functions

18.00–18.30 D. Seibel (Saarbrücken)
Fast boundary element methods for the wave equation

18.30 Dinner
Friday, October 4, 2019

8.00–9.00 Breakfast
9.00–9.30 R. Hiptmair (Zürich)

First–kind Galerkin boundary element methods for the
Hodge–Laplacian in three dimensions

9.30–10.00 E. Schulz (Zürich)
Coupled domain–boundary variational formulations for
Hodge–Helmholtz operators

10.00–10.30 M. Kirchhart (Aachen)
Vector potentials in bounded domains

10.30–11.00 Coffee
11.00–11.30 S. Kurz (Darmstadt/Stuttgart)

Bembel, the boundary element method based engineering library
11.30–12.00 I. Chollet (Paris)

Exploiting symmetries in multipole methods: cubature rules in
HF–FMM

12.00–12.30 R. Watschinger (Graz)
A parabolic FMM for the heat equation with non–uniform time
steps

12.30 Lunch
14.30–15.00 U. Langer (Linz)

Space–time finite element methods for parabolic initial–boundary
value problems with low–regularity solutions

15.00–15.30 J. Hauser (Graz)
Space–time finite element methods for Maxwell’s equations

15.30–16.00 Coffee
16.00–16.30 G. Unger (Graz)

Boundary integral formulations of eigenvalue problems for elliptic
differential operators with singular interactions and their
numerical approximation by boundary element methods

16.30–17.00 H. Yang (Linz)
A space–time finite element method for optimal control of
parabolic equations

17.00–17.15 Break
17.15–17.45 M. Feist (Bayreuth)

Fractional Laplacian – Approximation of the dense FEM stiffness
matrix by uniform H–matrices

17.45–18.15 C. Erath (Darmstadt)
Parabolic–elliptic interface problem on an unbounded domain:
full discretization with the method of lines

18.30 Dinner



Saturday, October 5, 2019
8.00–9.00 Breakfast
9.00–9.30 X. Claeys (Paris)

A convergent optimised Schwarz method in arbitrary non–overlapping
sub–domain partitions

9.30–10.00 H. Gimperlein (Edinburgh)
Pseudodifferential equations in polygonal domains: Regularity and
numerical approximation

10.00–10.30 D. Sebastian (Wien)
Functional a posteriori error estimates for boundary element methods

10.30–11.00 Coffee
11.00–11.30 M. Aversang (Palaiseau)

New preconditioners for the Helmholtz integral equation on screens
11.30–12.00 M. Elasmi (Darmstadt)

Computation of forces in electro–mechanical energy converters using
Isogeometric FEM–BEM coupling

12.00–12.30 P. Panchal (Zürich)
Force computation using shape calculus

12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, October 6, 2019
8.00–9.00 Breakfast
9.00–9.30 C. Urzua–Torres (Oxford)

A new approach to space–time boundary integral equations for
the wave equation

9.30–10.00 O. Steinbach (Graz)
Finite and boundary element methods in thermoelasticity

10.00–10.30 Coffee

18. Söllerhaus Workshop

Fast boundary element methods in industrial applications

October 8–11, 2020

IABEM 2020 Symposium, HongKong
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New preconditioners for the Helmholtz integral equation on screens

Martin Averseng, Franois Alouges

CMAP, Ecole Polytechnique, Palaiseau, France

The standard Galerkin method for wave scattering problems by screens has a slow
convergence rate in terms of the mesh–size, and the usual preconditioning techni-
ques prove inefficient, due to the singularity of the domain itself. For the Laplace
problem (k = 0), exact inverses of the classical single– and hypersingular layer po-
tentials are well–known in 2D and 3D, [1, 2]. For small k, they can be exploited for
preconditioning the integral equations. For large k, it becomes desirable to include
a dependence in k in the preconditioner to preserve the performance of the method.
An example of such an approach is that of Bruno and Lintner, who use weighted
versions of the layer potentials as mutual preconditioners, with very good numerical
results [3].
Here, we introduce alternative k–dependent preconditioners that do not rely on
Calderon relations but rather on pseudo-differential analysis. Essentially, it consists
in a generalization of the approximations of the Dirichlet–to–Neumann map pro-
posed by Antoine and Darbas [4]. In our context, those approximations include a
weight function that accounts for the singularity of the domain. One advantage over
the method of Bruno and Antoine is the fact that preconditioners in the form of
square–roots can be discretized efficiently.
In 2D, the introduction of the preconditioners is supported by a theoretical analysis
relying on pseudo-differential operators on open curves. We show that the frequency
correction they include with respect to the Laplace preconditioners is the one that
exactly cancels the leading term in the Taylor approximation of the symbols of the
layer potentials. Our pseudo–differential analysis on open curves is connected to a
work of Saranen and Vainikko [5]. Numerical results, demonstrating the efficiency
of the method, will be presented.

