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Abstract

This paper investigates forward and inverse problems in fluorescence optical to-
mography, with the aim to devise stable methods for the tomographic recon-
struction.
We analyze solvability of a standard forward model and two approximations by
reduced models, which provide certain advantages for a theoretical as well as
numerical treatment of the inverse problem. Important properties of the forward
operators, that map the unknown fluorophore concentration on virtual measure-
ments, are derived; in particular, the ill-posedness of the reconstruction problem
is proved, and the non-uniqueness is discussed.
For the stable reconstruction, we consider Tikhonov-type regularization meth-
ods, and we prove that the forward operators have all the properties, that al-
low to apply standard regularization theory. We also investiage the applicability
of nonlinear regularization methods, i.e., TV-regularization and a method of
levelset-type, which are better suited for the reconstruction of localized or piece-
wise constant solutions.
The theoretical results are supported numerical tests, which demonstrate the
viability of the reduced models for the treatment of the inverse problem, and
the advantages of nonlinear regularization methods for reconstructing localized
fluorophore distributions.

1 Introduction

Diffuse optical tomography utilizes near-infrared light at wavelengths of 700-
900nm to probe highly scattering media and determine distributed optical pa-
rameters from measurements of attenuated and scattered light intensities [37, 4].
Knowledge of absorption and scattering coefficients then allows to classify dif-
ferent materials, e.g., to distinguish between healthy tissue and cancer, see [38]
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or [31], and the references therein. The diffusive nature of light propagation in
tissue limits the image resolution of optical prospection to some extent, but the
fact that the absorption of near infrared light is influenced by hemoglobin or
lipid concentration makes optical tomography an imaging modality that pro-
vides additional functional information about the investigated material [28].

In order to overcome the typically low contrast in optical parameters, that
results in low signal to noise ratios, fluorescence enhanced optical tomography
[25, 26] employs the presence of fluorescent dyes, which absorb and re-emit light
at different wavelengths. This allows to clearly separate between excitation and
emitted light, thus increasing the contrast substantially. Since fluorescent mark-
ers accumulate in certain regions and the activity of fluorophores is influenced
by metabolic states or processes, localized observations allow to obtain not only
anatomical images, but also to image physiological activity in biological systems
[36]. Optical imaging with fluorescent contrast agents [35] has therefore been
successfully used in several applications [26], e.g., for in-vivo imaging of tumors
[29].

Besides time-resolved measurements [24], which require ultrashort laser pulses
and high fidelity measurement setups, intensity modulated light is frequently
used as excitation source, yielding frequency domain modalities [30, 27, 25], for
which appropriate measurement devices are available [17].

The physical model of fluorescence optical tomography [29, 13] consists of: (A)
diffusion of photons at excitation wavelength from sources at the boundary into
the body; (B) absorption of part of the photons at the excitation wavelength
by fluorophores and re-emission at a longer wavelength; (C) diffusion of the
re-emitted photons through the body, and (D) measurement of light intensi-
ties leaving the body. The aim of tomographic reconstruction in fluorescence
imaging is to determine fluorescence yield and/or lifetime distributions from
boundary measurements of the emitted light [30, 25]. This inverse problem can
be phrased as a parameter identification problem governed by a system of diffu-
sion equations, and like similar problems in optical or impedance tomography,
the inverse problem is severely ill-posed, hence only limited resolution of recon-
structions can be expected.

Several methods for a stable reconstruction have been proposed in literature,
mostly based on certain linearizations [30, 34, 27], but also approaches utilizing
nonlinear forward models have been reported, e.g., [32, 22].

In this report, we start from the diffusion approximation as a forward model
for light propagation, and we investigate two and three dimensional nonlinear
forward problems, and their approximation by reduced models. After demon-
strating the ill-posedness of the corresponding inverse problems, we derive basic
properties of the forward operators that allow to apply regularization methods
of Tikhonov type [11]. Since by appropriate placement of fluorescent dyes, flu-
orescence tomography has the ability to image localized inhomogeneities, we
investigate the use of nonlinear regularization approaches that are suitable to
incorporate such a-priori information; in particular, we study the applicability
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of TV-regularization [1] and a related method of levelset type [16, 10]. The
advantages of such nonlinear methods for the tomographic reconstruction are
illustrated by numerical tests.

The manuscript is organized as follows: In the next section, we introduce the
mathematical model for light propagation in fluorescence tomography, and dis-
cuss the approximation by reduced models, that facilitate the treatment of
the corresponding inverse problems. In Section 3, we state the inverse prob-
lems in detail, demonstrate their ill-posedness, and shortly comment on unique
solvability. We then derive important properties of the forward operators, and
demonstrate the applicability of Tikhonov type regularization methods, in par-
ticular TV-regularization and a method of levelset type. In Section 5 we report
on numerical tests that illustrate the viability of the model approximations and
reveal the benefits of the nonlinear regularization approaches over standard
Tikhonov regularization. Some conclusions are given in the final section.

2 Governing model and simplifications

The propagation of light in highly scattering (dense) media is typically modelled
by the diffusion approximation, which is obtained as a first order approximation
for the radiative transfer equation by moment methods [6, 4]. The physical
quantity of the diffusion model is the time and space dependent radiance φ,
i.e., the directionally averaged photon density. In a time harmonic (e.g. intensity
modulated) regime, the radiance can be expressed as a product φ = Φeiωt of
the complex valued modulation envelope Φ and the time harmonic variation
eiωt [25].

