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Abstract

In this note we consider an efficient data–sparse approximation of a modified
Hilbert type transformation as it is used for the space–time finite element discretiza-
tion of parabolic evolution equations in the anisotropic Sobolev space H1,1/2(Q). The
resulting bilinear form of the first order time derivative is symmetric and positive def-
inite, and similar as the integration by parts formula for the Laplace hypersingular
boundary integral operator in 2D. Hence we can apply hierarchical matrices for data–
sparse representations and for acceleration of the computations. Numerical results
show the efficieny in the approximation of the first order time derivative. These re-
sults are necessary for the use of general space–time finite element approximations
of parabolic evolution equations.

1 Introduction

Space–time finite element methods for parabolic evolution equations in the anisotropic
Sobolev space H1,1/2(Q) became quite attractive recently, see, e.g., [3, 4, 7, 11, 13]. While
for an infinite time interval (0,∞) the classical Hilbert transformation can be used to define
a symmetric and positive definite bilinear form for the first order time derivative, for a finite
time horizon T < ∞ in [13] we have introduced a modified Hilbert type transformation
by means of its Fourier series. Since the transformation of a piecewise polynomial local
basis function is global, its Galerkin approximation results in dense stiffness matrices.
Moreover, the definition of the series representation requires a tensor–product structure
for the discretization which limits the applicability of the approach. In [13] we have already
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derived a closed form of the modified Hilbert transformation which is given as a Cauchy
singular integral operator. In this note we will present an alternative representation which
is similar to the integration by parts formula for the hypersingular boundary integral
operator of the Laplacian in 2D. Hence, and as it is done in boundary element methods,
we can use hierarchical matrices [1, 2, 6, 9] for data–sparse representations of the stiffness
matrices to accelerate the computations. Moreover, this approach also allows the use of
general space–time finite element meshes for the numerical solution of parabolic evolution
equations.

As in [13], as a model problem we consider the initial value problem for a first–order
linear ordinary differential equation,

∂tu(t) + µu(t) = f(t) for t ∈ (0, T ), u(0) = 0, (1.1)

where µ ≥ 0 and T > 0 are fixed. A related variational formulation is to find u ∈ H1/2
0, (0, T )

such that
〈∂tu,HTv〉(0,T ) + µ〈u,HTv〉L2(0,T ) = 〈f,HTv〉(0,T ) (1.2)

is satisfied for all v ∈ H1/2
0, (0, T ). Note that

H
1/2
0, (0, T ) =

{
U|(0,T ) : U ∈ H1/2(−∞, T ) with U(t) = 0, t < 0

}
,

H
1/2
,0 (0, T ) =

{
U|(0,T ) : U ∈ H1/2(0,∞) with U(t) = 0, t > T

}
with the Hilbertian norms

‖u‖
H

1/2
0, (0,T )

:=

√
‖u‖2H1/2(0,T ) +

∫ T

0

|u(t)|2

t
dt,

‖u‖
H

1/2
,0 (0,T )

:=

√
‖u‖2H1/2(0,T ) +

∫ T

0

|u(t)|2

T − t
dt.

In (1.2), 〈·, ·〉(0,T ) denotes the duality pairing in [H
1/2
,0 (0, T )]′ and H

1/2
,0 (0, T ) as extension

of the inner product in L2(0, T ).
The modified Hilbert transformation HT : L2(0, T )→ L2(0, T ) is defined as

(HTv)(t) =
∞∑
k=0

vk cos

((π
2

+ kπ
) t

T

)
, t ∈ (0, T ), (1.3)

where

vk =
2

T

∫ T

0

v(t) sin

((π
2

+ kπ
) t

T

)
dt (1.4)

are the Fourier coefficients of the series representation

v(t) =
∞∑
k=0

vk sin

((π
2

+ kπ
) t

T

)
dt, t ∈ (0, T ),
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when v ∈ L2(0, T ) is given. The modified Hilbert transformation HT , as given in (1.3), is

a mapping HT : H
1/2
0, (0, T )→ H

1/2
,0 (0, T ) or a mapping HT : H1

0,(0, T )→ H1
,0(0, T ), where

the latter spaces are defined accordingly. As shown in [13], we have

〈∂tv,HTv〉(0,T ) = ‖v‖2
H

1/2
0, (0,T )

, 〈v,HTv〉L2(0,T ) ≥ 0 for all v ∈ H1/2
0, (0, T ).

