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Program

Thursday, September 25, 2014
15.30 Coffee
18.30 Dinner

Friday, September 26, 2014
9.00–9.30 J. Dölz (Basel, Switzerland)

H–matrix accelerated second moment analysis for potentials
with rough correlation

9.30–10.00 D. Lukas (Ostrava, Czech Republic)
A boundary element method for homogenization

10.00–10.30 N. Salles (London, UK)
New analytical results on the convergence of a convolution
quadrature method

10.30–11.00 Coffee
11.00–11.30 E. van’t Wout (London, UK)

Simulation of high intensity focused ultrasoundwith BEM++
and the Laplace–Beltrami preconditioner

11.30-12.00 C. Urzua–Torres (Zürich, Switzerland)
Dual–preconditioning for boundary integral equations on
screens

12.00–12.30 T. Führer (Vienna, Austria)
Optimal preconditioning for the coupling of adaptive finite
and boundary elements

12.30 Lunch
15.00–15.30 Coffee
17.00–17.30 M. Aussal (Palaiseau, France)

The sparse cardinal sine decomposition and its application to
fast boundary element method

17.30–18.00 G. Gantner (Vienna, Austria)
Reliable and efficient a posteriori error estimation for adaptive
IGA boundary element methods for weakly singular integral
equations

18.30 Dinner
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Saturday, September 27, 2014
9.00–9.30 S. Kurz (Tampere, Finland)

Structure preserving mesh coupling for Maxwell’s equations
9.30–10.00 D. Amann (Graz, Austria)

Helmholtz transmission problem for composite structures
10.00–10.30 G. Unger (Graz, Austria)

Boundary element methods for Maxwell’s eigenvalue problem
10.30–11.00 Coffee
11.00–11.30 W. L. Wendland (Stuttgart, Germany)

tba
11.30–12.00 Jan Zapletal (Ostrava, Czech Republic)

Shape optimization based on BEM and subdivision surfaces
12.00–12.30 M. Bugeanu (Basel, Switzerland)

A second order convergent trial method for free boundary problems
12.30 Lunch
13.30–18.00 Hiking Tour
18.30 Dinner

Sunday, September 28, 2014
9.00–9.30 H. Harbrecht (Basel, Switzerland)

The H2 wavelet method
9.30–10.00 O. Steinbach (Graz, Austria)

Space–time finite and boundary element methods for parabolic
initial boundary value problems

10.00–10.30 Closing and Coffee
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Helmholtz transmission problem for composite structures

D. Amann, O. Steinbach

TU Graz, Austria

When solving transmission problems for the Helmholtz equation using boundary
integral equations, eigenvalues of the interior Laplace operator, so called spurious
modes, may cause difficulties. If they appear, certain boundary integral operators
lose their injectivity. The existence of spurious modes depends on the wave numbers
as well as on the domains.
In this work we consider the case of a Lipschitz domain with a piecewise constant
wave number. For this model problem we review and discuss three formulations
that overcome the problem mentioned above, which means we can establish unique
solvability for all wave numbers. The presented formulations are the classic combined
boundary integral formulation, the Steklov–Poincaré operator formulation and the
local multitrace formulation. Since we want to efficiently apply iterative solvers, we
examine if these approaches are compatible to preconditioning strategies and how
preconditioners can be constructed. Finally numerical examples are presented to
support our findings and compare the three formulations.
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The sparse cardinal sine decomposition and its application to fast

boundary element method

F. Alouges and M. Aussal

École Polytechnique, Palaiseau, France

Fast convolution algorithms on unstructured grids have become a well established
subject. Algorithms such as Fast Multipole Method (FMM), adaptive cross appro-
ximation (ACA) or H-matrices for instance are, by now, classical and reduce the
complexity of the matrix-vector product from O(N2) to O(N logN) with a broad
range of applications in e.g. electrostatics, magnetostatics, acoustics or electroma-
gnetics.
In this talk we describe a new numerical method [1] which is based on a suitable Fou-
rier decomposition of the Green kernel, associated to sparse quadrature formulae.
We show how the approach uses the so-called Type-III Non Uniform Fast Fourier
Transform (NUFFT) [4,5], to perform efficiently the convolution. Applications for
tri-dimensional Laplace and Helmholtz kernel are provided, both in collocation and
Finite Element approximations. A comparison with the FMM [2,3] shows a simi-
lar complexity scaling. Eventually, we present the acoustics scattering by a human
head, which is of particular importance for 3D- Audio solutions.