References

[1] C. Jerez–Hanckes, J.–C. Nédélec: Explicit variational forms for the inverses of
integral logarithmic operators over an interval. SIAM J. Math. Anal. 44 (2012)
2666–2694.

[2] R. Hiptmair, C. Jerez–Hanckes, C. A. Urzúa Torres: Closed–form exact inverses
of the weakly singular and hypersingular operators on disks. arXiv:1703.08556,
2017.

[3] O. P. Bruno, S. K. Lintner: Second–kind integral solvers for TE and TM pro-
blems of diffraction by open arcs. Radio Science, 47 (2012).

[4] X. Antoine, M. Darbas: Generalized combined field integral equations for the
iterative solution of the three–dimensional Helmholtz equation. ESAIM: Math.
Model. Numer. Anal. 41 (2007) 147–167.

[5] J. Saranen, G. Vainikko: Periodic integral and pseudodifferential equations
with numerical approximation. Springer Science and Business Media, 2013.
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The proof of the cross approximation using interpolation by radial basis

functions

Max Bauer and Mario Bebendorf

Mathematisches Institut, Universität Bayreuth, Germany

The adaptive cross approximation (ACA) is a well known method for approximating
functions and discrete non-local operators. The error of the approximation can be
estimated by the best approximation error in any system of functions. The existing
proof relies on the approximation with polynomials, which has some disadvantages,
such as the additional requirement of the unique solvability of the interpolation
problem or rather the correct choice of interpolation points.
The new approach is based on positive definite functions inducing a natural function
space. Such spaces are typically known in the context of interpolating with radial
basis functions (RBF). Here, the error of the approximation is estimated in terms
of the fill distance. Accordingly, the correct choice of interpolation points is redu-
ced to the minimization of the fill distance in the considered domain. Since RBFs
are positive definite, the underlying interpolation problem can be solved uniquely
without additional conditions.
Using the example of the singularity function of the Laplace operator in three
dimensions, a positive definite kernel function is constructed which creates a natural
function space.
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Exploiting symmetries in multipole methods: cubature rules in

HF–FMM

I. Chollet1,2, X. Claeys1, L. Grigori1, F. Collino
1Sorbonne Université, Université Paris–Diderot SPC, CNRS, Inria,

Laboratoire Jacques-Louis Lions, équipe Alpines
2Institut des Sciences du Calcul et des Données, ISCD

Certain variants of the Fast Multipole Methods (FMM) naturally feature multiple
symmetries, even when the geometry of the considered problem does not admit
itself any particular symmetry. This leads to practical numerical optimizations. Such
symmetries can be studied from the group theoretic viewpoint, which allows to take
full computational advantage of them. We consider the case of interpolation between
cubature grids in High Frequency FMM (HF–FMM), where certain matrix/vector
products with particular cubature rules are accelerated using block-diagonalizations
entirely given by group theory. This choice of particular non–tensorized cubature
rule is justified by the size of the involved grids, and leads to a quasi–optimal
complexity in one of the main steps of HF–FMM.

References

[1] C. Ahrens, G. Beylkin: Rotationally invariant quadratures for the sphere, Proc.
R. Soc. Lond. Ser. A Math. Phys. Eng. Sci 465 (2009), 3103–3125.

[2] A. Aimi, M. Diligenti: Restriction matrices for numerically exploiting symme-
try, Adv. Comput. Math. 28 (2008), 201–235.

[3] R. Coifman, V. Rokhlin, S. Wandzura: The fast multipole method for the
wave equation: a pedestrian prescription, IEEE Antennas and Propag. Mag.

35 (1993), 7–12.

[4] V. I. Lebedev: Quadratures on the sphere. Z. Vycisl. Mat. i Mat. Fiz 16 (1976),
293–306.