Hence, we immediately conclude that the bilinear form

a(u, v) := 〈∂tu,HTv〉(0,T ) + µ〈u,HTv〉L2(0,T ) for u, v ∈ H1/2
0, (0, T )

is continuous and H
1/2
0, (0, T )–elliptic, implying unique solvability of the variational problem

(1.2). Moreover, using a conforming finite element space

Sph,0,(0, T ) := Sph(0, T ) ∩H1/2
0, (0, T ) = span {ϕpk}

pN
k=1

of, e.g., piecewise polynomial and continuous basis functions ϕpk of polynomial degree p ≥ 1,
which are defined with respect to a locally quasi–uniform decomposition

0 = t0 < t1 < t2 < . . . < tN−1 < tN = T, hk = tk − tk−1 for k = 1, . . . , N, (1.5)

the Galerkin finite element formulation of (1.2) is to find uh ∈ Sph,0,(0, T ) such that

〈∂tuh,HTvh〉(0,T ) + µ〈uh,HTvh〉L2(0,T ) = 〈f,HTvh〉(0,T ) (1.6)

is satisfied for all vh ∈ Sph,0,(0, T ). While the stability and error analysis of the Galerkin
formulation (1.6) is standard, the practical realisation requires the computation of the
matrix entries

Ah[k, `] = 〈∂tϕp` ,HTϕ
p
k〉L2(0,T ), Mh[k, `] = 〈ϕp` ,HTϕ

p
k〉L2(0,T ) for k, ` = 1, . . . , pN, (1.7)

and of the vector entries

fk = 〈f,HTϕ
p
k〉(0,T ) for k = 1, . . . , pN. (1.8)

While in our previous work [13], we have used the series representation (1.3) for the imple-
mentation of the modified Hilbert transformation HT , such an approach is most likely not
efficient from a numerical point of view. Recall that the modified Hilbert transformation
HTϕ

p
k of a basis function ϕpk with local support is in general non–local, which results in

dense stiffness and mass matrices Ah and Mh. This motivates to consider data–sparse ap-
proximations as known, e.g., from boundary element methods [1, 6, 9, 10]. The use of the
series representation (1.3) in the numerical implementation requires the Fourier coefficients
(1.4) of the basis function ϕpk, i.e. the basis function ϕpk is needed in a closed form in the
whole time interval (0, T ). While this is not a restriction for the model problem (1.1), in
the more general case of the heat equation this restricts to tensor–product meshes in space
and time. Hence, to be able to use the modified Hilbert transformation within rather gen-
eral space–time finite element meshes, we need to have a closed form of HT which allows
a direct evaluation, and the use of data–sparse approximations also in more general cases.
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2 Alternative representations of the modified Hilbert

transformation

Instead of the series representation (1.3) of the modified Hilbert transformation HT , we
aim to derive a closed form which is more suitable for a direct evaluation. We start to
recall the proof of [13, Lemma 2.8]:

Lemma 2.1 For v ∈ L2(0, T ), the operator HT as defined in (1.3) allows the integral
representation

(HTv)(t) = v.p.

∫ T

0

K(s, t) v(s) ds, t ∈ (0, T ), (2.1)

as a Cauchy principal value integral, where the kernel function is given as

K(s, t) =
1

2T

[
1

sin π(s+t)
2T

+
1

sin π(s−t)
2T

]
.

For v ∈ H1(0, T ), the operator HT as defined in (1.3) allows the integral representation

(HTv)(t) = − 2

π
v(0) ln tan

πt

4T
− 1

π

∫ T

0

∂tv(s) ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
ds (2.2)

for t ∈ (0, T ) as a weakly singular integral.

Proof. First, we prove the lemma for functions in v ∈ H1(0, T ). Let t ∈ (0, T ) be arbitrary
but fixed. To show the representation (2.2), we have by definition

(HTv)(t) =
∞∑
k=0

vk cos

((π
2

+ kπ
) t

T

)
=
∞∑
k=0

2

T

∫ T

0

v(s) sin
((π

2
+ kπ

) s
T

)
ds cos

((π
2

+ kπ
) t

T

)
=
∞∑
k=0

1

T

∫ T

0

v(s)

[
sin

((π
2

+ kπ
) s+ t

T

)
+ sin

((π
2

+ kπ
) s− t

T

)]
ds

= lim
M→∞

M∑
k=0

1

T
lim
ε→0

{∫ t−ε

0

v(s)

[
sin

((π
2

+ kπ
) s+ t

T

)
+ sin

((π
2

+ kπ
) s− t

T

)]
ds

+

∫ T

t+ε

v(s)

