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Complexity Analysis of a Fast Directional
Matrix-Vector Multiplication

Giinther Of[0000—0003—2258—7001] and Raphael Watschinger[OOOO—OOOQ—7750—8561]

Graz University of Technology, Institute of Applied Mathematics, Steyrergasse 30,
8010 Graz, Austria, of@tugraz.at, watschinger@math.tugraz.at

Abstract. We consider a fast, data-sparse directional method to real-
ize matrix-vector products related to point evaluations of the Helmholtz
kernel. The method is based on a hierarchical partitioning of the point
sets and the matrix. The considered directional multi-level approxima-
tion of the Helmholtz kernel can be applied even on high-frequency levels
efficiently. We provide a detailed analysis of the almost linear asymptotic
complexity of the presented method. Our numerical experiments are in
good agreement with the provided theory.

Keywords: Helmholtz - Fast multipole method - Hierarchical matrix.

1 Introduction

In this paper we consider an efficient method for the computation of the matrix-
vector product for a fully populated matrix A € CN7*Ns with entries

Alj. k] = fzj,yn), 1)

where f is the Helmholtz kernel, £ > 0 the wave number and Pr = {z; };Vle and

Ps = {yk}gjl are two sets of points in R?. Similar matrices arise in the solution
of boundary value problems for the Helmholtz equation by boundary element
methods. Using standard matrix-vector multiplication is prohibitive for large N
and Ng due to the asymptotic runtime and storage complexity O(NrNg).

Due to the oscillating behavior of the Helmholtz kernel, existing standard fast
methods for the reduction of the complexity do not perform well for relatively
large wave numbers k. Therefore, a variety of methods have been developed.
There are several versions of the fast multipole method (FMM) based on different
expansions of the Helmholtz kernel f. A first version suitable for high frequency
regimes is given in [16] and an overview of the early developments can be found
n [14]. Of further interest are the methods in [8I12], which rely on plane wave
expansions, and the wideband method in [7] which switches between different
expansions in low and high frequency regimes.

Directional methods allow to overcome the deficiencies of standard schemes
in high frequency regimes, too. The basic idea of these methods is that the
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Helmholtz kernel f can locally be smoothed by a plane wave. In the context of
fast methods this idea was first considered in [6] and later in [9]. In [I3] the idea is
picked up and combined with an approximation of the kernel via interpolation.
[35] follow a similar path in the context of H2-matrices providing a rigorous
analysis. A slightly different method is proposed in [I], where the directional
smoothing is combined with a nested cross approximation of the kernel.

In this paper we present a directional method in the spirit of [13] based
on a uniform clustering of the point sets. We choose this approach due to the
applicability of the involved interpolation to other kernels and a smooth transi-
tion between low and high frequency regimes in contrast to the wideband FMM
in [7]. We give a description of the method in Sect. [2| and an asymptotic com-
plexity analysis in Sect. [3] While [I3] provides already a brief analysis we present
a detailed one not unlike the one in [3], but focusing on points distributed in
3D volumes instead of points on 2D manifolds and allowing two distinct sets of
points. In addition, we exploit the uniformity for a significant storage reduction
compared to non-uniform approaches. This reduction and the claimed almost
linear asymptotic behavior can be observed in our numerical tests in Sect. [4]

2 Derivation of the Fast Directional Method

In this section we present a method for fast matrix-vector multiplications for the
matrix A in based on a hierarchical partitioning of the sets of points into
boxes and a directional multi-level approximation of the Helmholtz kernel f on
suitable pairs of such boxes.

2.1 Box Cluster Trees

The desired matrix partition can efficiently be constructed from a hierarchi-
cal tree clustering of the point sets into axis-parallel boxes. In what follows we
define uniform box cluster trees which are constructed by a uniform subdivi-
sion of an initial box, see, e.g., [I0]. In particular, we construct a uniform box
cluster tree 7 for a given set of points Pr = {xj}j-vil in an axis-parallel box
T = (a1,b1] x ... x (az,b3] C R® by Algorithm [Il As additional parameter we
have the maximal number of points per leaf ny.x. We use standard notions of
levels and leaves in trees known from graph theory. In addition we define

— the index set t := {j € {1,...,Nr}: x; € t} for a box t € Tr,

— the level sets of the tree by TT(Z) = {t € Tr: level(t) = £},

the depth p(Tr) := max{level(t) : t € Tr} of the cluster tree T,
— the set L1 of all leaves of Tr.

In general, Alg. [I] creates an adaptive, i.e. unbalanced cluster tree depending
on the point distribution. Other construction principles for box cluster trees
such as bisection [I5], Sect. 3.1.1] tailor the tree to the point sets yielding more
balanced trees. However, the boxes at a given level ¢ of such a tree can vary
strongly in shape, while the ones of a uniform box cluster tree are identical up
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Algorithm 1 Construction of a uniform box cluster tree Tr

1: input: Points Pr = {:Ej};.VZTI inside a box T' = (a1,b1] X ... X (as, bs], maximal
number Nnmax of points per leaf.
2: Construct an empty tree 7r and add T as its root.

3: Call REFINECLUSTER(T, Tr)

4: function REFINECLUSTER(T = (a1,b1] X ... X (as,bs], T)

5: if #{z; :z; € T} > nmax then

6: Compute center ¢1 = (a1 + b1)/2, c2 = (a2 + b2)/2, c3 = (a3 + b3)/2.
T: Uniformly subdivide T into 8 boxes T1 = (a1,c1] X ... X (as,c3], ...,
8: T8=(C1,b1] X ... X (Cg,bg].

9: for k=1,...,8do

10: if #{z;: x; € Tx} > 1 then

11: Add Ty to T as child of T

12: Call REFINECLUSTER(T%, 7).

to translation. We will exploit this uniformity to avoid recomputations and to
reduce the storage costs of the presented method.