2.1 The nonlinear forward model

Let Φx, Φm denote complex envelopes (amplitudes) of the light at excitation and
emission wavelengths λx, λm; indices i = x,m are used to distinguish between
e(x)citation and e(m)ission. The governing mathematical model of fluorescence
tomography is then given by [25, 22]

−∇ · (κx∇Φx) + µxΦx = q in Ω (1)
−∇ · (κm∇Φm) + µmΦm = γΦx in Ω, (2)

where Ω ∈ Rd, d = 2, 3 denotes the domain occupied by tissue. The system is
complemented by Robin boundary conditions

κi∂nΦi + ρiΦi = 0, at ∂Ω (3)

which model that no photons can enter the domain from the exterior. The
coefficient ρi allows to take different refractive indices into account [6, 4].

Full model
In general, the photon diffusion and absorption coefficients κi, µi depend on
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optical parameters of the tissue and the fluorophore in the following way:

κi =
1

d (µa,i + µf,i + µ′s,i)
, µi = µa,i + µf,i +

iω

ν
, γ =

ηµf,x
1− iωτ

, (4)

where µa,i denotes the photon absorption coefficient of the material at wave-
length λi, and µ′s,i is the reduced scattering coefficient [4]. The absorption co-
efficients µf,i can be linked to the fluorophore concentration, i.e., µf,i = εicf
where cf denotes the concentration of the fluorescent marker, and εi is a spe-
cific extinction coefficient. Finally, η and τ denote the fluorophore’s quantum
efficiency and lifetime, and ω, ν denote the modulation frequency and the speed
of light, respectively. A detailed derivation and further references can be found
in [13, 25, 22].

Throughout this presentation, we assume that the coefficients (except the flu-
orophore concentration when dealing with the inverse problem) are known but
may depend on the spatial position in general. To ensure solvability of the
model, we make the following assumptions.

Assumption 1. (i) Ω ⊂ Rd, d = 2, 3 is a simply connected Lipschitz domain.
(ii) The coefficients µa,i, µ′s,i ∈ L∞(Ω) are non-negative, and µa,i + µ′s,i is
uniformly positive, i.e., there exists a constant µ > 0 s.t. µa,i + µ′s,i ≥ µ on Ω.
(iii) The functions εi, η, τ ∈ L∞(Ω) are non-negative, moreover εi and ηi are
uniformly bounded from below away from zero.
(iv) The parameters ρi ∈ L∞(Ω) are uniformly greater than zero.
(v) The modulation frequency ω is an arbitrary real constant.

Under these assumptions, unique solvability of the system (1)–(3) is ensured.

Proposition 2. Let Assumption 1 hold. Then for any source q ∈ H1(Ω)′ and
any non-negative cf ∈ L∞(Ω), the system (1)–(4) has unique complex valued
solutions Φx, Φm ∈ H1(Ω) that satisfy the a-priori estimate

‖Φx‖H1 ≤ C‖q‖(H1)′ , ‖Φm‖H1 ≤ C‖cf‖L3/2‖q‖(H1)′ ,

where the constant C depends only on the domain Ω and the bounds on the
coefficients.
Proof. Under Assumption 1 on the coefficients and the condition on c, we obtain
boundedness and uniform positivity of κi; moreover |µi| is bounded from above
and Re(µi) ≥ 0. Since ρ is uniformly positive, Poincare’s inequality then yields
the coercivity of the associated sesquilinearforms, and unique solvability and
the first estimate follow from the Lax-Milgram theorem [9, Theorem IV.1.1].
To obtain the second bound, note that by continuity of the Sobolev embedding
[2] of H1(Ω)→ Lp(Ω) for all p ≤ 6 (in 2 or 3 space dimensions), there holds

‖γΦx‖(H1)′ ≤ C ′‖γΦx‖(L6)′ ≤ C ′
∥∥ ηεx

1−iτω
∥∥
L∞
‖c‖L3/2‖Φx‖L6 ,

which together with ‖Φx‖L6 ≤ C ′′‖Φx‖H1 (Sobolev embedding) and the first
bound completes the proof.
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2.2 Reduced models

Since in practice, the concentration cf is typically small, one is tempted to
neglect the contribution of the fluorophore to the absorption and/or diffusion
coefficients. We will particularly consider the following two cases:

Partially reduced model
Neglecting the influence of the fluorophore on the coefficient κi yields

κi =
1

d (µa,i + µ′s,i)
, µi = µa,i + µf,i +

iω

ν
, γ =

ηεx
1− iωτ

cf . (5)

Fully reduced model
If the influence of the fluorophore on both parameters is neglected, we obtain

κi =
1

d (µa,i + µ′s,i)
, µi = µa,i +

iω

ν
, γ =

ηεx
1− iωτ

cf . (6)

Remark 3. The fully reduced problem (1)–(3) with coefficients (6) yields a
first order Born approximation for the full model, see [30, 27]. In this case, the
excitation field Φx is completely independent of the fluorophore concentration
cf . The choice (5) for the coefficients yields a somewhat better approximation.
Both reductions will facilitate the treatment of the inverse problem below.