[
sin

((π
2

+ kπ
) s+ t

T

)
+ sin

((π
2

+ kπ
) s− t

T

)]
ds

}
.
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Since the double limit and the iterated limits exist, interchanging the order of the limit for
the double sequence is justified and thus, with integration by parts follows

(HTv)(t) = lim
ε→0

lim
M→∞

M∑
k=0

1

T

{
−v(t− ε)

cos
((

π
2

+ kπ
)

2t−ε
T

)(
π
2

+ kπ
)

1
T

+ v(0)
cos
((

π
2

+ kπ
)
t
T

)(
π
2

+ kπ
)

1
T

+

∫ t−ε

0

∂tv(s)
cos
((

π
2

+ kπ
)
s+t
T

)(
π
2

+ kπ
)

1
T

ds− v(t− ε)
cos
((

π
2

+ kπ
)
ε
T

)(
π
2

+ kπ
)

1
T

+ v(0)
cos
((

π
2

+ kπ
)
t
T

)(
π
2

+ kπ
)

1
T

+

∫ t−ε

0

∂tv(s)
cos
((

π
2

+ kπ
)
s−t
T

)(
π
2

+ kπ
)

1
T

ds

− v(T )
cos
((

π
2

+ kπ
)
T+t
T

)(
π
2

+ kπ
)

1
T

+ v(t+ ε)
cos
((

π
2

+ kπ
)

2t+ε
T

)(
π
2

+ kπ
)

1
T

+

∫ T

t+ε

∂tv(s)
cos
((

π
2

+ kπ
)
s+t
T

)(
π
2

+ kπ
)

1
T

ds− v(T )
cos
((

π
2

+ kπ
)
T−t
T

)(
π
2

+ kπ
)

1
T

+ v(t+ ε)
cos
((

π
2

+ kπ
)
ε
T

)(
π
2

+ kπ
)

1
T

+

∫ T

t+ε

∂tv(s)
cos
((

π
2

+ kπ
)
s−t
T

)(
π
2

+ kπ
)

1
T

ds

}
.

With this, it holds true that

(HTv)(t) = lim
ε→0

1

π

{
v(t− ε) ln tan

π(2t− ε)
4T

− 2v(0) ln tan
πt

4T

−
∫ t−ε

0

∂tv(s) ln tan
π(s+ t)

4T
ds+ v(t− ε) ln tan

πε

4T

−
∫ t−ε

0

∂tv(s) ln tan
π(t− s)

4T
ds+ v(T ) ln tan

π(T + t)

4T

−v(t+ ε) ln tan
π(2t+ ε)

4T
−
∫ T

t+ε

∂tv(s) ln tan
π(s+ t)

4T
ds

+v(T ) ln tan
π(T − t)

4T
− v(t+ ε) ln tan

πε

4T
−
∫ T

t+ε

∂tv(s) ln tan
π(s− t)

4T
ds

}
, (2.3)

where the continuity of the inner products 〈·, ·〉L2(0,t−ε), 〈·, ·〉L2(t+ε,T ), and the relation

∞∑
k=0

cos
((

1
2

+ k
)
x
)

1
2

+ k
= − ln tan

x

4
for x ∈ (0, 2π),

5



see [5, 1.442], are used. Since v is Hölder continuous with exponent 1
2
, see [8, Chapitre 2,

Théorème 3.8], we conclude further

(HTv)(t) =
1

π
lim
ε→0

{
[v(t− ε)− v(t+ ε)] ln tan

πε

4T

}
− 2

π
v(0) ln tan

πt

4T

− 1

π

∫ T

0

∂tv(s)

[
ln tan

π(s+ t)

4T
+ ln tan

π |t− s|
4T

]
ds

+
1

π
v(T )

[
ln tan

π(T + t)

4T
+ ln tan

π(T − t)
4T

]
︸ ︷︷ ︸

=0

=− 2

π
v(0) ln tan

πt

4T
− 1

π

∫ T

0

∂tv(s) ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
ds,

where the integrals exist as weakly singular integrals. This shows the representation (2.2).
To prove the representation (2.1), integration by parts in (2.3) yields

(HTv)(t) = lim
ε→0

{∫ t−ε

0

v(s)
1

2T sin π(s+t)
2T

ds+

∫ t−ε

0

v(s)
1

2T sin π(s−t)
2T

ds

+

∫ T

t+ε

v(s)
1

2T sin π(s+t)
2T

ds+

∫ T

t+ε

v(s)
1

2T sin π(s−t)
2T

ds

}

=v.p.