2.2 A Directional Kernel Approximation

In this section we describe a method to approximate the Helmholtz kernel f on
a suitable pair of boxes ¢t and s by a separable expansion, which will allow for
low rank approximations of suitable subblocks of the matrix A in . Due to the
oscillatory part exp(ik|z—y|) of f, standard approaches like tensor interpolation
of the kernel are not effective for relatively large x as pointed out in [IJI3].
Therefore, we consider a directional approach which first appeared in [6] and [9]
and was later used in [5] and [13] among others. The basic idea is that the
oscillatory part exp(ik|z — y|) of f can be smoothened by a plane wave term
exp(—ik{z—y, c)) in a cone around a direction ¢ € R3 with |¢| = 1. We can rewrite
the Helmholtz kernel f by expanding the numerator and the denominator by a
plane wave term yielding

f(x’ y) = fC(xv y) exp(ili(x, C>) exp(—in(y, C>), (2)
exp(ir(|lz —y| — (x —y,¢)))
drt|z — y| G

fe(z,y) :== f(z,y) exp(—ik{z — y,c)) =

The modified kernel function f. is somewhat smoother than f on suitable boxes ¢
and s. In fact, if two points = € ¢t and y € s satisfy (z — y)/|x — y| = ¢, then
fe(z,y) = (4r|z — y|)~!, ie. the oscillations of f are locally damped in f..
Therefore tensor interpolation can be applied to approximate f. instead of f on
suitable axis-parallel boxes ¢ and s and we get

Fla,) = 373 Fl€iw €)LD (@) LT (y), (4)

veM peM
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where v and g are multi-indices in the set M = {1,...,m + 1}3, &, are ten-
sor products of 1D Chebyshev nodes of order m + 1 transformed to the box

t= ((ll, bl] XX ((lg, b3]a ie. gt,u = (5[&1,()1],1/17E[Cbz,bz],yz)?g[ag,bg],yg) with

_a]-—i-bj bj—aj 21/j—].
&la; bl = 5 + 5 C08 rn 1)) vie{l,...,m+1},

and Lg:j) are the corresponding Lagrange polynomials, which are tensor prod-
ucts of the 1D Lagrange polynomials corresponding to the interpolation nodes
1
{g[a‘j )bj]wl/j }:Z-':_l.
Inserting approximation into and grouping the terms depending on =
and y, respectively, yields the desired separable approximation

Fay) = 303 fol€rw Eap) L, (2) L (y), (5)
veEM pneM
L (x) == L") (2) explir(z, ¢)). (6)

The directional approximation (5 of f can be used to approximate the sub-
matrix A‘ fxs of the matrix A in (|1)) restricted to the entries of the index sets ¢
and § for two suitable axis-parallel boxes ¢ and s, i.e.,

Al ik = Faim) = Y0 N fel€on Ea) LV () LS (). (7)

veM peM

In matrix notation this reads

A|£><§ ~ Lt7CAC¢><SL:,cv (8)

where we define the coupling matriz Ag 4y, € CmTD’x(m+1D? 1y

Ac,txs[jvk] = fc(é-t,ajvgs,ﬁk)7 jake {177(m+1)3}7 (9)

for suitably ordered multi-indices a;, 8, € M = {1,...,m + 1}?, the directional
interpolation matriz Ly . € Cix(m+1)° 1y
Liolj k] o= L0, (25), jetke{l,... (m+1)?}, (10)
and L, . analogously. In particular, instead of the original #t - #5 matrix en-
tries only (m + 1)3(#t + #5 + (m + 1)3) entries have to be computed for the
approximation in , which is significantly less if (m + 1)3 << #, #3.
In the following admissibility conditions we will specify for which boxes ¢
and s and which direction ¢ the approximation in is applicable. Similar crite-

ria have been considered in [TJ5T3]. In particular, the criteria lead to exponential
convergence of the approximation with respect to the interpolation degree [BII7].
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Definition 1 (Directional admissibility [5, cf. Sect. 3.3]). Let t,s C R3 be
two azis-parallel bozes and let ¢ € R3 be a direction with |c| = 1 or ¢ = 0. Denote
the midpoints of t and s by my; and mg, respectively. Let two constants n; > 0
and 1z > 0 be chosen suitably. Define the diameter diam (t) and the distance
dist (¢, s) by
diam (¢) := sup |z1 — 2|, dist(t,s):= inf |z —y|.
T1,x2€L ret,yes

We say that t and s are directionally admissible with respect to c if the separation

criterion
max{diam (¢), diam (s)} < n dist (¢, s), (A1)

and the two cone admissibility criteria

My — M M
—c < A2
" |my — my| C‘ ~ max{diam (¢), diam (s)}’ (A2)
x max{diam (t), diam (s)}? < ny dist (¢, s) (A3)

are satisfied.

Criterion is a standard separation criterion, see, e.g., [10] and [IT],
Sect. 4.2.3]. It ensures that the boxes ¢ and s are well-separated allowing for
an approximation of general non-oscillating kernels.

Criterion is similar to , since it also controls the distance of two
boxes t and s. Note that follows immediately from in case that
x max{diam (¢),diam (s)} > 1 and vice versa in the opposite case. As stated
in [3, Sect. 3], can also be understood as a bound on the angle between all
vectors  — y for © € t and y € s that shrinks if £ or max{diam (¢), diam (s)}
increases. Hence, (A3) guarantees that the angle between x —y and a direction ¢
is small if the angle between the difference of the midpoints m; — mg and c is
already small, which is enforced by .

Indeed, criterion is used to assign a suitable direction ¢ to two non-
overlapping boxes ¢ and s. While the choice ¢ = (m; — my)/|m: — ms| would
always guarantee , we want to choose ¢ from a small, finite set of directions.
This allows to use the same direction c for a fixed box ¢ and several boxes s;
and, therefore, to use the same interpolation matrix L, . for the approximation
of various blocks A| ixs; 35 in . A possible way to construct suitable sets of
directions and further details on criterion (A2|) are discussed in Sect. First,
we want to discuss how to use criteria nd to construct a suitable
partition of the matrix A in based on the clustering described in Sect.