The solvability of the reduced models follows with slight changes from Propo-
sition 2, so we state it without proof.

Corollary 4. Let Assumption 1 hold. Then for any q ∈ H1(Ω)′ and for any
non-negative cf ∈ L∞(Ω), the reduced problems (1)–(3) with coefficient (5) or
(6) have unique solutions Φ̂x, Φ̂m ∈ H1(Ω), which satisfy the estimates

‖Φ̂x‖H1 ≤ C‖q‖(H1)′ , ‖Φ̂m‖H1 ≤ C‖cf‖L3/2‖q‖(H1)′ ,

with constant C only depending on the domain and the bounds of the coefficients.

In order to quantify the perturbation introduced by the approximation of the
coefficients κi and µi, we estimate the model error as follows.

Proposition 5. Let Assumption 1 hold, and Φi, Φ̂i denote the solutions of
(1)–(3) with coefficients (4) and (5), respectively. For q ∈ H1(Ω)′ and any
non-negative cf ∈ L∞(Ω), the difference in the solutions can be estimated by

‖Φx − Φ̂x‖H1 ≤ C‖cf‖L3/2‖q‖(H1)′ , ‖Φm − Φ̂m‖H1 ≤ C‖cf‖2L3/2‖q‖(H1)′ .

If the coefficients in the equations for Φ̂i satisfy (6) instead of (5), then the
(weaker) estimates

‖Φx − Φ̂x‖H1 ≤ C‖cf‖L∞‖q‖(H1)′ , ‖Φm − Φ̂m‖H1 ≤ C‖cf‖L3/2‖c‖L∞‖q‖(H1)′ .

hold.
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Proof. We only proof the second estimate in detail. Let κi, µi denote the coeffi-
cients of (4) and κ̂i, µ̂i be defined according to (6). Furthermore, let Φi and Φ̂i

denote the corresponding solutions of (1)–(3), and define wx := Φx − Φ̂x and
δκx := κx − κ̂x, δµx := µx − µ̂x. By linearity of the system (1)–(3), wx solves

−∇ · (κ̂x∇wx) + µ̂xwx = ∇ · (δκx∇Φx)− δµxΦx in Ω,
κ̂x∂nwx + ρxwx = −δκx∂nΦx on ∂Ω.

Applying Corollary 4 and the Cauchy-Schwarz inequality, we obtain the bound
‖w‖H1 ≤ C(‖δκx‖L∞ + ‖δµx‖L∞)‖Φx‖H1 . The first part of the second estimate
then follows by the uniform bound on ‖Φx‖H1 (Proposition 2), and by estimat-
ing the differences in the parameters by ‖cf‖L∞ . The other estimates follow in
a similar fashion.

Remark 6. Recalling that ‖Φx‖H1 = O(1) and ‖Φm‖H1 = O(‖cf‖L3/2), we
conclude that the approximation of both fields is accurate to first order in
‖cf‖L2/3 respectively ‖cf‖L∞ for the partly and fully reduced model.

2.3 Measurements and direct problems

The forward problem of fluorescence tomography is to determine the complex
amplitudes Φx, Φm for a given distribution of the fluorophore and a prescribed
set of excitations. All other coefficients appearing in (4) are assumed to be
known. The measureable quantity, i.e. phase and intensity of the emitted light
at wavelength λm on the boundary, can be defined by [4]

m = κ∂nΦm = −ρmΦm on ∂Ω. (7)

Motivated by the requirements of Proposition 2 and Corollary 4, we consider
the following set of admissible fluorophore concentrations

Cad := {cf ∈ L2(Ω) : 0 ≤ cf ≤ cf} ⊂ L2(Ω).

Remark 7. The boundedness of fluorophore concentrations is a technical as-
sumption that has to be made to ensure uniform positivity of the diffusion
coefficient κi in (4) and thus guarantee uniform ellipticity and solvability of the
system (1)-(3). Since the fluorophore distribution in tissue is typically governed
by some diffusion process, this is a physically reasonable condition.

For a given excitation q, the mathematical forward models assign to some pre-
scribed fluorophore concentration cf the corresponding measurement m of the
emitted light at the boundary. Solving this forward problem can be formulated
as the action of a forward operator

F : Cad ⊂ L2(Ω)→ L2(∂Ω), c 7→ m. (8)

Note that the definition of the forward operator can easily be generalized to
the case of multiple sources; we will use the symbols Fq, mq in that case to
emphasize the dependence on the source q.
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Remark 8. While the full and partially reduced forward models with coeffi-
cients (4) or (5) yield nonlinear forward operators, the forward operator of the
reduced model (6) is in fact linear, i.e., w := Φ̂m(c1) − Φ̂m(c2) solves (1)–(3)
with cf replaced by c1 − c2 in the definition (6) of γ. As we will see, this fa-
cilitates the theoretical and numerical treatment of the corresponding inverse
problem considerably.

3 Inverse problem

The aim of fluorescence optical tomography is to determine an a-priori unknown
fluorophore concentration cf from measurements of the emitted light m. For a
single excitation, this amounts to solving the operator equation

F (cf ) = m cf ∈ Cad, m ∈ L2(∂Ω). (9)

For ease of presentation, we only treat the case of a single excitation in detail.
The results, however, generalize directly to multiple excitations, in which case
the inverse problem might be stated as Fq(cf ) = mq for all excitations q.