References

[1] Alouges, F., Aussal, M. (2014) The Sparse Cardinal Sine Decomposotion and
its application for fast numerical convolution. Submited.

[2] Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations.
Journal of computational physics, 73(2), 325-348.

[3] Greengard, L. (1988). The rapid evaluation of potential fields in particle sy-
stems. MIT press.

[4] Greengard, L., & Lee, J. Y. (2004). Accelerating the nonuniform fast Fourier
transform. SIAM review, 46(3), 443-454.

[5] Lee, J. Y., & Greengard, L. (2005). The type 3 nonuniform FFT and its app-
lications. Journal of Computational Physics, 206(1), 1-5.
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A second order convergent trial method for free boundary problems

Mihaela Monica Bugeanu and Helmut Harbrecht

Universität Basel, Switzerland

In this talk, we will present a method for solving the Bernoulli free boundary pro-
blem using a trial method of second order convergence. For the free boundary, we
impose the Neumann boundary condition and use the Dirichlet boundary data for
the update. We will first present the method in question and then show numerical
results that support the claim of a second order convergent method.
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H-matrix accelerated second moment analysis for potentials with rough

correlation

Jürgen Dölz1, Helmut Harbrecht1, Michael Peters1, Christoph Schwab2

1Universität Basel, Switzerland, 2ETH Zürich, Switzerland

We consider the efficient solution of strongly elliptic potential problems with sto-
chastic Dirichlet data by the boundary integral equation method. The computation
of the solution’s two-point correlation is well understood if the two-point correlation
of the Dirichlet data is known and sufficiently smooth. Unfortunately, the problem
becomes much more involved in case of rough data. We will show that the concept of
the H-matrix arithmetic provides a powerful tool to cope with this problem. By em-
ploying a parametric surface representation, we end up with an H-matrix arithmetic
based on balanced cluster trees. This considerably simplifies the implementation and
improves the performance of the H-matrix arithmetic. Numerical experiments are
provided to validate and quantify the presented methods and algorithms.
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Optimal preconditioning for the coupling of adaptive finite and

boundary elements

M. Feischl1, T. Führer1, D. Praetorius1, E. P. Stephan2

1TU Vienna, Austria, 2Leibniz University, Hannover, Germany

For many relevant applications, the coupling of the finite element method (FEM)
and boundary element method (BEM) appears to be the appropriate numerical me-
thod to cope with unbounded domains. As the problem size increases, so does the
strong need for effective preconditioners for iterative solvers. Most of the available
literature on preconditioning of FEM-BEM coupling techniques deals with the sym-
metric coupling on quasi-uniform meshes. Often, however, non-symmetric coupling
formulations are preferred, since they avoid the computation and evaluation of the
hypersingular integral operator.
We present results [1] on block-diagonal preconditioning for the Johnson-Nédélec
coupling on adaptively generated meshes. With an appropriate stabilization vector
S, which ensures positive defineteness of the coupling formulation, the Galerkin
matrix of the Johnson-Nédélec coupling reads in block form

(

A −MT

1

2
M−K V

)

+ SST ,

where A corresponds to the FEM part, V resp. K to the discrete simple-layer resp.
double-layer integral operator andM is the mass matrix. We consider block-diagonal
preconditioners

(

PFEM 0

0 PBEM

)

,

where the diagonal blocks PFEM and PBEM are symmetric and positive definite.
These are obtained from a local multilevel additive Schwarz decomposition of the
energy space. While the analysis relies on this abstract frame, the resulting precon-
ditioners are obtained from simple algebraic postprocessing of the (history of the)
Galerkin matrix.
Starting from an initial mesh which is adaptively refined by bisection, we prove
that the condition number of the preconditioned system remains bounded, where
the bound depends only on the initial mesh.
Although we shall mainly discuss the 2D Laplace transmission problem, the princi-
pal ideas also apply to the 3D case and Lamé-type transmission problems. Moreover,
the analysis transfers to other coupling methods, such as the symmetric coupling
or the symmetric and non-symmetric Bielak-MacCamy coupling.