2.3 Partitioning of the Matrix

In general, the sets of evaluation points Py and Pg for the matrix A in are
contained in overlapping boxes T" and S. Therefore, the full matrix A cannot be
approximated directly. For this reason, we recursively construct a partition of A
by Alg. [2| which we organize in a block tree Trxs ([I1l Sect. 5.5]).
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Algorithm 2 Construction of a block tree Trxs
1: input: Box cluster trees Tr and Tg, parameter 72 for the criteria (A1) and (A3).

2: Set b= (t2,sY), i.e. the pair of roots of 77 and Ts.
3: Construct an empty tree Trxs and add b as its root.
4: Call REFINEBLOCK(b, Trxs)-

5: function REFINEBLOCK (b = (¢, s), Trxs)

6: ifte L7 or s € Ls then

7 return

8: if ¢ and s violate or then

9: for ¢’ € child(¢) do

10: for s’ € child(s) do

11: Add b = (¢, s") to Trxs as child of b.
12: Call REFINEBLOCK (b, Trxs).

Definition 2. Let Tr and Tg be two uniform box cluster trees and let no > 0. A
block tree Tr«s is constructed by Alg. @ The set of all leaves of Trxs is denoted
by LTxs and split into the set of admissible (i.e. approximable) leaves and the
set of inadmissible leaves

Ll s:={b=(t,s) € Lrxs:t and s satisfy (AT) and (A3)},

£;><S = Lrxs \ c;xS'

For a given block tree Tryg the pairs of indices ¢ x 3 of all leaves (t, s) € LTxs
form a partition of the full index set {1,..., Ny} x {1,..., Ng}, i.e. of the ma-
trix A. The matrix blocks corresponding to admissible blocks b € E}'X g can be
approximated by the directional interpolation . Inadmissible blocks related
to b € L, ¢ are computed directly.

2.4 Choice of Directions

As we would like to use relatively small numbers of directions ¢ in the directional
approximations , we consider a fixed set of directions D for all blocks (t, s)
at a given level £ of the block tree. These sets D) should be constructed in such
a way that for all blocks (¢, s) at level £ in £, ¢ there exists a direction ¢ € D(®)
such that criterion holds for some fixed 7;.

Since the bound on the right-hand side of increases for decreasing di-
ameters of t and s and these diameters are halved for each new level of the
uniform box cluster trees, the number of directions in D) can be reduced with
increasing level £. If the maximum of the diameters of two boxes t and s at level 1
is so small that the bound on the right-hand side of is greater than s, then
holds for ¢ = 0 for all following levels. In this case, a plane wave term is
not needed for the approximation of the Helmholtz kernel f, and the approxima-
tion coincides with a standard tensor interpolation. We call the other levels
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Algorithm 3 Construction of directions D)

1: input: Largest high frequency level fns > —1.

2: for £ = lns + 1, by + 2,. .. ,min{p(77),p(7s)} do

3: Set DY = {0}.

4: Construct the six faces {E;th)}ﬁzl of the cube [—1,1]3, i.e.

B = {1} x [-1,1]%, B = {1} x [-1,1)2, ..., B = [-1,1] x {1}.
5: Set D(ne) — {cy“f)}?:l where c;.e“” is the midpoint of E;e“f), ie.

) = (=1,0,0), &§ = (1,0,0), ..., e = (0,0,1).
6: for { =/l —1,...,0 do
7. Set DY = 0.
8: for all faces EJ(.HI)7 j=1,...,6-4m*1 do
9: Uniformly subdivide EJ(.ZH) into 4 faces Eif;._l)H, ey Eg.).
10: Construct normalized midpoints cf@le“ cee ci? of Ez(1871)+1’ R Eg-).
11: Add directions 04(1271”1, ey cfé.) to D®).
satisfying

n <1, forallteTf seTE, (11)

kmax{diam (t),diam (s)} —

high frequency levels and denote the largest high frequency level as fyn¢, or set
lhs = —1 in case that all levels £ > 0 are low frequency levels, i.e. do not
satisfy . The value of ¢,¢ depends on 7; and the uniform box cluster trees
Tr and Tg. In practice, we choose a suitable level £ys instead of 77 and construct
the sets of directions D), using more and more directions for levels ¢ < fys.
Our construction by Alg. [3| combines ideas from [9, Sect. 4.1] and [3| Sect. 3].
Finally, we assign a direction ¢ € D® to a pair of boxes ¢ and s which is close
to the normalized difference (m;—mys)/|m¢—ms| of the midpoints of ¢ and s and,
hence, can be used for the directional approximation . For this purpose, we
define a mapping dir(,) for each level £ € Ny, which maps a vector v in R3\{0}

to a direction cy) such that the intersection point of the ray {A\v : A > 0} and
the surface of the cube [—1,1]3 lies in the face EJ@ (ct. Alg. .

Definition 3. Let £y > —1 and let the directions DY) and the faces {EJ(-K)} be
constructed by Alg. @ We define the mapping dir ) : R? — DO U {0} for each
e Ny as follows:
— If £ >l we set dirgy(v) =0 for allv € R3.
— If £ < lys we set diry(0) = 0. For all v € R¥\{0} we set diry)(v) = c;lgj)
where

1

_ v
max v
je{l,...,3}

j(v) = min{j : Yo (v) € BV}, 9o(v) =

to avoid ambiguity.
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For two bozes t,s C R? and a level £ € Ny we define the direction cy(t,s) by

. m¢e — Mg
C(o) (t, S) = dlr(g) <t> .

| —ms|

In this way (A2) is satisfied for two boxes t, s, and the direction c)(t,s) for a
constant 77; which depends linearly on the product kge,, [I7, Thm. 2.19]. Here
qe,; denotes the maximal diameter of all boxes at level ¢, in the trees 77 and 7.

2.5 Transfer Operations

The approximation of an admissible subblock A’ ixs Of Ain can be further
enhanced. If ¢ is a non-leaf box at level £ in a box cluster tree Tr with children
t1,...,tx, the directional interpolation matrix L; . can be approximated using
the matrices Ly, ¢, , for a suitable direction ¢y41. We describe this approach
following [5], Sect. 2.2.2].