As far as possible, we try to address the full and reduced models in a unified
manner. So, the results given below hold likewise for the full and the reduced
forward models, if not stated otherwise.

3.1 Compactness and ill-posedness

The ill-posedness of the inverse problem of fluorescence tomography follows
directly from the following properties of the forward operator F .

Proposition 9. The operator F : Cad ⊂ L2(Ω) → L2(∂Ω) is continuous and
compact, i.e., it is completely continuous.
Proof. Let c(n) ∈ Cad converge in L2 to some c; since Cad is a closed subset of
L2(Ω), it follows that c ∈ Cad as well. By Proposition 2 respectively Corollary 4,
the corresponding solutions Φ(n)

i , Φi of (1)–(3) are uniformly bounded, i.e.,
‖Φ(n)

i ‖H1 ≤ C‖q‖(H1)′ for all n. By the weak compactness of bounded sets in
Hilbert spaces, there exist weakly convergent subsequences, again denoted by
Φ(n)
i , that converge (weakly) to some yi ∈ H1(Ω). We will show that yx = Φx

(the corresponding result for the emitting field follows in the same way). Let
w

(n)
x := Φ(n)

x − Φx, then for every v ∈ H1(Ω) there holds∫
Ω
κx∇w(n)

x ∇v + µxw
(n)
x v dx+

∫
∂Ω
ρxw

(n)
x vds

= −
∫

Ω
(κnx − κx)∇Φ(n)

x ∇v + (µ(n)
x − µx)Φ(n)

x v dx.

Since the right hand side converges to zero for all v ∈ H1(Ω), and w(n)
x ⇀ yx −

Φx, it follows from the unique solvability of the problem (1)–(3) that yx = Φx.
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The result for the emitting field follows with similar arguments. By continuity of
the trace mapping H1(Ω)→ H1/2(∂Ω) and the compact embedding Hs(∂Ω) ↪→
L2(∂Ω) for s > 0 [2], we obtain that Φ(n)

m → Φm (strongly) in L2(∂Ω). Finally,
the compactness follows, since Cad is mapped onto bounded sets in H1/2(∂Ω),
which are precompact subsets of L2(∂Ω).

Remark 10. An inspection of the proof reveals, that F is also continuous with
respect to the norms of L3/2(Ω) and L2(∂Ω), which we will use later.

The compactness of the forward operators immediately implies the ill-posedness
of the corresponding inverse problems.

Corollary 11. Let F : Cad ⊂ L2(Ω)→ L2(∂Ω). Then for either of the forward
models, the inverse problem (9) is locally ill-posed [19], i.e., the solutions depend
unstably on perturbations of the data.

In order to apply standard results from regularization theory for the solution
of the inverse problems, in particular to ensure existence of minimizers for
regularized least-squares functionals, we require additional properties of the
forward operators.

Proposition 12. For the reduced models (1)–(3) with coefficients (5) or (6),
the operator F : Cad ⊂ L2(Ω)→ L2(∂Ω) is weakly sequentially closed.

Proof. We only treat the partially reduced model (5) in detail. Let c(n) ∈ Cad,
then c(n) ⇀ c (weakly) in L2(Ω). Since Cad is a closed convex subset of L2(Ω),
it is weakly closed, and thus c ∈ Cad. As in the proof of Proposition 9, we
can extract subsequences of the corresponding solutions Φ(n)

i of (1)–(3) that
converge weakly in H1 to some yi ∈ H1(Ω). We will show that yi = Φi, and
again, we only treat the excitation fields i = x in detail. The difference w(n) :=
Φ(n)
x − Φx satisfies for any v ∈ H1(Ω)∫

Ω
κx∇w(n)∇v + µxw

(n)v dx+
∫
∂Ω
ρxw

(n)v ds = −
∫

Ω
(µ(n)
x − µx)Φ(n)

x v dx.

By the compact embedding of H1(Ω)→ Lp(Ω), p < 2d/(d−2) weak convergence
in H1 implies strong convergence in L4 in both 2 and 3 space dimensions. This
shows that the right hand side converges to zero for any v ∈ H1(Ω). Recalling
that wn ⇀ yx − Φx weakly in L2, and using the unique solvability of (1)–(3),
we conclude that yx = Φx, i.e., Φ(n)

x ⇀ Φx weakly in H1, and by compact
embedding of Sobolev spaces Φ(n)

x → Φx strongly in Lp, p < 2d/(d − 2). The
result for Φm follows in a similar way. The weak-closedness of F then finally
follows from the continuity of the trace mapping.

Note that Proposition 12 cannot be generalized to the full forward model (4)
directly. Utilizing the continuity of F , it is however possible to obtain weak-
closedness with respect to a stronger topology in the parameter space.
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Corollary 13. For any of the forward models, the operator F : Cad ⊂ L2(Ω)→
L2(∂Ω) is weakly sequentially closed with respect to the H1(Ω) and L2(∂Ω)
topologies.