References

[1] M. Feischl, T. Führer, D. Praetorius, E. P. Stephan. Optimal preconditioning
for the symmetric and non-symmetric coupling of adaptive finite elements and
boundary elements. ASC Report 36/2013, Vienna University of Technology,
2013.

7



Reliable and efficient a posteriori error estimation for adaptive IGA

boundary element methods for weakly-singular integral equations

M. Feischl, G. Gantner, D. Praetorius

TU Vienna, Austria

A posteriori error estimation and adaptive mesh-refinement are well-established and
important tools for standard boundary element methods (BEM) for polygonal boun-
daries and piecewise polynomial ansatz functions. In contrast, the mathematically
reliable a posteriori error analysis for isogeometric BEM (IGABEM) has not been
considered, yet. In our talk, we aim to shed some light on this gap and to transfer
some known results on reliable a posteriori error estimators from standard BEM to
IGABEM.
As model example serves the weakly-singular integral equation for the 2D Laplacian.
For our IGABEM, we employ non-uniform rational B-splines (NURBS). With φ

denoting the exact solution and Φℓ being the discrete IGABEM solution, we prove
in [2] that the (numerically computable) Faermann error estimator ηℓ, proposed
and analyzed in [1] for standard BEM, provides lower and upper bounds for the (in
general, non-computable and unknown) error in the H−1/2-energy norm, i.e.,

C−1

eff
ηℓ ≤ |||φ− Φℓ||| ≤ Crel ηℓ.

We prove that the constants Ceff , Crel > 0 remain bounded even if new knots are
inserted resp. the multiplicity of knots is increased. In particular, ηℓ can thus be used
to monitor the error decay if the mesh is refined. Moreover, the local contributions of
ηℓ can be used for adaptive IGABEM computations to steer an adaptive algorithm
of the form

Solve −→ Estimate −→ Mark −→ Refine

which automatically detects singularities of the solution and adapts the mesh ac-
cordingly. If compared to uniform mesh refinement, this dramatically reduces the
storage requirements as well as the computing time needed to achieve a certain
prescribed accuracy.

References

[1] Birgit Faermann. Localization of the Aronszajn-Slobodeckij norm and applica-
tion to adaptive boundary element methods, part I. The two-dimensional case.
IMA J. Numer. Anal., 20(2):203–234, 2000.

[2] M. Feischl, G. Gantner, D. Praetorius. Reliable and efficient a posteriori error
estimation for adaptive IGA boundary element methods for weakly-singular
integral equations, ASC Report 23/2014, Vienna University of Technology,
2014.
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The H2-wavelet method

Daniel Alm, Helmut Harbrecht, Ulf Krämer

Universität Basel, Switzerland

Abstract: We introduce theH2-wavelet method for the fast solution of nonlocal ope-
rator equations on unstructured meshes. On the given mesh, we construct a wavelet
basis which provides vanishing moments with respect to the traces of polynomials
in the space. With this basis at hand, the system matrix in wavelet coordinates is
compressed to (N logN) relevant matrix coefficients, where N denotes the number
of boundary elements. The compressed system matrix is computed with nearly line-
ar complexity by using the H2-matrix approach. Numerical results in three spatial
dimensions validate that we succeeded in developing a fast wavelet Galerkin scheme
on unstructured triangular or quadrangular meshes.
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Structure Preserving Mesh Coupling for Maxwell’s Equations

Ossi Niemimäki, Stefan Kurz, Lauri Kettunen

Tampere University of Technology, Finland

The state of the art for mesh coupling at nonconforming interfaces is presented
and reviewed. Mesh coupling is fre-quently applied to the modeling and simula-
tion of motion in electromagnetic actuators. The focus of the contribution is on
lowest order Whitney elements. Both interpolation- and projection-based methods
are considered. In addition to accuracy and efficiency, we emphasize the question
whether the schemes preserve the structure of de Rham com-plex, which underlies
Maxwell’s equations. As a new contribution, a structure preserving projection me-
thod is pre-sented, in which mortar spaces are chosen from the Buffa-Christiansen
complex. This approach is structure preserv-ing. Its performance is compared with
a straightforward interpolation based on Whitney and de Rham maps.