Let us rewrite the generating functions m (x) of Ly in @ by

t,c,v

ng)y(x) = exp(ik(z, coy1)) [exp(im(z, c— C[+1>)L§TZ) (ac)} )

If cpy1 is sufficiently close to ¢, the term in square brackets is smooth and can
be interpolated for points x in a child box t; yielding

exp(ik(r,c — cHl))Lng) (x) ~ Z exp(ik(&, 5, ¢ — C¢+1>)L7§Z’j) (ftj7,;)Lgrfg(x).
pEM

This provides an approximation of the restriction of Lﬁ’j),, to the child ¢;

L, @ = > ([explinté, e — con )L (€ 0)| T, o))
veM

In matrix notation the related restriction to the index set fj reads as
Lt70|£j><(m+1)3 ~ Lt_ivcl+1Et_jvc7 (12)

where the entries of the transfer matrix Fy, . € CnF+D*x(m+1)* 16 defined by

By ok, €] == exp(ir(€s, s ¢ — cos1) LI (€4 ) (13)

for all k, 0 € {1,...,(m+1)3}.

A suitable choice [17, Thm. 2.19] for the direction c¢ 1 is given by dir(,41)(c),
with dir(,41) given in Def.[3| Since this direction depends only on ¢ and the level £
of the box ¢, it is reasonable to omit the dependence of the transfer matrix Fy, .
on ¢p4+1 in the notation.
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2.6 Main Algorithm

In the previous sections, we have described how to partition the matrix and
how to approximate suitable subblocks. Here we explain the complete algorithm
for a a matrix-vector multiplication g = Av.

The idea is to execute the multiplication blockwise according to the partition
induced by the leaves L1xg of the block tree Tr«s. Inadmissible blocks from
L+ ¢ are multiplied directly with the target vector v. For admissible blocks from
E;X g we use the decomposition and split the multiplication into three phases.
This is similar to the usual three-phase algorithm for H2-matrices [T} Sect. 8.7]
and the FMM [10] with adaptations due to the directional approximation. We
describe the scheme first for one block corresponding to an admissible pair of
boxes t and s at level £ and then give a description of the complete algorithm.

In the first phase, the forward transformation, the product . := L} .v]s is
computed. If s is a leaf in the cluster tree, this is done directly by . This is
also known as S2M (source to moment) step in fast multipole methods. If s is
not a leaf, approximation with cpy1 = dir(gﬂ)(c) is used iteratively to get

brd pyp— * 7 ~ * * ~ ~ * ~
Vs,c = § Esjvcvsj',cfprl ~ E Esj,c [sz,ce+1v|5j:| ~ Ls,cv|57
s; €child(s) s €child(s)

by using the products of the children, which is also known as M2M operation
(moment to moment). In the second phase, which is called multiplication phase
or M2L (moment to local) step, the product

Gt,c ‘= Ac,txsvs,c

is computed by @D In the complete algorithm all contributions from various
boxes s are added up, i.e.

gt,c = Z Ac,txsﬁs,c-
s:(t,s)eﬂ;xs
In the third phase, the so-called backward transformation, the product
i= Lt,cgt,c (14)

is computed. If ¢ is a leaf, this is done directly. This step is known as L2T (local
to target) in fast multipole methods. If ¢ is not a leaf, the approximation is
used to compute

g

gtj,cz+1 = Etj,c gt,m (15)
for all children ¢; of ¢, which is also known as L2L operation (local to local), and
the evaluation takes place for descendants which are leaves. In the complete
algorithm the local contribution in is added to the existing contribution
Gt;.cop, OTiginating from the multiplication phase.

Before we present the complete Alg. 4] we define the sets of active and in-
herited directions for each box in the cluster trees 7 and 7Tg. These are used
to keep track of all required directions for boxes ¢t and s in the trees 77 and Tg.
They can be generated during the construction of the block tree Trygs-
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Definition 4. Let T and Tg be two uniform box cluster trees, Trxs the cor-
responding block tree and lws > —1. Recalling Alg. [3 and Def. [3 we define for
all £ >0 and all t € ’TT(E) the set of active directions by

D(t):={ceD®: :3sc TS@) such that (t,s) € L1 ¢ and c = c(t, s)}.

The set of inherited directions ﬁ(t) is defined recursively by setting ﬁ(t?) =0
for the root t9 of Tz, and for all £ >0 and all t € 7'T(Z) by setting

D(t):={¢e DY :3 ce D(t')UD() such that ¢ = dir(y(c), t' = parent(t)}.

Analogously, the sets of active directions D(s) and inherited directions D(s) are
defined for clusters s € Tg.

Algorithm 4 Fast directional matrix vector multiplication g =~ Av

1: input: Box cluster trees 7r and 7Ts, block tree Trxs, interpolation degree m,
sets of directions D(t), D(t), D(s), D(s) for all boxes t, s in Tr, Ts.

2: Initialize g = 0.

3: > Forward transformation

4: for all leaves s € Lg do

5: for all directions ¢ € D(s) U D(s) do

6: Compute 0s,c = L3 .v|s.

7: for all levels £ =p(Ts) — 1, ..., 0 do

8: for all non-leaf boxes s € TS(Z)\ES do

9: for all directions ¢ € D(s) U D(s) do
10: Set 5, = 0.

11: for all s’ € child(s) do

12: Update 0s,c += EJ/ 0 o, where ¢ = dir(1)(c).

13: > Multiplication phase
14: for all boxes t € Tr do R
15: for all directions ¢ € D(t) U D(t) do

16: Initialize g¢,. = 0.
17: for all boxes s € Ts such that (t,s) € Lf, ¢ do
18: Update §t,c += Ac txsDs,c, where ¢ = dir(g)(t, s) and £ = level(t).

19: > Backward transformation
20: for all levels £ =0, ..., p(7Tr) — 1 do
21: for all non-leaf boxes t € 'TT(Z)\ﬁT do

22: for all directions ¢ € D(t) U D(t) do
23: for all ¢’ € child(t) do
24: Update i += Eyr cGt,c, where ¢’ = dir(e41)(c).