Proof. Let c(n) ∈ Cad converge weakly in H1 to some c. The compact embedding
of H1(Ω) → L2(Ω) implies that c(n) → c (strongly) in L2(Ω), and the result
follows from the continuity established in Proposition 9.

Remark 14. Since the trace mapping H1(Ω)→ L2(∂Ω) is compact, the proofs
of the previous results show that the operator F in fact maps weakly convergent
sequences into strongly convergent sequences.

3.2 A remark on uniqueness

Let us consider the fully reduced model (1)–(3) with parameters (6). In practice,
the sources q are only located near the boundary, i.e., we may assume that there
exists a domain Ω̃ ⊂ Ω whose closure is contained in Ω such that supp q ⊂ Ω\Ω̃.
If we additionally assume that supp cf ⊂ Ω̃, then the inverse problem can be
reduced to determine f = γΦx in

−∇ · (κm∇Φm) + µmΦm = f in Ω̃,

Φm = g on ∂Ω̃,

from (partial) knowledge of the Dirichlet-to-Neumann map Λf : g → κm∂nΦm|∂eΩ.
Note, that for any function v ∈ C2

0 (Ω̃) having compact support in Ω̃, there holds

Φm + v = Φm, κ∂n(Φm + v) = κ∂nΦm, on ∂Ω̃,

and hence the problem with right hand side f̃ = f −∇ · (κ∇v) + µmv has the
same Dirichlet-to-Neumann map, i.e., Λf = Λ ef . This indicates that we cannot
expect to obtain a unique solution for the inverse problem, at least for the fully
reduced model, which is well known for related inverse potential problems [20].
Uniqueness results for similar source problems in potential theory do however
hold, if the class of source functions f is restricted appropriately, e.g., if f is
of the form f = f̄χS , where S ⊂ Ω̃ is the support of f , χS is the character-
istic function of the set S, and f̄ is some parameter. For details, we refer to [20].

4 Regularized solution

In order to cope with the ill-posedness of the inverse problem and the non-
uniqueness of solutions, we consider Tikhonov-type regularization methods for
an appoximate but stable solution in this section. Motivated by the previous
considerations on uniqueness respectively non-uniqueness, we will in particular
investigate the use of nonlinear regularization terms that favour localized or
piecewise constant solutions.
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For ease of presentation, we again only consider the case of one excitation, but
the results carry over verbatim to practically relevant case of multiple excita-
tions.

4.1 Tikhonov regularization

As already shown in the previous section, the forward operator F is continuous
and weakly sequentially closed. These properties allow to define regularized
solutions cδα as minimizers of the Tikhonov functional

JL
2

α (c;mδ) := 1
2‖F (c)−mδ‖2L2(∂Ω) + α

2 ‖c− c
∗‖2L2(Ω), (10)

where mδ denotes (possibly perturbed) measurements of the emitted light (7)
satisfying

‖mδ −m‖ ≤ δ (11)

for some noise level δ ≥ 0. Here m denotes the correct data corresponding to
the true fluorophore concentration cf .

4.1.1 Existence and convergence of minimizers

The following standard results establish the viability of Tikhonov regularization
for the stable solution of the inverse problems under investigation. The proofs
are standard and are omitted; for details, see [11, Chapter 10].

Proposition 15. Let F denote the forward operator of either of the reduced
models (1)–(3) with parameters (5) or (6). Then for any α > 0, the Tikhonov
functional (10) has a minimizer cδα ∈ Cad.
Proposition 16. Let mδn denote a sequence of data with ‖mδn − m‖ ≤ δn,
δn → 0, and αn ∼ δn. Then for either of the reduced forward models (5) or (6),
the regularized solutions cδnαn have a convergent subsequence. Moreover, the limit
of any converging subsequence is a solution (a c∗-minimum-norm solution) of
the inverse problem (9).

Note that the fully reduced forward model (1)–(3) with (6) results in a linear
inverse problem, and thus the c∗-minimum-norm solution is unique in this case.
This simplifies the convergence statement, i.e., the regularized solutions cδnαn
converge to the (unique) c∗-minimum norm solutions in this case.

In order to ensure well-definedness of Tikhonov regularization for the full for-
ward model (1)–(3) with parameters (4), we utilize a stronger norm for the
regularization term and Corollary 13.

Corollary 17. If the Tikhonov functional (10) is replaced by

JH
1

α (cf ;mδ) :=
1
2
‖F (cf )−mδ‖2L2(∂Ω) +

α

2
‖cf − c∗‖2H1 ,

then the results of Proposition 15 and 16 also hold for the forward model with
parameters (4); here, convergence holds with respect to the H1(Ω) norm.
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4.1.2 Convergence rates for the reduced model

In order to derive quantitative estimates, differentiability of the forward opera-
tor as well as a source condition are required. For ease of presentation, we only
consider the fully reduced model (6) in detail. Recall that the forward operator
of the reduced model is linear, and thus the derivative F ′(cf ) : L2(Ω)→ L2(∂Ω)
is a well-defined compact operator which is defined by F ′(cf )h = F (h). Since
F ′(cf ) does not depend on cf , we also write F ′h instead of F ′(cf )h in the fol-
lowing. For formulating a source condition, we require the adjoint F ′∗ of this
operator.