∫ T

0

1

2T

[
1

sin π(s+t)
2T

+
1

sin π(s−t)
2T

]
v(s) ds,

where the last integral is a Cauchy principal value integral. Since H1(0, T ) is dense in
L2(0, T ), the representation (2.1) for functions in L2(0, T ) follows by a density argument.

Remark 2.1 In general, the representation (2.1) is only given as a Cauchy principal value
integral, since for, e.g., v(t) = 1, the integral in (2.1) does not converge as a weakly singular
integral. The representation (2.2) shows that for an arbitrary function v ∈ H1(0, T ), the
function HTv ∈ L2(0, T ) is not a function in Hs(0, T ) for s > 1

2
. As an example, consider

the function v(t) = 1 and its transformation

(HTv)(t) = − 2

π
ln tan

πt

4T
, t ∈ (0, T ),

where the trace for t = 0 does not exist.

Corollary 2.2 For v ∈ H1
0, (0, T ), the operator HT as defined in (1.3) allows the integral

representation

(HTv)(t) = − 1

π

∫ T

0

∂tv(s) ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
ds, t ∈ (0, T ), (2.4)
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as a weakly singular integral, and the traces are given as

(HTv)(0) = − 2

π

∫ T

0

∂tv(s) ln tan
πs

4T
ds, (HTv)(T ) = 0,

where the integral is a weakly singular integral.

Proof. Let v ∈ H1
0, (0, T ) be fixed. The representation (2.4) follows from (2.2). Since the

Fourier series (1.3) converges also in H1
,0(0, T ), we immediately obtain (HTv)(T ) = 0. To

compute the trace (HTv)(0), we consider

(HTv)(0) =
∞∑
k=0

vk cos

((π
2

+ kπ
) 0

T

)
=
∞∑
k=0

vk =
∞∑
k=0

2

T

∫ T

0

v(s) sin
((π

2
+ kπ

) s
T

)
ds,

where the same arguments as given in the proof of the representation (2.2) lead to the
representation of the trace (HTv)(0).

The integral representation (2.4) is used for the computation of the stiffness and mass
matrices as given in (1.7). In particular for functions u, v ∈ H1

0, (0, T ), we have

〈∂tu,HTv〉L2(0,T ) = − 1

π

∫ T

0

∂tu(t)

∫ T

0

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
∂tv(s) ds dt (2.5)

and

〈u,HTv〉L2(0,T ) = − 1

π

∫ T

0

u(t)

∫ T

0

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
∂tv(s) ds dt, (2.6)

which shows a relation with the integration by parts formula for the two–dimensional
Laplace hypersingular boundary integral operator, see, e.g., [12].

3 Realisation of HT

In order to compute the stiffness matrix Ah and the mass matrix Mh in (1.7), we have to
evaluate

Ah[k, `] = 〈∂tϕp` ,HTϕ
p
k〉L2(0,T )

= − 1

π

∫ T

0

∂tϕ
p
`(t)

∫ T

0

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
∂tϕ

p
k(s) ds dt

and

Mh[k, `] = 〈ϕp` ,HTϕ
p
k〉L2(0,T )

= − 1

π

∫ T

0

ϕp`(t)

∫ T

0

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
∂tϕ

p
k(s) ds dt

7



for k, ` = 1, . . . , pN. In the particular case p = 1 we have piecewise linear basis functions

ϕ1
k(t) =


1

hk
(t− tk−1) for t ∈ (tk−1, tk],

1

hk+1

(tk+1 − t) for t ∈ (tk, tk+1),

0 else,

for k = 1, . . . , N − 1 and

ϕ1
N(t) =


1

hN
(t− tN−1) for t ∈ (tN−1, tN ],

0 else.

Since the first–order derivative ∂tϕ
1
k is piecewise constant, we need to compute the matrix

A0,0
h ∈ RN×N with the matrix entries of the form

A0,0
h [i, j] := − 1

π

∫ tj

tj−1

∫ ti

ti−1

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
ds dt (3.1)

for i, j = 1, . . . , N , to build the stiffness matrix

Ah = Z0,0
Ah
A0,0
h (Z0,0

Ah
)> (3.2)

with the help of the assembling matrix

Z0,0
Ah

:=


1
h1
− 1
h2
1
h2

− 1
h3

. . . . . .
1

hN−1
− 1
hN
1
hN

 ∈ RN×N . (3.3)

A similar approach can be used for the mass matrix Mh, which leads to the representation