25: for all leaves t € L1 do

26: for all directions ¢ € D(t) U D(t) do
27: Update g|; += L¢,cG¢,c-

28: > Nearfield evaluation

29: for all blocks b = (t,s) € L5, 5 do

30: Update g|; += Az, 5v]s.




Complexity Analysis of a Fast Directional Matrix-Vector Multiplication 11

2.7 Implementation Details

In this section, we describe how to exploit the uniformity of the box cluster trees
to reduce the storage required by the transfer matrices Fy . defined in and
the coupling matrices A¢:xs defined in @D This is crucial as there is a large
number of such matrices involved in the computations in Alg.

For a level £ > 0, a box t € T, a child # and directions ¢ and ¢’ = dir(p41)(c)
we consider the transfer matrix Ey . which has the entries

By o[, k] = exp(ir(€e o,y — VL (€0 0), gk € {1, (m +1)%).
This matrix can be split into a directional and a non-directional part by
Ey.=Ej By,

where we define the directional part Etd,ﬁ and the non-directional part Ey by

Ey = diag ({exp(ir(&y 5, ¢ — ¢)) }oem)
Bulj, k] = L (&), Gk €{1,..., (m+1)%}.

Let us consider the non-directional part Ey first. The value of the Lagrange
polynomial Lgfﬁ) depends only on the position of the evaluation point & ,, rela-
tive to the box t. Together with the uniformity of the box cluster tree T, this
implies that each F is identical to one of 8 non-directional transfer matrices in a
reference configuration. Only these reference matrices of size (m+1)3 x (m+1)3
have to be computed and stored. The directional part Eﬂ . changes for varying
boxes t, child boxes ¢’ or directions c. Since it is diagonal, however, only (m+1)3
entries instead of (m + 1)% entries need to be computed. Furthermore, for low
frequency levels ¢ > f¢ the directional part E?/’C becomes the identity and no
additional computations are required.

Next we consider the coupling matrices A.;xs defined in @D for admissible
blocks (¢, s) in a block tree Trxs. Acitxs depends on the difference of the cluster
centers only, see . Due to the uniformity of the box cluster trees, many of
the coupling matrices coincide. In particular, it suffices to compute and store all
required coupling matrices for all levels £ only once for a reference configuration
and assign them to the appropriate blocks (t,s) € L1, .

The dimension of the coupling matrices @ increases cubically in the interpo-
lation degree m. A compression of these matrices by a low rank approximation

~ *
Ac,txs ~ Uc7t><s‘/c7t><sa

with Ugixs, Veixs € Cm+1)*xk for some low rank k, increases the performance
of the algorithm (cf. [I3]). Such approximations exist because the coupling ma-
trices are generated by smooth functions. For their construction, we apply a
partially pivoted ACA [2/15] in our implementation and the examples in Sect.
but do not analyze its effect on the complexity in the following section. A more
involved compression strategy is described in [4].
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3 Complexity Analysis

To analyze the complexity of Alg. [ for fast directional matrix vector multiplica-
tions, we estimate the number of directional interpolation matrices and transfer
matrices in Thm. |1} give then an estimate for the number of coupling matrices in
Thm. 2] and [3] and finally estimate the number of nearfield matrices in Thm. [4
We start by establishing the general setting.

Throughout this section we fix the wave number x > 0 and the sets of points
Pr = {z; }jval and Pg = {yk}kle, which may but do not have to coincide, and
set N = max{Np, Ng}. In all considerations 77 and Tg denote two uniform box
cluster trees as constructed in Alg. |I| for a fixed parameter ny.x. We set the
maximum and the minimum of the depths of the trees 7 and 7Tg

Pmax ‘= max{p(%)vp(’rs)}v Pmin ‘= mln{p(%),p(']}«)}

The diameters of all boxes at a fixed level ¢ of 77 are identical and denoted
as q¢(Tr) just like the diameters g¢(Ts) of boxes at level ¢ in Tg. For all levels
£ < pmin we define

qe := max{qe(7r), q(Ts)}-

The related block tree Trxg is constructed by Alg. |Z| for a fixed parameter 7s.
For the directional approximation we use a small, fixed interpolation degree m
and the directions D@, constructed by Alg. |3| for a fixed choice of the largest
high frequency level fps > —1.

For the complexity analysis we will need a few assumptions which we collect
and discuss here. We assume that there exist small constants cgeo, Cmax, Cad and
cun € Ry such that the following assumptions hold true:

Nmax < Cmax(m + 1)3, (16)
qo < cun min{qo(77),q0(7s)}, (17)
Pmax < logg(N) + cad, (18)
Kqo < Cgeo VN. (19)

In addition, ¢y¢ is assumed to be chosen such that
by +1< Pmax Tt Chf, (20)

for a small constant ¢y € Ng. Furthermore, we require that holds, which
we introduce and discuss later. Let us shortly discuss above assumptions. By
equation we ensure that the maximal number of points in leaf boxes of the
cluster trees is reasonably small. Assumption means that the diameters of
the root boxes of 71 and Tg should be of comparable size. While this is not
satisfied in general, one can enforce it by an initial subdivision of the greater
box and application of the method to the resulting subboxes. Eqn. is an
indirect assumption on the sets of points Py and Pg, which holds if the points are
distributed more or less uniformly in a 3D domain. Also Eqn. is reasonable
only if points are distributed rather uniformly in a 3D volume, and guarantees
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that the wave length A\ = 27/k is resolved in that case, which is required in
typical physical applications. Finally, Eqn. is a bound on the largest high
frequency level ¢ and allows to bound the number of directions constructed
in Alg. 3] With these assumptions we can start with the complexity analysis,
which is based on the following obvious, but important observation.