Lemma 18. Let F : Cad ⊂ L2(Ω)→ L2(∂Ω) denote the forward map associated
with the fully reduced problem (1)–(3) with coefficients (6). Then F is linear and
thus Fréchet differentiable, and the action of the adjoint (derivative) operator
on an element r ∈ L2(∂Ω) is given by F ′∗r = ηεx

1−iωτΦxwm, where wm solves the
adjoint problem

−∇ · (κm∇wm) + µmwm = 0 in Ω
κm∂nwm + ρmwm = ρmr on ∂Ω.

Having the adjoint derivative at hand, we are able to formulate source conditions
and apply the standard results from regularization theory.

Proposition 19. Let cf denote the c∗-minimum norm solution of the inverse
problem (9) with reduced forward model (1)–(3) and (6). Moreover, assume that

cf = c∗ + (F ′∗F ′)νv for some ν > 0 and some v ∈ L2(Ω).

Then for all 0 < ν ≤ 1 and for the parameter choice α ∼ δ
2

2ν+1 the estimate

‖cf − cδα‖ ≤ Cδ
2ν

2ν+1

holds. If the parameter α is chosen by the discrepancy principle

α := sup{a > 0 : ‖F (cδa)−mδ‖ ≤ τδ},

with some τ > 2‖F ′‖, then the same convergence rates hold for ν ≤ 1/2.

The proof follows with standard arguments, and is omitted; for details we refer
to [11, Section 4].

Remark 20. Since the inverse problem for the fully reduced model is linear,
one can apply other regularization methods, e.g. iterative methods, that yield
optimal convergence rates for all ν > 0.

Remark 21. Similar convergence rate results can be derived for the inverse
problems using the partially reduced and the full forward model (using H1

regularization), see [11, Theorem 10.4] for details.

11



Recall that according to the remarks of Section 3.2, we cannot expect to be able
to reconstruct the unknown fluorophore concentration uniquely, and thus the
minimum-norm solution in the previous results will depend on (A) the choice of
the a-priori element c∗, and (B) on the norm that is used for regularization. In
the following two sections, we will choose other nonlinear regularization terms,
that favour localized or piecewise constant solutions, and thus allow to incor-
porate qualitative a-priori information of this kind.

4.2 TV regularization

Consider the Tikhonov functional with total variation (TV) regularization [1]

JTVα (c;mδ) := ‖F (c)−mδ‖2L2(∂Ω) + α|c|TV , (12)

where | · |TV denotes the TV-seminorm defined by duality as

|c|TV := sup
v∈V

∫
Ω
c ∇ · v dx,

with V := {v ∈ C1
0 (Ω,Rd) : |v(x)| ≤ 1 for all x ∈ Ω}. For smooth functions,

e.g., c ∈ C1(Ω) there holds |c|TV =
∫

Ω |∇c| dx. Let us also define the space of
functions of bounded variation given by

BV (Ω) := {c ∈ L1(Ω) : |c|TV <∞},

and recall that, equipped with the norm ‖ · ‖BV := ‖ · ‖L1 + | · |TV , the space
BV (Ω) is a Banach space. For details on functions of bounded variation, and
proofs of the following statements, we refer to [5, Section 2.2].

Lemma 22. Let Ω ⊂ Rd be a bounded open set. Then for k ≥ 0, the sub-
levelsets Sk := {c ∈ Cad : |c|TV ≤ k} are bounded compact subsets of Lp(Ω) for
1 ≤ p < d/(d−1), i.e., any sequence c(n) in Sk has a subsequence that converges
(strongly) in Lp(Ω).

Lemma 23. The bounded variation seminorm | · |TV : BV (Ω) → R is weakly
lower semicontinuous, i.e., if a sequence c(n) ∈ BV (Ω) converges (strongly) to
some c with respect to the L1 norm, then |c|TV ≤ lim infn |cn|TV .

We are now able to show that the regularized solutions, defined as minimizers
of (12), are well-defined.

Proposition 24. Let F denote the operator to either of the forward models.
Then for α > 0, the functional (12) has a minimizer. For the fully reduced
model with coefficients (6), the minimizer is unique.
Proof. The proof uses standard arguments of the calculus of variations: for
α > 0 and k sufficiently large, the sub-levelsets {c ∈ Cad : JTVα (c;mδ) ≤ k}
are compact in Lp, p < d/(d − 1), and thus the Lp−limit of a minimizing
sequence exists in Cad. Due to the weak-lower semicontinuity of the norms and
the continuity of F as operator from Lp(Ω) to L2(∂Ω), p ≥ 3/2 (see Remark 10),
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the limit is a minimizer. Since the constant c ≡ 1 is not in the nullspace of the
fully reduced (linear) forward operator, the functional JTVα is strictly convex in
this case, which yields uniqueness of the minimizer.

With standard arguments one can show stability of the regularized solutions
with respect to perturbations of the data mδ or variations of the regularization
parameter α; see [1] for details. Moreover, convergence of the regularized solu-
tions can be obtained, if the noise level tends to zero, and the regularization
parameter is chosen appropriately.