References

[1] Lange E, Henrotte F, Hameyer K. Biorthogonal shape functions for noncon-
forming sliding interfaces in 3-D electrical machine FE models with motion.
IEEE Transactions on Magnetics Feb 2012; 48(2):855–858.

[2] Rapetti F, Buffa A, Bouillaut F, Maday Y. Simulation of a coupled magneto-
mechanical system through the sliding-mesh mortar element method. COM-
PEL – The International Journal for Computation and Mathematics in Elec-
trical and Electronic Engineering 2000; 19(2):332–340.

[3] Journeaux A, Bouillault F, Roger J. Reducing the cost of mesh-to-mesh data
transfer. IEEE Transactions on Magnetics Feb 2014; 50(2):437–440.

[4] Wohlmuth B. A comparison of dual Lagrange multiplier spaces for mortar Fi-
nite Element discretizations. ESAIM: Mathematical Modelling and Numerical
Analysis Nov 2002; 36(6):995–1012.

[5] Bouillault F, Buffa A, Maday Y, Rapetti F. The mortar edge element method
in three dimensions: applica-tion to magnetostatics. SIAM J. Sci. Comput.
2003; 24(4):1303–1327.

[6] Gander MJ, Japhet C. Algorithm 932 PANG: Software for Non-Matching Grid
Projections in 2d and 3d with Linear Complexity. ACM Transactions on Ma-
thematical Software Mar 2013; 9(4):39:1–39:25.

[7] Journeaux A, Nemitz N, Moreau O. Locally conservative projection methods:
benchmarking and practical implementation. COMPEL – The International
Journal for Computation and Mathematics in Electrical and Electronic Engi-
neering Jan 2014; 33(1/2).

[8] Hu Q, Shu S, Zou J. A mortar edge element method with nearly optimal conver-
gence for three-dimensional Maxwell’s equations. Mathematics of Computation
Jul 2008; 77(263):1333–1353.
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1999; 7(3):159–173.

[11] Buffa A, Maday Y, Rapetti F. Applications of the mortar element method
to 3D electromagnetic moving structures. Computational Electromagnetics,
Lecture Notes in Computational Science and Engineering, vol. 28. Springer-
Verlag, 2003; 35–50.

[12] Buffa A, Christiansen S. A dual finite element complex on the barycentric
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A Boundary Element Method for Homogenization

D. Lukáš, J. Bouchala, and M. Theuer

TU VSB Ostrava, Czech Republic

Homogenized coefficients of periodic structures are calculated via an auxiliary par-
tial differential equation in the periodic cell. Typically a volume finite element dis-
cretization is employed for the numerical solution. In this talk we reformulate the
problem as a boundary integral equation using Steklov-Poincaré operators. The re-
sulting boundary element method discretizes boundary of the periodic cell and the
interface between materials within the cell. Under smoothness assumptions we pro-
ve that the homogenized coefficients converge quadratically with the mesh size. We
support the theory with examples.