Remark 1. In Alg. E| every directional interpolation matrix L; . and L, ., every
transfer matrix Ey . and Ey ., every coupling matrix A. ;xs and every nearfield
matrix Al;, ; is multiplied with a suitable vector exactly once. All entries of
these matrices can be computed with O(1) operations. Since the complexity of
the application of a matrix to a vector is proportional to the number of its entries,
it suffices to count all these matrices and their respective entries to estimate the
storage and runtime complexity of Alg. [

Theorem 1. Let assumption hold true. Then there exists a constant cLg
depending only on cye such that the number Nyg of applied transfer matri-
ces By . and Eg . and directional interpolation matrices Ly . and Ly . in Alg.
s bounded by

Nig < cLg {Pmax (21)

If and apply in addition, these matrices can be stored and applied with
complezity O(N).

Proof. We start to estimate the number Ny,g 1 of applied transfer matrices Ey .
for L2L operations in lines 24] of Alg. [f] and directional interpolation ma-
trices Ly, for L2T operations in lines 2527 For this purpose we estimate the
number of such matrices for each box ¢ in 7.

Let us first assume, that ¢ € T} is a non-leaf box at level ¢. In this case
a transfer matrix is applied for each direction ¢ € D(t) U D(t) and each box
t' € child(t), but no directional interpolation matrix. The number of directions
in D(t)U D(t) is bounded by #D®), which is 6 - 4= if £ < {3 and 1 else, and
# child(¢) < 8 for all ¢ due to the uniformity of the box cluster tree. Therefore,
the total number Ny,g(t) of transfer and directional interpolation matrices needed
for a non-leaf box t € 7 is bounded by

BO _ 48 - 4= i 0 <l
B 8, otherwise.

Ift e 7'74 is a leaf box then we only need a directional interpolation matrix
for each direction ¢ € D(t) U D(t) but no transfer matrix. Therefore, Nyg(t)
is bounded by 6 - 4¢=¢ if ¢ < ¢,y and by 1 otherwise. Since this bound is less
than B for all levels £, there holds Nyg(t) < B for all boxes t € TE.

The number Nyg, 7 of all directional interpolation matrices and transfer ma-
trices for boxes t € Tr can hence be estimated by

p(Tr) p(Tr)

NigT = Z Z Nig(t) < Z #T+BY.
=0

=0 teTt



14 G. Of and R. Watschinger

Due to the uniformity of the box cluster tree there holds #7}’3 < 8%. Let us first
assume that all levels in 77 are high frequency levels, i.e. p(77) < £n¢. Then we
can further estimate

p(Tr)
NLE,T < Z 48 . gt gt < 48 - At op(Tr)+1 < 24 - 400t gPmax (22)
£=0

where we used assumption in the last step. If instead p(Tr) > fut, we get

Lng »(Tr)
Nipr <) 48-4f-fgly N~ ghit
£=0 =Ly +1 (23)

<12- &fne+1 +8 (8P(TT)+1 _ 8€hf+1) < 68 . §Pmax

Analogously, we can estimate the number Npg g of transfer matrices and
directional interpolation matrices needed for the S2M and M2M operations in
lines[dHI2|of Alg.[4] Therefore, the estimate on the number Npg of all transfer and
directional interpolation matrices in holds with c,p = 2 - max(68,24 - 4°).

To prove the complexity statement we observe that every transfer matrix
has (m +1)% entries and every directional interpolation matrix has at most
Nmax (M + 1)% < cmax(m + 1)8 entries by assumption . Therefore, the linear
complexity is a direct consequence of , if in addition holds. ad

Theorem 2. Let assumption hold true. Then there exists a constant cc
depending only on cyn and 1z, such that the number N¢ of all coupling matrices
Acixs i Alg.[{] is bounded by

Nc < cc (Pmin(qor)® 4 8Pm) . (24)

If in addition and hold true, these matrices can be stored and applied
with complexity O(N log(N)). If is replaced by the stronger assumption

kqo < cv/N/log(N), (25)
then the complexity is reduced to O(N).

Proof. In this proof we pursue similar ideas as in [3 cf. proof of Lem. 8]. We
assume that the depth of 77« s is not zero, because otherwise Ng < 1 and the
assertion is trivial. Our strategy is to estimate the numbers Néz) of coupling
matrices at all relevant levels £ = 1,..., pmin-

In line [T7] of Alg. [4 we see that the number of coupling matrices needed for
aboxte ’7'726) is given by #{s : (t,s) € L}, s}. For such blocks (¢,s) € L}, ¢
the parent(s) is in the nearfield N(¢,) of ¢, := parent(t) by construction of the
block tree in Alg. [2] where

N(tp) == {sp € Téé*l) : sp and t, violate (Al) or (A3)}.
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Using this property and the uniformity of the box cluster trees we can estimate

NO =3 Y 1< Y 8- #N(parent(t)) < 8N, (26)

teT) (t9)ELE teTd)

where Nj(\?_Tl) is an upper bound for the number of boxes in the nearfield of a
box at level £ — 1 in 77 which we estimate in the following.

We cover the nearfield AV (¢) of a fixed box ¢ € TT(E) by a ball B,,(m) with
radius r, and center m; and take the ratio of the volume of the ball and the
one of a box to estimate NJ(\?T for £ > 1. We have to distinguish the cases of

the two admissibility criteria (A1) and (A3). For this purpose, let ? be such that
kq; > 1, if and only if j < £. Such an £ exists since g; decreases monotonically

for increasing level j. In particular, we set (= —1,if kg; <1 for all 7 > 0. If
j < £ criterion (A3) implies (Al) as mentioned in Sect. Vice versa, (Al)
implies (A3) if j > £.