Proposition 25. Let mδn denote a sequence of data such that ‖mδn−m‖ ≤ δn,
and assume that δn → 0 and αn ∼ δn. Then the sequence of minimizers cδnαn has
a convergent (strongly in Lp, p < d/(d− 1)) subsequence, and the limit of every
convergent subsequence is a solution of (9).
Proof. The result follows with the same arguments as in the case of L2 regu-
larization. For the fully reduced (linear) model (6), the result corresponds to
Theorem 5.1 in [1].

Remark 26. For our numerical experiments, we utilize that the TV-seminorm
| · |TV can be approximated by a relaxed functional

Rε(c) :=
∫

Ω

√
ε+ |∇c|2dx,

where ε > 0 ensures smoothness of the regularization term where |∇c| vanishes.
For details on this relaxation we refer to [1].

In the following, we outline a related method which allows to incorporate the
additional a-priori information that the solution attains only certain values.
Similar a-priori assumptions can be used to obtain uniqueness of solutions to
related inverse problems in potential theory, see [20] and the remarks in Sec-
tion 3.2.

4.3 A method of levelset type

In order to approximate solutions that are piecewise constant (or have steep
gradients between areas of almost constant value), we adapt an approach that
was proposed in [16]; see also [10]. To simplify the presentation, we consider
only the case that the true solution cf is binary valued, i.e., of the form

cf = χS , S ⊂ Ω, (13)

where the set S is measureable and Hd−1(∂S) < ∞. Here, Hd−1(∂S) denotes
the (d − 1)-dimensional Hausdorff measure of the boundary ∂S, and χS is the
characteristic function of a set S. In order to incorporate such a-priori informa-
tion, the unknown fluorophore distribution is parameterized in the form

c = Hε(φ), (14)
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where Hε is some smooth, strictly monotonically increasing function converging
pointwise to the Heaviside function, i.e., Hε(x) → H(x) := χ{x>0} with ε → 0
for any x ∈ R. The function φ acts as a levelset function, i.e., the parameter
c = Hε(φ) takes values close to one whenever φ is positive, and close to zero
where φ is negative. In the limit case ε = 0, the domain S is characterized by
the levelsets S = {x : φ(x) > 0}, see [16] for details. Similar as in the case
of TV-regularization, the parameterization with ε > 0 is a relaxation of the
discontinuous case ε = 0.

As a regularization method, we consider again a method of Tikhonov type, i.e.,
we define regularized solutions as minimizer of the functional

JLSα (φ;mδ) =
1
2
‖F (Hε(φ))−mδ‖2 + α

(
β|Hε(φ)|TV +

1
2
‖φ− φ∗‖2H1

)
. (15)

By similar arguments as in the previous section, we obtain well-posedness of
the regularized problems for the full as well as the reduced forward models; see
[10, Section 2] for details and proofs.

Proposition 27. For α > 0, β ≥ 0, and either of the forward models, the func-
tional (15) has a minimizer. Moreover, for δn → 0 and αn ∼ δn, subsequences
of regularized solutions converge to solutions of the inverse problem (9), i.e.,

‖φδnαn − φf‖H1 → 0, ‖Hε(φδnαn)− cf‖H1 → 0,

where cf = Hε(φf ) is a solution of (9).

Remark 28. Note that the result holds for any β ≥ 0, i.e., the TV-regularization
term can be dropped as long as ε > 0. We will take advantage of this fact in our
numerical experiments. However, to obtain stability also for the limiting case
ε = 0, one has to set β > 0 and obtains convergence of solutions H(φδnαn) only
with respect to Lp(Ω), p < d/(d − 1), similarly as for TV -regularization. For
details and proofs we refer to [16, 10]. For β > 0 or if one of the reduced models
is considered, the H1-regularization term can be replaced by the L2-norm [10].

5 Numerical experiments

For illustration of the theoretical results derived so far, i.e., the approximability
of the full forward model by reduced models, and the stabilized solution of the
inverse problems by regularization methods of Tikhonov type, let us report on
some results obtained in numerical test studies.

5.1 A test problem

For our numerical experiments, we consider the following two dimensional test
problem: Ω is a disc with 30mm diameter, and 16 sources are placed on equally
spaced intervals of 1mm length at the boundary. The measurements are taken
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at 16 detectors of length 4mm, which are located between the locations of the
excitation; see Figure 1 for a sketch of the geometry.

For the optical parameters at wavelengths λx = 785nm and λm = 830nm, we
use the following realistic values reported [3]: µ′s,x = 0.275, µa,x = 0.036 and
µ′s,m = 0.235, µa,m = 0.029 at excitation respectively emission wavelength;
all parameters are given in mm−1. The molar extinction coefficients of the
fluorophore were set to εx = 5 · 104 and εm = 5 · 103 in mm−1mol−1 [21]. For
the remaining fluorophore parameters, we use η = 0.016 and τ = 0.56ns; the
modulation frequency is set to ω = 2π × 108s−1 and we choose ρx = ρm = 0.2
[23].

As a test case, we choose a fluorophore distribution in form of a Gaussian
peak with maximum concentration 1 [mol mm−3] and width σ =

√
5 [mm].

The measurement setup and the initial fluorophore distribution are depicted in
Figure 1.