[5] J.–P. Serre: Linear representations of finite groups, Graduate texts in Mathe-

matics 42 (1977).
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A convergent optimised Schwarz method in arbitrary non–overlapping

sub–domain partitions

X. Claeys

Sorbonne Université, Université Paris-Diderot SPC, CNRS, Inria,
Laboratoire Jacques-Louis Lions, équipe Alpines

The Optimized Schwarz Method (OSM) is a well established domain decomposition
(DDM) strategy for solving frequency domain wave propagation problems such as
Helmholtz equation [2, 4]. In this method, the wave equation is solved independent-
ly in each subdomain imposing impedance conditions at the boundary. Coupling
between subdomains is obtained via an exchange operator that swaps traces on
each side of each interface. Whenever the subdomain partition does not involve any
junction i.e. point where at least three subdomains abut, this strategy can be very
efficient provided that the impedance of local subproblems is chosen wisely [3].
The situation is different when there are junctions and the presence of such points
can spoil the consistency of the method, even for common geometric configurations
[1]. The treatment of junctions in OSM has been the subject of many contributions
and, although convincing numerical remedies are now available in the case of right–
angled junctions, no generic satisfactory approach has been proposed so far.
In this talk we will present a new variant of OSM where the exchange operator is
defined through layer potentials and appears as a good candidate for dealing with
junctions. We shall discuss in detail the properties of the operator associated to this
new method.

References

[1] A. Modave, C. Geuzaine, X. Antoine: Corner treatment for high–order local
absorbing boundary conditions in high–frequency acoustic scattering. Working
paper or preprint, November 2018.

[2] B. Després: Methodes de decomposition de domaine pour les problemes de pro-

pagation d’ondes en regime harmonique, Le theoreme de Borg pour l’equation

de Hill vectorielle. PhD thesis, Paris IX (Dauphine), 1991.

[3] Y. Boubendir, X. Antoine, C. Geuzaine: A quasi–optimal non–overlapping do-
main decomposition algorithm for the Helmholtz equation. J. Comput. Phys.,
231(2):262–280, 2012.

[4] F. Collino, S. Ghanemi, P. Joly: Domain decomposition method for harmonic
wave propagation: A general presentation. Comput. Methods Appl. Mech. Eng.,
184(2-4):171–211, 2000.

6



Computation of forces in electro–mechanical energy converters using

Isogeometric FEM–BEM coupling

Mehdi Elasmi1,2, Stefan Kurz1,2, Christoph Erath2,3

1Institute for Accelerator Science and Electromagnetic Fields, TU Darmstadt
2Centre for Computational Engineering, TU Darmstadt

3Departement of Mathematics, TU Darmstadt

Electro-mechanical energy converters are typically characterized by a moving and a
stationary part, separated by a thin air gap. The movement is driven by electroma-
gnetic forces caused by the interaction of the fields in the air gap. The computation
of forces is therefore a central task in the simulation of these devices. Neverthe-
less, it is also challenging, since it is very sensitive to numerical errors. In order to
reduce them, we use Non-Uniform Rational B-Splines (NURBS) for an exact re-
presentation of the domains. In addition, we consider a non-symmetric FEM-BEM
coupling. Hence, we profit from the advantages of FEM for possibly non-linear
and non-homogeneous domains, and of BEM for the unbounded and/or thin linear
ones (e.g. air gap). In particular, NURBS parametrizations, in the FEM-BEM fra-
mework, facilitate the incorporation of movements and deformations. The discrete
setting is then obtained by considering conforming B-Spline spaces, which offer
higher order Ansatz functions, and thus, a higher regularity of the solution. Some
numerical examples illustrate the theoretical analysis. Thereby, forces and torques
are computed by means of the Maxwell stress tensor method.

Acknowledgment: The work of Mehdi Elasmi is supported by the ’Excellence
Initiative’ of the German Federal and State Governments and the Graduate School
of Computational Engineering at TU Darmstadt.
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Parabolic-elliptic interface problem on an unbounded domain: full

discretization with the method of lines

H. Egger, C. Erath, R. Schorr

Department of Mathematics, TU Darmstadt, Germany

In electromagnetism, the quasistatic approximation of a two dimensional eddy cur-
rent problem ends up in a parabolic-elliptic interface problem [1]. Another applica-
tion of such a interface problem arises in fluid mechanics. Hence, we have a special
focus of different physical properties of the solution in different parts of the do-
main and on unbounded domains. Therefore it makes sense to consider couplings
of different methods to get the best possible numerical approximation. The general
strategy to get a fully discrete numerical method in our presentation is the method
of lines approach.
First, we apply a non-symmetric FEM-BEM coupling [2] to discretize the spatial
direction - semi discretization. For the subsequent time discretization we choose a
standard ODE discretization scheme. We aim to provide the first complete numerical
analysis of such a coupling for the fully discrete system which also holds on Lipschitz
domains [3]. Even more, if we apply a variant of the backward Euler scheme for time
discretization we can prove quasi-optimality under minimal regularity assumptions
also for the fully discrete system. Note that the bottleneck in the analysis is the
lack of adjoint consistency. Our estimates are done in appropriate energy norms and
do not rely on duality arguments. Moreover, we discuss the extension of our model
problem to a problem arising in fluid mechanics. However, since the conservation
of fluxes is mandatory for such applications, we replace the Finite Element Method
by the Finite Volume Method in our coupling approach [4]. Numerical examples
illustrate the predicted (optimal) convergence rates and underline the potential for
practical applications.