Let us first assume that ¢ < £ and consider an arbitrary box s € N(t). Then t
and s violate (A3]), which means that ny dist (¢,s) < kg7, i.e. there exist z € ¢
and y € 5 such that |z — y| < kg7 /n2. Hence, we can estimate

max [z —my| < max [z —y| + |z —y| + |z —m)
K 2 3 1 (27)
S%-Fﬂ-&-%g <+>Fiqg::1"g,
ne 2 2 m
where we used kqy > 1 for the last estlmate Therefore every box s € N(t) is

contained in the ball B,,(m;) with r; from (27). If instead ¢ > ¢ we analogously
show

3 1
NE) € B (my), e = (2 wa (28)
72
With the ball B,,(m;) covering N (¢) we can estimate
[Bru(mo)| __(4m/3)r} ( r )
N(t) < = = 47V/3 , 29
e S S e SR e 2

where vy (Ts) = 373/2¢,(Ts)? denotes the volume of boxes s € 7—5S£)~ Sincet € TT(Z)

was arbitrary, the bound in holds also for N%)T instead of N (¢).
Summarizing and above findings, we get for the number N¢ of all cou-
pling matrices the estimate

Pmin min Pmin 3
NO <3SN < stan f( re-1 >
> Z 2 PG

3 1 3 [i+1 Pmin
< 47T\/§ (2 + ) Z8€+1(chnq5)3 + Z 8é+1 in
"2 =1 =042
i+1
< 3 4 8Pmin | < . 3 4 &Pmin 30
= Co Z(nqo) + = CC(pmm(an) + )7 ( )
/=1
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where we assumed that 1 < I+1< Pmin_ and used assumption and the
relatlon qo = 2%qq. If either /41> Prmin OF [ = —1, one can repeat the estimates
in and ends up with a similar result where one can cancel 8P=i» in the first
case and Prin (Kq0)3 in the second case. The assertions about the complexity

follow directly from with assumptions (|18]) and (| . or ., respectlvely,
since every coupling matrlx ©) has (m +1)° (’)(1) entries.

In Thm. 2] we have estimated the number N¢ of all coupling matrices, which
corresponds to the number of admissible blocks ﬁTX g+ As explained in Sect.
we store reoccuring matrices only once to reduce the related storage costs dras-
tically as we will see in the next theorem and in Sect. [dl Since one needs to
know all blocks in £, ¢ in Alg. 4| and storing them has complexity O(Nc),
storing each matrix only once does not reduce the overall storage complexity of
the method asymptotically.

Theorem 3. Let the root boxes T and S of Tr and Ts be identical up to trans-
lation. Then the number Ngc of coupling matrices A¢ txs which have to be stored
can be estimated by

Nsc < pmin max{cc, C?g/g(/‘GQO)Q} (31)
If and hold, the corresponding storage complexity is O(N?/?log(N)).

Proof. From the proof of Thm. [2, in particular , and 7 it follows
that the number of admissible blocks (t,s) € Lf, 4 for a fixed box t € T} can
be estimated by

3
8 - #N (parent(t)) < 32mv/3¢3, (3 + 7712> max{1, (kgo)?8'~*} .

< comax{1, (kqy)387},

where we used ¢, = 2 ¢qo, and c¢ is the same constant as in . For a different
box t' € T the boxes s’ such that (¢',s') € L 4 are identical to blocks (t, s)
up to translation, which follows from the assumption on the root boxes T" and S
and the uniformity of the trees 71 and Tg. Hence, the coupling matrices coincide
and is a bound for the number Néec) of stored coupling matrices at level /.
On the other hand, there are at most 8¢ blocks at level ¢ of TT+X s> which gives

NEQ < min{8%, cc max{1, (rq0)*8 1},

The maximum over all £ of the expression on the right-hand side is bounded
by 8¢, where £* is the intersection point of 82 and cc max{1, (kg)38~¢}. By
computing this maximum we end up with the general bound

NéQ < maX{CC,Cé/B(KqO)2} for all £ > 0.

Summation over all levels £ = 1, ..., pyiy yields . Since every coupling matrix
has (m + 1)% entries, it follows that all distinct coupling matrices can be stored
with O(N?/310og(N)) memory units, if assumptions and hold. O
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In Thm.[4] we will perform the complexity analysis of the nearfield evaluation,
i.e. lines [29) and [30] of Alg. [4] In unbalanced trees there can be leaf clusters at
coarse levels with large nearfields. If there were many of these, the complexity
would not be linear. To exclude exceptional settings we make the additional
assumption that the number of such leaf clusters is bounded, i.e., there exists a
constant ¢;, € N such that

#‘C; S Cin, #‘CE S Cin, (33)
where L5 := Lg\ L& and

E; ={seLg: #{t:(t,s) € L7, g} < cur and

N _ (34)
#t < cmNimax for all (¢, s) € L7, g},

for some fixed parameters ¢, and cy¢. It follows from that for a leaf box

s € 7-3(2) the assumption #{t : (t,s) € L7, ¢} < ¢t holds true for sufficiently
large constant ¢, if £ = level(t) is large enough.

Theorem 4. Let assumptions and hold true. Then there exists a con-
stant cp depending only on cyn, Cin, Cm, Cof, Mmax 6Nd N2 such that the num-
ber Mp of entries of all nearfield blocks Al;, s in Alg. 4| is bounded by

Mp < CD(NT+N5+8pmi“). (35)
If holds, the corresponding storage complezity is O(N).

Proof. Each nearfield matrix block corresponds to an inadmissible block (¢, s) €
L7 g For such a block there holds ¢ € L1 or s € Lg by construction. We start
counting entries of blocks corresponding to leaves in Lg by considering the sets
L& and L.

For the number My, ¢ of nearfield matrix entries corresponding to blocks (%, s)
with outlying leaves s € Lg there holds

MI;,S = Z #‘§ Z #Lf < CinnmaxNT~ (36)

s€ELy {t:(t,8)€L, 5}

Here we used that #35 < npax holds for all leaf boxes, and that the nearfield
N(s)={t:(t,s) € L.} of s can contain at most all N points in Pr.

Next we estimate the number Mg) g of nearfield matrix entries corresponding
to blocks (t,s) with s € L. For fixed s € L& there exist at most ¢y such
blocks (t, s) and the corresponding boxes ¢ contain maximally ¢;,nmax points by
definition of E;r in . Furthermore, the level of a box s in an inadmissible
block (t,s) can be at most ppmin and Tg can have at most 8Pmin leaves at levels
£ < pmin- Hence, we get

MFg= > #5 > # <8 copemnl (37)

seLt  tEN(s)
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Analogous estimates as and hold true for nearfield matrices cor-
responding to leaves in Lr. Adding up all these estimates leads to the bound
in , with the constant ¢p = 2nmax max{cin, CnfCmMNmax }- If holds, the
storage complexity O(N) is an immediate consequence of . a

The following theorem summarizes the results of this section.