5.2 Discretization by finite elements

The system (1)–(3) can be discretized by a finite element method using stan-
dard piecewise linear, continuous finite elements [7]. For approximating the
fluorophore distribution cf , we use the same continuous finite elements, which
allows to apply H1- and TV -regularization easily. The discretization of the
forward model (1)–(3) yields a complex linear system of the form

[K(κx) +M(µx) +R(ρx)]Px = Q,

[K(κm) +M(µm) +R(ρm)]Pm = B(γ, Px),

where K(κ), M(µ) denote the stiffness and mass matrices with coefficients κ and
µ, and R(ρ) is the matrix resulting from discretization of the Robin boundary
terms. Q is a matrix whose 16 columns correspond to the discretization of the
individual source terms, and B(γ, Px) is a matrix whose columns correspond to
the corresponding right hand side of (2). The columns of the solution matrices
Px, Pm contain the discrete solutions of (1)–(3) for the different excitations.

The application of the discretized forward operator then consist in solving this
linear system, and extracting the measurements m = EPm, where E is an
appropriate (measurement) matrix having 16 rows. The application of the dis-
crete derivative F ′(c)h and its adjoint F ′∗(c)r can be realized via the solution
of similar systems, see [15] for details.

5.3 Comparison of forward models

In the following, we report on results obtained with finite element simulations
for the full model (4), and the reduced forward models (5) and (6). In particular,
we compare the size of the perturbations introduced by the problem reduction
(cf. Proposition 5) with the approximation error due to discretization.

For the simulation of the forward problems, we use meshes with 2 052, 8 208,
32 832, 131 328 and 525 312 elements, respectively. As a reference solution we
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take the solution of the full problem obtained on the finest mesh with 525 312 el-
ements. In Table 1, we report the resulting residuals res := ‖m−mref‖/‖mref‖,
where the norm in the measurement space is defined simply by ‖m‖2 :=

∑
ijm

2
ij ;

but one might as well use weighted norms for the measurements. For the prob-

elements res(A) res(B) res(C)

2 052 0.48078 0.46476 0.51296
8 208 0.20744 0.19485 0.23494

32 832 0.08563 0.07484 0.11121
131 328 0.02803 0.01994 0.05351
525 312 0.00000 0.01458 0.02722

Table 1: Relative errors res := ‖m −mref‖/‖mref‖ in the output for the full
(A), partially reduced (B), and fully reduced (C) forward models.

lem under investigation, the relative perturbation due to the use of the partially
or fully reduced forward problems is in the order of 1−2%, and it is compareable
to the error introduced by discretization up to meshes with more than 100 00
elements. This justifies the use of reduced forward models for the solution of
the inverse problem.

Let us now report on some numerical tests concerning the regularized solution
of the inverse problem.

5.4 Regularized reconstructions

In a second test study, we want to demonstrate the benefits from using nonlinear
regularization methods that favour localized or strongly varying solutions for the
reconstruction of localized fluorophore distributions. As in the previous tests,
we utilize synthetic data, which are generated by solving the full forward model
on the finest discretization. Motivated by the comparison of the forward models,
we utilize the fully reduced forward model on a mesh with 32 832 elements for
solving the inverse problem. This introduces model and approximation errors
in the inverse problem, which will be present in a real experiment in any case,
and prevents inverse crimes. The synthetic data are additionally perturbed by
uniformly distributed random noise in the size of 0.1% of the data.

For the reconstruction, we use different regularization methods discussed in Sec-
tion 4. The results of our numerical tests are displayed in Figure 1. The relative
reconstruction errors err = ‖c† − cδα‖L2/‖c†‖L2 for the different methods are:
44% for the L2-regularization, 24% for the TV-regularization and 30% for the
method of levelset-type. In order to obtain reconstruction errors of 25 − 30%
for the L2-regularization, one would have use data with less than 0.01% noise;
this reflects the severe ill-posedness of the problem. As the numerical results
indicate, the reconstruction of localized solutions can therefore be enhanced con-
siderably by utilizing nonlinear regularization terms instead of more standard
linear terms like the L2- or H1-norm.
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Figure 1: Setup and true parameter (top left): locations of the excitation in red,
black bars denote the detector areas; reconstructions with L2-norm regulariza-
tion (top right), TV-regularization (bottom left), and the levelset-type method
(bottom right).

6 Summary

In this manuscript, we investigated different forward models for fluorescence dif-
fuse optical tomography. In particular, we considered approximations of the full
forward model by reduced models, and estimated the perturbations introduced
by these model reductions.

The ill-posedness of the corresponding inverse problems follows from continu-
ity and compactness of the forward operators, established in Section 3. As a
comparison with related inverse problems in potential theory shows, uniqueness
for the reconstruction of the fluorophore distribution cannot be expected, and
therefore the incorporation of a-priori information into solution algorithms will
have great influence on the quality of the reconstructions.

Important properties of the forward operators, that allow the application of
standard result from regularization theory, could be established. In particular,
the applicability of nonlinear regularization methods, that allow the incorpora-
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tion of a-priori information about the solution, e.g., local support or piecewise
constantness, has been investigated.

As the numerical results demonstrate, the model error introduced by relying on
reduced forward models is relatively small in typical applications, and there-
fore reduced (linearized) models can be used for efficiently solving the inverse
problem. Additionally, the reconstruction of localized solutions could be im-
proved considerably, if appropriate nonlinear regularization methods, like TV-
regularization, were used.
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