References

[1] R. C. MacCamy, M. Suri: A time-dependent interface problem for two-dimensional
eddy currents. Quart. Appl. Math. 44 (1987) 675–690.

[2] C. Johnson, J. C. Nédélec: On the coupling of boundary integral and finite
element methods. Math. Comput. 35 (1980) 1063–1079.

[3] H. Egger, C. Erath, R. Schorr: On the nonsymmetric coupling method for
parabolic-elliptic interface problems. SIAM J. Numer. Anal. 56 (2018) 3510–
3533.

[4] C. Erath, R. Schorr: Stable non-symmetric coupling of the finite volume me-
thod and the boundary element method for convection-dominated parabolic-
elliptic interface problems. Comput. Methods Appl. Math., published online
(2019).

8



Fractional Laplacian – Approximation of the dense FEM stiffness

matrix by uniform H–matrices

B. Feist, M. Bebendorf

Mathematisches Institut, Universität Bayreuth, Germany

H-matrices are a well suited method to approximate discrete elliptic operators. He-
re, we want to show that the fractional Laplacian Ls = (−∆)s, 0 < s < 1, can also
be approximated by uniform H-matrices. Although, the fractional Laplacian is an
elliptic operator, there are some special features, which we have to consider, before
we can start the approximation. The operator is non-local and its integral form is
used to discretize it. Therefore, we have to handle a dense stiffness matrix. Addi-
tionally, each entry consists of combinations of volume and surface integrals, which
make the computation quite costly. Thus, an efficient treatment of these entries is
needed. We will use the similarity between the integral form of the fractional Lapla-
cian and boundary integral equations to develop an efficient computation method.
The far field blocks of the matrix will be approximated by uniform H-matrices. For
each cluster we compute one approximation being valid for all far field blocks which
contain this cluster. In order to get a low rank approximation of a far field block
only the approximation of the kernel is needed for each cluster. Therefore, most of
the computations can be done before the matrix approximation, which reduces the
computational costs.
Additionally, we want to adapt the ideas used for the far field to the near field,
especially for the singular integrals and for the nearly singular integrals. We ge-
nerate an uniform approximation of the kernel for each tetrahedron. Thereby, the
2d dimensional integrals are decomposed to d dimensional integrals which can be
computed separately.
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Pseudodifferential equations in polygonal domains: Regularity and

numerical approximation

Heiko Gimperlein

Department of Mathematics, Heriot Watt University Edinburgh, UK

Boundary integral formulations of screen problems or problems with mixed boun-
dary conditions are classical examples of pseudodifferential boundary or interface
problems. Fractional Laplacians lead to further examples of recent interest. The
solutions of such problems exhibit singular behavior at the boundary or interface,
resulting in slow convergence of Galerkin approximations by an h-method on quasi-
uniform meshes. We discuss a unified approach to the regularity of pseudodifferen-
tial problems at boundaries, corners and interfaces. For the Dirichlet problem in a
domain with smooth boundary, our approach recovers recent results of G. Grubb,
using independent techniques. As an application, we obtain quasi-optimal conver-
gence rates for Galerkin approximations on graded meshes.
(joint work with N. Louca, R. Mazzeo, E.P. Stephan, J. Stocek)
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Space–time finite element methods for Maxwell’s equations

Julia Hauser, Olaf Steinbach

Institut für Angewandte Mathematik, TU Graz, Austria

We consider Maxwell’s equations in a space-time setting and the corresponding
variational formulations. In particular we examine the vectorial wave equation for
the electric field E including the spatial curl operator. In order to derive a suitable
variational formulation we apply integration by parts both in time and space. The
appropriate functional spaces for unique solvability of the resulting Galerkin-Petrov
formulations we discussed in [1].
If we consider full space-time numerical examples, a tensor product ansatz might
first come to mind. By inserting the ansatz the integrals split into their time and
spacial parts and we end up computing only the spatial and time system matrices,
using the Kronecker product and adding them in a suitable way. However we pay
for this simplicity with a CFL condition. This gives motivation to look for other
suitable finite elements.
Taking a step back and considering the ansatz space Hcurl;1

0; (Q), which was described
in [1], we take a look at a conform set of finite elements. For that we consider the
case of two dimensions in space and one in time. We discuss what properties are
needed and what kind of meshes we might consider. In the end we consider first
numerical examples.