Theorem 5. Let assumptwns and hold true. Then the complex-
ity of Alg. I 4is O(N log(N)). If l | 18 replaced by the complexity is reduced
to O(N).

4 Numerical Examples

In this section we want to test the method presented in Sect. 2] and to validate
the theoretical results from Sect. 3| For this purpose we use a single core im-
plementation of Alg. 4] in C++ on a computer with 384 GiB RAM and 2 Intel
Xeon Gold 5218 CPUs. To reduce the required memory we store only the non-
directional parts E; of the transfer matrices and each coupling matrix once, as
described in Sect. 2.7] However, if the matrix is applied several times it can be
beneficial to store also the directional interpolation matrices L; . and nearfield
matrix blocks.
For the tests we consider points distributed uniformly inside the cube [—1,1]3.

For various values k > 3 we choose &, = (2n — 1)27%F — 1 1n [—1,1] for all

n € {1,...,2%} and construct the set of points Pr(k) = {xj} 1 ) with N(k) = 8F
as tensor products of these one-dimensional points. We choose Ps(k) = Pr(k)
and consider the matrix A as in with the wave number x = 0.1 - 2 and the
diagonal set to zero to eliminate the singularities. The approximation derived in
Sect. [2| is applicable despite the change of the diagonal because it effects only
parts of the matrix which are evaluated directly.

We construct a uniform box cluster tree Tr for the set Pr using Alg. [I] with
the initial box 7' = [—1,1]® and the parameter ny,x = 512. With this choice of
parameters and points, 77 is a uniform octree with depth p(7r) = k — 3, where
every leaf contains exactly 512 points. We construct the sets of directions D)
with Alg. 3] and the largest high frequency level /s = k — 4 and finally we use
Alg. [2| to construct the block cluster tree Tp«r with the parameter 7o = 5.
The parameters ¢,y and 7y were chosen according to the parameter choice rule
n [I7, Sect. 3.1.4]. In particular, the choice 173 = 5 minimizes the number of
inadmissible blocks b € L., - at levels £ > fy¢. Note that due to the uniformity
of the tree Tr and the choice Pg(k) = Pr(k) the block tree Trxr has depth
p(Tr) = fue + 1 and all inadmissible blocks are at level fn¢ + 1.

The assumptions (L6)(20)) are all satisfied for the considered examples for
suitable constants ¢max, Cun; Cad, Cgeo, and cp¢ independent of the sets Pr(k).
Assumption holds for ¢;,, = 0, because all leafs in L are at level k£ — 3 and
by the choice of 7, there holds #{s : (t,s) € L} < 27 for all leaves t € L.

In the described setting we apply Alg. [ for the fast multiplication of the ma-
trix A with a randomly constructed vector v. The interpolation degree m =4 is
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Table 1. Computation times and storage requirements for matrix-vector multiplica-
tions using Alg. [4] for the matrix A corresponding to sets of points Pr(k) for various
values of k. Parameters: {ns = k — 4, 72 = 5, interpolation degree m = 4.

k| N & tiot te tnt tg nf [%] Nsc Nc [GiB]
5 32768 3.2 731 0.34 6.94 0.03 24.41 316 3096 0.02
6 262144 6.4 76.25 1.20 74.29 0.76 4.06 1522 166320 0.10
7| 2097152 12.8 702.72 3.71 688.14 10.87 0.58 4554 2640960 0.46
8| 16777216 25.6 6060.16 15.24 5907.66 137.26 0.077 9824 33103296 3.09
9(134217728 51.2 50204.00 118.89 48576.20 1508.91 0.010 32036 344979432 24.2
B N = Tk Lx—Storz‘x e per l)int 4
E 0.36 712 =) = 07 --- O(Ng; r];fer:nce
g = iz L i
2 0.32f 108 =06
2 2 =i
5 18 & 5 o05f |
5 028} &~ =
E / 162 Zoa 1
; 0.24 _ —— nearfield times {4 i % 0.3F N
;E - O(N) ref. o) §
) —o— farfield times A 2 E © 021 B
g 02 i Il P Il \7 B O(IVY l\og(N)) rCt.\ . Il Il Il Il Il
5 6 7 8 9 0 5 6 7 8 9
k = log(N) k =log(N)

Fig.1. Plots related to the computations of Table [I] Left image: Nearfield and
farfield computation times per point with linear and quasi-linear reference curves in
the different scales. Right image: Required storage per point with linear reference curve.

chosen, since it is reasonably high to yield a good approximation quality (e.g. rel-
ative error 2-10~* for k = 6) while it is low enough to make the approximations
of all admissible blocks efficient.

The results of the computations for various sets of points Pr(k) are given
in Table [I] and Fig. [} The total computational times ¢y are split into setup
times tg, times t,¢ of the nearfield part, and computational times tg of the farfield
part. In addition, the percentage of matrix entries in inadmissible blocks (nf), the
numbers Ngc and N¢ of stored and applied coupling matrices and the storage
requirements ([GiB]) are given. A direct computation for k = 7 takes more than
32 hours. Thus the directional approximation is about 160 times faster. For larger
examples the difference would be even more pronounced due to the quadratic
complexity of the direct computation.

In Fig. [1} we plot computational times and memory consumption per point.
As expected from our theoretical results of Sect. [3| we observe linear and al-
most linear behavior, respectively, for the nearfield and the farfield part of the
computations, see the left plot in Fig. [I] As usual there is some preasymptotic
behavior in such plots. The right plot in Fig. [1] shows the linear behavior of
the memory requirements. Note that we store coupling matrices and transfer
matrices only. In particular, we mention the low number Ng¢ of stored coupling
matrices compared to the total number N¢ of coupling matrices in Table [I]
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