References

[1] Lukáš, D., Bouchala, J., and Theuer, M.: A boundary element method for
homogenization. Mathematics and Computers in Simulation. To be submitted.
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New analytical results on the convergence of a Convolution Quadrature

method

Timo Betcke, Nicolas Salles

University College, London, UK

We present new analytical results on the convergence of the numerical solution of
wave problems computed using a Convolution Quadrature method with a multistep
scheme. Instead of applying the Laplace transform at the beginning, we discreti-
ze using a multistep scheme, and then we perform a Z-Transform of the discrete
time-steps. It results a range of modified Helmholtz problems in the Laplace do-
main. We prove that the numerical solution obtained with this method can converge
exponentially to the exact solution of the underlying time-stepping solution.
The rate of convergence relies upon the analyticity of the frequency solutions which
depends on the location of the scattering poles of the related modified Helmholtz
problem, so on the integral formulation involved, and on the contour used to apply
the inverse Z-Transform. Numerical results obtained using BEM++ and a time-
domain toolbox are presented.
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Space–time finite and boundary element methods for parabolic initial

boundary value problems

O. Steinbach

TU Graz, Austria

In most cases, finite and boundary element methods for time–dependent partial
differential equations rely on time–stepping schemes. Although such an approach
allows for a subsequent solution of the discrete system, it may not reflect the beha-
vior of the solution properly, at least from an approximation point of view. For the
model problem of the heat equation we will consider finite and boundary element
methods with respect to general decompositions of the space–time domain and its
boundary into finite and boundary elements, respectively. In particular, such an
approach allows for an adaptive refinement simultaneously in space and time. Mo-
reover, the global solution of the overall space–time system can be done in parallel,
in contrast to more standard time discretization schemes. Here we will present a
stability and error analysis of space–time finite and boundary element methods,
and we present some numerical results which indicate the potential of the proposed
approach.
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Boundary element methods for Maxwell’s eigenvalue problem

Gerhard Unger

TU Graz, Austria

In [1,2] boundary element approaches for Maxwell’s eigenvalue problem for bounded
domains were suggested. Numerical examples in these papers indicate a spectrally
correct approximation of Maxwell’s eigenvalue problem by the boundary element
method when Raviart-Thomas elements are used. An analysis of the boundary in-
tegral formulations and their numerical approximations was not given there. In
this talk we address these issues and consider Maxwell’s eigenvalue problem also
in unbounded domains. We analyze boundary integral formulations of Maxwell’s
eigenvalue problem in the framework of eigenvalue problems for holomorphic Fred-
holm operator-valued functions. General numerical results of this theory are applied
to the Galerkin discretization of boundary integral formulations of Maxwell’s eigen-
value problem.

References

[1] M. Durán, J.-C. Nédélec, and S. Ossandón. An efficient Galerkin BEM to
compute high acoustic eigenfrequencies. J. Vib. Acoust., 131(3):(31001)1–9,
2009.

[2] Ch. Winers, J. Xin. Boundary element approximation for Maxwell’s eigenvalue
problem. Math. Methods Appl. Sci., 36(18):2524–2539, 2013.
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Dual-preconditioning for boundary integral equations on screens

Ralf Hiptmair, Carlos Jerez-Hanckes, Carolina Urzúa-Torres

Seminar for Applied Mathematics, ETH Zurich, Switzerland

Operator preconditioning [2,3] based on Calderón identitites breaks down when
considering open boundaries as when modeling screens. On the one hand, the double
layer operator and its adjoint disappear. On the other hand, the associated weakly
singular and hypersingular operators no longer map fractional Sobolev spaces in a
dual fashion but degenerate into different subspaces depending on their extensibility
by zero.
In this presentation, we review our dual-preconditioning technique for the Lapla-
cian in 2D [4] and its extensions. Moreover, we discuss some first results for dual-
preconditioning over three-dimensional screens using Buffa and Christiansen’s ap-
proach [1].

References

[1] Buffa, A., and Christiansen, S. A dual finite element complex on the barycentric
refinement. Mathematics of Computation. (76), pp. 1743–1769, 2007

[2] Hiptmair, R. Operator Preconditioning. Computers and Mathematics with
Applications. (52), pp. 699-706, 2006.

[3] McLean, W., and Steinbach, O. Boundary element preconditioners for a hyper-
singular integral equation on an interval. Advances in Computational Mathe-
matics. (11), pp. 271-286, 1999.