References

[1] J. I. M. Hauser, O. Steinbach: Space–time variational methods for Maxwell’s
equations. Proc. Appl. Math. Mech., published online, 2019.
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First–kind Galerkin boundary element methods for the

Hodge–Laplacian in three dimensions

Ralf Hiptmair

Seminar für Angewandte Mathematik, ETH Zürich, Switzerland

Boundary value problems for the Euclidean Hodge-Laplacian in three dimensions
∆HL := curl curl − grad div lead to variational formulations set in subspaces of
H(curl,Ω)∩H(div,Ω), Ω ⊂ R

3 a bounded Lipschitz domain. Via a representation
formula and Calderón identities we derive corresponding first-kind boundary inte-
gral equations set in trace spaces of H1(Ω), H(curl,Ω), and H(div,Ω). They give
rise to saddle-point variational formulations and feature kernels whose dimensions
are linked to fundamental topological invariants of Ω.
Kernels of the same dimensions also arise for the linear systems generated by low-
order conforming Galerkin boundary element (BE) discretization. On their comple-
ments, we can prove stability of the discretized problems, nevertheless. We prove
that discretization does not affect the dimensions of the kernels and also illustrate
this fact by numerical tests.
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Vector potentials in bounded domains

Matthias Kirchhart

RWTH Aachen

We consider the following problem. Let the vorticity ω be given on a bounded
domain Ω ⊂ R

3 which has kinks and corners, for example a polyhedron. Find
the velocity u, such that ∇ × u = ω and ∇ · u = 0. This is a classical problem
and on the whole-space R

3 its solution is given by the Biot–Savart law. In bounded
domains, however this problem turns out to be significantly more subtle. A common
approach is to find a so-called vector potential Ψ, such that u = ∇×Ψ. However, all
approaches known to us yield a potential Ψ that can actually be less smooth than
u itself. In our opinion, this is very counter-intuitive. In this talk we will discuss
some of the many pitfalls we have stepped into while investigating this problem
and present an approach based on the boundary element method which we believe
solves this problem and yields a smooth potential. Like the original problem, this
solution seems somehow classical and somehow not. We kindly ask the audience for
their comments and if they are aware of any references that we are not.
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Bembel, the Boundary Element Method Based Engineering Library

J. Dölza, H. Harbrechtb, S. Kurzc, M. Multererd, S. Schöpsc, F. Wolfc

aDepartment of Mathematics, TU Darmstadt, Germany
bDepartment of Mathematics and Computer Science, Universität Basel,

Switzerland
c c) TU Darmstadt, Institute TEMF & Centre of Computational Engineering TU

Darmstadt d) Università della Svizzera Italiana, Institute of Computational
Science

We will talk about the story of Bembel, the Boundary Element Method Based
Engineering Library. Based on the isogeometric paradigm, this software suite was
developed in cooperation with the groups of Prof. Harbrecht (Basel) and Prof. Mul-
terer (Lugano). We will briefly review basic notions and, afterwards, show the code’s
capabilities through a series of numerical examples, passing by scalar problems, elec-
tromagnetic scattering, electromagnetic eigenvalue problems, as well as comparisons
to Raviart-Thomas and spectral elements.
Reference: www.bembel.eu
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Space-time finite element methods for parabolic initial–boundary value

problems with low–regularity solutions

Ulrich Langer and Andreas Schafelner

Institut für Numerische Mathematik, Johannes Kepler Universität Linz, Austria

We consider locally stabilized, conforming finite element schemes on completely
unstructured simplicial space-time meshes for the numerical solution of parabo-
lic initial–boundary value problems with variable, possibly discontinuous in space
and time coefficients. Discontinuous coefficients, non–smooth boundaries, chan-
ging boundary conditions, non–smooth or incompatible initial conditions, and non–
smooth right–hand sides can lead to non-smooth solutions. For instance, in electro-
magnetics, permanent magnets cause line–delta–distributions in the source term in
2d quasi–magnetostatic simulations of electrical machines.
We present new a priori and a posteriori error estimates for low–regularity solutions.
In order to avoid reduced convergence rates appearing in the case of uniform mesh
refinement, we also consider adaptive refinement procedures based on residual a
posteriori error indicators and functional a posteriori error estimators. The latter
provides guaranteed upper bounds on the error. The huge system of space–time
finite element equations is then solved by means of GMRES preconditioned by
space-time algebraic multigrid. In particular, in the 4d space–time case that is
3d in space, simultaneous space–time parallelization can considerably reduce the
computational time. We present and discuss numerical results for several examples
possessing different regularity features. The implementation is performed within
MFEM.
The authors would like to thank the Austrian Science Fund (FWF) for the financial
support under the grant DK W1214–04.
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Force computation using shape calculus

Piyush Panchal

Seminar für Angewandte Mathematik, ETH Zürich, Switzerland

In the Electrostatics setting, it is often of interest to compute the local/global forces
on a body in presence of an Electric field. The volume formula for calculating the
force, being stable in the energy norm, is a good choice when working with Finite
Element Methods. The boundary formula however faces stability issues, making
it difficult to compute forces when working with Boundary Element Methods. In
my thesis/presentation, I talk about a new boundary formula derived using shape
calculus, which is stable in the energy norm and thus suitable for use with BEM. I
also compare its performance with the conventional boundary formula.
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The saturation assumption yields optimal convergence of two–level

adaptive BEM

Michele Ruggeri

Institute for Analysis and Scientific Computing, TU Wien, Austria

We consider the convergence of adaptive BEM for weakly-singular and hypersingular
integral equations associated with the Laplacian and the Helmholtz operator in 2D
and 3D. The local mesh-refinement is driven by some two-level error estimator. We
show that the adaptive algorithm drives the underlying error estimates to zero.
Moreover, we prove that the saturation assumption implies linear convergence of
the error with optimal algebraic rates. This is joint work with Dirk Praetorius (TU
Wien) and Ernst P. Stephan (Leibniz University Hannover).
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Functional a posteriori error estimates for boundary element methods

Stefan Kurz1, Dirk Pauly2, Dirk Praetorius3, Sergey Repin4,5, Daniel Sebastian3

1Institute for Accelerator Science and Electromagnetic Fields,
TU Darmstadt, Germany

2Fakultät für Mathematik, Universität Duisburg–Essen, Germany
3Institute for Analysis and Scientific Computing, TU Wien, Austria

4Department of Mathematical Information Technology, Jyväskylän, Finland
5Steklov Institute of Mathematics, St. Petersburg, Russia

This work motivates a new perspective on a posteriori error estimation for boundary
element methods. In contrast to the state of the art, we aim for fully computable

lower and upper bounds of the energy error ‖∇(u−uh)‖L2(Ω), where the approximate
solution uh stems from an either lowest-order direct or indirect approach to solve
the Dirichlet problem

∆u = 0 in Ω ⊂ R
d, u|Γ = g on Γ = ∂Ω (1)

via Symm’s integral equation.
One major advantage of functional-type estimates is, that they do not depend on a
priori knowledge of the approximation uh. As an example, Galerkin-orthogonality
is a widespread tool which is obviously not available for a BEM approximation uh

on Ω. BEM’s distinguishing feature that the error (u− uh) solves (1) exactly is the
only ingredient to conclude the sharp error identity

max
τ∈L2(Ω)
divτ=0

[

2
〈

(g−uh|Γ) , (n·τ )|Γ
〉

−‖τ‖2L2(Ω)

]

= ‖∇(u−uh)‖
2
L2(Ω) = min

w∈H1(Ω)
w|Γ=g−uh|Γ

‖∇w‖2L2(Ω)

which leads to maximization/minimization procedures.
Instead of solving the related problems on Ω, we suggest a construction via FEM on
an adaptively shrinking boundary layer S ⊂ Ω. Our computations on S are used to
steer an adaptive mesh-refinement on Γ to regain the optimal rate of convergence

‖∇(u− uh)‖L2(Ω) ≤ Ccont‖φ− φh‖H−1/2(Γ) = O(N−3/2).