[4] Hiptmair, R., Jerez-Hanckes, C. and Urzúa-Torres C. Mesh-independent ope-
rator preconditioning for boundary elements on open curves. (To appear in:
SIAM J. on Numerical Analysis).
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On the coupled Darcy-Stokes flow

W. L. Wendland

Universität Stuttgart, Germany

In this lecture we consider existence, uniqueness and the construction of the viscous
flow in R

3 around and through a bounded region consisting of different porous
materials. The flow is modeled by Darcy flow in a given bounded domain and Stokes
flow in the exterior c coupled on the boundary surface by continuous transmission of
normal velocities whereas the pressure and the tangential velocities of the exterior
Stokes flow satisfy the Beavers–Joseph conditions. The problem can be formulated in
terms of potential theory based on surface potentials with charges on the boundary
surface and a corresponding system of boundary potential operators of various types
which defines a system of singular Fredholm integral equations for the charges?. This
system of equations can be solved in appropriate Sobolev spaces which provides the
construction of the solution to the flow problem.
This is joint work with Mirela Kohr (Babe ş–Bolyai Univ., Cluj–Napoca, Romania)
and Raja Sekhar (IIT Kharagpur, India).
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Simulation of high intensity focused ultrasound with BEM++ and the

Laplace-Beltrami preconditioner

E. van ’t Wout, S. Arridge, T. Betcke, P. Gelat

University College London, UK

The use of High-Intensity Focused Ultrasound (HIFU) is an important medical
procedure to treat diseased tissue. An array of ultrasound beams can be designed
such that it focuses on a small region. The high intensity concentrated in this area
heats the tissue until a level is reached in which the disease will be destroyed. The
accurate focusing becomes complicated when the diseased tissue is located near a
rib cage due to reflections of the ultrasound beams. In this paper we will simulate
the scattering of ultrasound on a rib cage with the open-source boundary element
method package BEM++ [1].
The simulation of acoustic scattering with the combined field integral equation
(CFIE) for the exterior Helmholtz equation becomes increasingly expensive for lar-
ge wave numbers. To improve the efficiency of the iterative linear solver for high
frequency scattering, the Laplace-Beltrami preconditioner will be used to reduce
the condition number of the CFIE. This operator preconditioner is based on On-
Surface Radiation Condition (OSRC) techniques and approximates the Neumann-
to-Dirichlet map in the high-frequency range [2].
The Laplace-Beltrami preconditioner is a local operator and therefore results in a
sparse system of linear equations that is efficient to solve with a direct method.
Computational experiments show that the number of iterations to solve the pre-
conditioned CFIE hardly grows for increasing wave number. The application of the
Laplace-Beltrami preconditioner to the simulation of acoustic scattering on a rib
cage confirms the feasibility for geometries of industrial interest.

References

[1] W. Śmigaj, S. Arridge, T. Betcke, J. Phillips, and M. Schweiger. “Solving
Boundary Integral Problems with BEM++”, to appear in ACM Transactions
on Mathematical Software, 2014.

[2] M. Darbas, E. Darrigrand, and Y. Lafranche. “Combining analytic precondi-
tioner and Fast Multipole Method for the 3-D Helmholtz equation”, Journal
of Computational Physics, vol. 236, pp. 289–316, 2013.
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Shape optimization based on BEM and subdivision surfaces

Jan Zapletal, Michal Merta

IT4Innovations, VŠB-TU Ostrava, Czech Republic

The presented talk is concerned with numerical solution of shape optimization pro-
blems with constraints given by an elliptic partial differential equation. Our ap-
proach is based on the first-optimize-then-discretize approach, which results in the
Hadamard-Zolésio form of the shape derivative given by a surface integral. This
makes the boundary element method an efficient tool both for the solution of state
and adjoint problems and the evaluation of the shape gradient.
To describe shape perturbations we use subdivision surfaces known, e.g., from com-
puter graphics. While a fine-enough mesh is necessary for the boundary element
analysis, the shape optimization is performed on a lower-resolution mesh represen-
ting the same limit surface. When an optimum is found on the current resolution,
the control mesh is refined to describe finer details of the optimal surface.
To validate the method we present numerical experiments inspired by the Bernoulli
free surface problem.
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