On top of that, our numerical examples verify that the majorant provides a reaso-
nable stopping criterion, in order to guarantee the integrity of the final approximate
solution.
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[1] S. Repin: A posteriori error estimates for partial differential equations. Radon
Series on Computational and Applied Mathematics, vol. 4, de Gruyter, Berlin,
2008.
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[4] C. Bahriawati, C. Carstensen: Three Matlab implementations of the lowest-
order Raviart-Thomas MFEM with a posteriori error control. Comput. Me-
thods Appl. Math. 5 (2005) 333–361.
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Fast boundary element methods for the wave equation

Daniel Seibel

Department of Mathematics, Saarland University, Saarbrücken, Germany

Boundary Element Methods (BEM) have been successfully used in acoustics, optics
and elastodynamics to solve transient problems numerically. However, the storage
requirements are immense, since the fully populated system matrices have to be
computed for a large number of time steps or frequencies. In this talk, we propose a
new approximation scheme for the Convolution Quadrature Method (CQM) based
BEM applied to the wave equation. We use H2-matrix compression in the spatial
domain and employ a generalised adaptive cross approximation algorithm in the
frequency domain. In this way, the storage and computational costs are reduced
significantly, while the accuracy of the method is unchanged.
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Finite and boundary element methods in theromoelasticity

Olaf Steinbach

Institut für Angewandte Mathematik, TU Graz, Austria

Although the numerical simulation of problems in thermoelasticity is well establis-
hed in particular in the engineering community, it seems that there is no detai-
led numerical analysis available yet. As model problem we consider the stationary
system of thermoelasticity, where the heat equation is decoupled from the linear
elasticity problem with the temperature gradient as volume source. The most com-
mon approach is to consider the variational formulation of both equations in the
energy space H1(Ω) where we can apply standard arguments for the stability and
error analysis of the numerical scheme. But it is sufficient, similar as for the Stokes
system, to consider the temperature in L2(Ω) only, i.e., we consider an ultra weak
variational formulation for the heat equation. We provide a related numerical ana-
lysis showing optimal error estimates, and we give some numerical examples. Then
we discuss the relevance of these results for the boundary element approximation of
the thermoelasticity system. We recall the standard boundary integral formulation,
and we discuss related error estimates. We finally comment on the time–dependent
problem.
This talk is based on joint work with D. Pacheco and M. Schanz.
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Optimal operator preconditioning for pseudodifferential boundary

problems on adaptive meshes

Jakub Stocek

We propose an operator preconditioner for general elliptic pseudodifferential equa-
tions in a domain Ω, where Ω is either in R

n or in a Riemannian manifold. For
linear systems of equations arising from low-order Galerkin discretizations, we ob-
tain condition numbers that are independent of the mesh size and of the choice of
bases for test and trial functions.
The basic ingredient is a classical formula by Boggio for the fractional Laplacian,
which is extended analytically. In the special case of the weakly and hypersingular
operators on a line segment or a screen, our approach gives a unified, independent
proof for a series of recent results by Hiptmair, Jerez-Hanckes, Nédélec and Urzúa-
Torres.
We study the increasing relevance of the regularity assumptions on the mesh with
the operator order. We discuss the impact of these assumptions on adaptively ge-
nerated meshes. Numerical examples validate our theoretical findings and illustrate
the performance of the proposed preconditioner on quasi-uniform, graded and ad-
aptively generated meshes.
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Boundary integral formulations of eigenvalue problems for elliptic

differential operators with singular interactions and their numerical

approximation by boundary element methods

Markus Holzmann, Gerhard Unger

Institut für Angewandte Mathematik, TU Graz, Austria

In this talk the discrete eigenvalues of elliptic second order differential operators in
L2(Rn), n ∈ N, with singular δ- and δ′-interactions are analyzed. We show the self-
adjointness of these operators and derive equivalent formulations for the eigenvalue
problems involving boundary integral operators. These formulations are suitable
for the numerical computations of the discrete eigenvalues and the corresponding
eigenfunctions by boundary element methods. We provide convergence results and
show numerical examples.
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A new approach to space–time boundary integral equations for the

wave equation

Carolina Urzúa–Torresa, Olaf Steinbachb
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Space–time discretization methods are becoming increasingly popular, since they
allow adaptivity in space and time simultaneously, and can use parallel iterative
solution strategies for time–dependent problems. However, in order to exploit these
advantages, one needs to have a complete numerical analysis of the corresponding
Galerkin methods. Different strategies have been used to derive variational methods
for the time domain boundary integral equations for the wave equation. The mo-
re established and succesful ones include weak formulations based on the Laplace
transform, and also time–space energetic variational formulations. However, their
corresponding numerical analyses are still incomplete and present difficulties that
are hard to overcome, if possible at all. As an alternative, we pursue a new ap-
proach to formulate the boundary integral equations for the wave equation, which
aims to provide the missing mathematical analysis for space–time boundary element
methods. In this talk, we discuss some of our preliminary results.

23



A causal FMM for a space–time BEM for the heat equation with

non–uniform time steps

Günther Of, Raphael Watschinger

Institut für Angewandte Mathematik, TU Graz, Austria

In this talk we consider a space-time boundary element method for the solution
of the heat equation. In space-time methods the temporal component is regarded
as an additional spatial component and the problem is solved in space and time
as a whole. This increases the computational effort, but allows for parallelism and
adaptivity in space and time. While tensor product meshes are widely used for the
discretization of the space-time boundary, arbitrary decompositions of the boundary
are more suitable when it comes to adaptivity.
As a first step towards general adaptive meshes, we focus on non-uniform time steps
in this talk. For this purpose we consider a Dirichlet boundary value problem for the
heat equation on the surface of the sphere as a model problem. If the Dirichlet datum
is constant in space this can be reduced to a purely temporal problem. We discuss
a fast method for its solution based on a clustering strategy and interpolation of
the kernel. In particular we present adaptations of the fast method for non-uniform
time steps. Finally, we demonstrate the advantages of the considered approach with
some numerical examples.
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A space-time finite element method for optimal control

of parabolic equations

Huidong Yang

Johann Radon Institute for Computational and Applied Mathematics,
Linz, Austria

In this talk, we will present some numerical methods for optimal control of para-
bolic PDEs. In particular, we aim to minimize certain objective functionals, that
may involve a Lipschitz continuous and convex but not Fréchet differentiable term,
subject to linear/nonlinear parabolic PDEs and under proper constraints on the
control variables.
The space-time finite element discretization of the optimality system, including
both the state and adjoint state equations, relies on a Galerkin–Petrov variational
formulation employing piecewise linear finite elements on unstructured simplicial
space-time meshes.
The nonlinear optimality systems of equations are solved by the semismooth Newton
method, whereas the linearized coupled state and adjoint state systems are solved
by an algebraic multigrid preconditioned GMRES method.
This is a joint work with Ulrich Langer (RICAM), Olaf Steinbach (TU Graz) and
Fredi Tröltzsch (TU Berlin).
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Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France
martin.averseng@gmail.com

2. Maximilian Bauer, M.Sc.
Mathematisches Institut, Universität Bayreuth, Germany
maximilian1.bauer@uni-bayreuth.de

3. Prof. Dr. Mario Bebendorf
Mathematisches Institut, Universität Bayreuth, Germany
mario.bebendorf@uni-bayreuth.de

4. Dr. Xavier Claeys
Laboratoir Jaques–Louis Lions, Universite Pierre et Marie Curie, Paris, France
claeys@ljll.math.upmc.fr

5. Igor Chollet, M.Sc.
Alpines group, INRIA, Paris, France
igor.chollet@etu.upmc.fr

6. Mehdi Elasmi, M.Sc.
Institut für Theorie elektromagnetischer Felder, TU Darmstadt, Germany
elasmi@gsc.tu-darmstadt.de

7. Prof. Dr. Christoph Erath
Fachbereich Mathematik, TU Darmstadt, Germany
erath@mathematik.tu-darmstadt.de

8. Bernd Feist, M.Sc.
Mathematisches Institut, Universität Bayreuth, Germany
bernd1.feist@uni-bayreuth.de

9. Prof. Dr. Heiko Gimperlein
Department of Mathematics, Heriot Watt University Edinburgh, UK
H.Gimperlein@hw.ac.uk

10. Dipl.–Ing. Julia Hauser
Institut für Angewandte Mathematik, TU Graz, Austria
jhauser@math.tugraz.at

11. Prof. Dr. Ralf Hiptmair
Seminar für Angewandte Mathematik, ETH Zürich, Switzerland
hiptmair@sam.math.ethz.ch

12. Dr. Matthias Kirchhart
Fachgruppe Mathematik (CCES), RWTH Aachen, Germany
kirchhart@mathcces.rwth-aachen.de

26



13. Prof. Dr.–Ing. Stefan Kurz
Institut für Theorie elektromagnetischer Felder, TU Darmstadt, Germany
stefan.kurz2@de.bosch.com

14. Prof. Dr. Ulrich Langer
Institut für Numerische Mathematik,
Johannes Kepler Universität Linz, Austria
ulanger@numa.uni-linz.ac.at

15. Dr. Michal Merta
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