Mh = Z0,0
Ah

(
A0,1
h (Z0,0

Ah
)> + A0,0

h S0,0
Mh

)
(3.4)

with

A0,1
h [i, j] := − 1

π

∫ tj

tj−1

∫ ti

ti−1

t ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
ds dt (3.5)

for i, j = 1, . . . , N, and

S0,0
Mh

:=


− t0
h1
t2
h2

− t1
h2

. . . . . .
tN−1

hN−1
− tN−2

hN−1
tN
hN

− tN−1

hN

 ∈ RN×N .
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More general, the computation of the stiffness and mass matrices in (1.7) is based on the
calculation of the auxiliary matrix Br,q

h ∈ RN×N with matrix entries

Br,q
h [k, `] := − 1

π

∫ t`

t`−1

αq(t)

∫ tk

tk−1

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
βr(s) ds dt, (3.6)

for k = 1, . . . , N and ` = 1, . . . , N , where αq is a fixed polynomial of degree q ∈ N0 and
βr is a fixed polynomial of degree r ∈ N0. With this notation, the matrix A0,0

h in (3.1) is
equal to B0,0

h for the choice α0(t) = 1, β0(t) = 1, and the matrix A0,1
h in (3.5) is equal to

B0,1
h for the choice α1(t) = t, β0(t) = 1. In addition, the auxiliary matrix Br,q

h ∈ RN×N can
be used for the realisation of the finite element method (1.6) with piecewise polynomial
functions of arbitrary degree p ≥ 1.

As a last point, the treatment of the right–hand side f of (1.8) is investigated for the
special case of p = 1. We assume that f ∈ L2(0, T ) and so, we compute the piecewise
constant L2 projection

Q0
hf =

N∑
`=1

a`ϕ
0
` ∈ S0

h(0, T ), a` =
1

h`

∫ t`

t`−1

f(t) dt, (3.7)

where we have the standard error estimate∥∥f −Q0
hf
∥∥
[H−σ,0 (0,T )]′

≤ c hs−σ‖f‖Hs(0,T )

for s ∈ [0, 1], σ ∈ [−1, 0] and a sufficiently regular right–hand side f . Note that the
convergence for the approximate solution of (1.6) is not spoilt for p = 1. The resulting
right–hand side f̂ ∈ RN , approximating f in (1.8), is given by

f̂k = 〈Q0
hf,HTϕ

1
k〉L2(0,T ) =

N∑
`=1

a`〈ϕ0
` ,HTϕ

1
k〉L2(0,T ) =

(
Z0,0
Ah
A0,0
h a
)
k

(3.8)

for k = 1, . . . , N, where the auxiliary matrix A0,0
h of (3.1) and the assembling matrix Z0,0

Ah
of

(3.3) are used. Note that for the general case of p > 1, the L2 projection on discontinuous,
piecewise polynomial functions of degree p − 1, i.e. Qp−1,−1

h : L2(0, T ) → Sp−1,−1h (0, T ), is
used to define a computable approximation of the right–hand side f ∈ RpN in (1.8), which
preserves the convergence for the approximate solution of (1.6).

3.1 Computation of the matrix entries of the auxiliary matrix

For a fixed polynomial αq of degree q ∈ N0 and a fixed polynomial βr of degree r ∈ N0,
the matrix Br,q

h ∈ RN×N with matrix entries (3.6) is considered. To compute the auxiliary
matrix Br,q

h , the integral in (3.6) is split into a regular part and into a singular part. For
the regular part, a tensor Gauß quadrature

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G(ξν1,n1 , ξν2,n2), (3.9)

9



approximating ∫ 1

0

∫ 1

0

G(ξ1, ξ2) dξ1dξ2

for a function G : [0, 1]× [0, 1]→ R, is applied, where ωνi,ni ∈ R and ξνi,ni ∈ [0, 1] are the
Gauß integration weights and Gauß integration nodes of order ni ∈ N with respect to the
coordinate direction i ∈ {1, 2}. For the resulting singular part, an analytic integration or,
alternatively, the usage of an adapted numerical integration is possible.

In particular, three different cases, which correspond to the singularities of the integral
in (3.6), are investigated. First, for the indices k = ` = 1, we consider

Br,q
h [1, 1] =− 1

π

∫ t1

0

αq(t)

∫ t1

0

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
βr(s) ds dt

=− 1

π

∫ t1

0

∫ t1

0

αq(t) ln

[
tan π(s+t)

4T

s+ t

tan π|t−s|
4T

|s− t|

]
βr(s)︸ ︷︷ ︸

=:F r,q0 (s,t)

ds dt

− 1

π

∫ t1

0

αq(t)

∫ t1

0

ln [(s+ t) |s− t|] βr(s) ds dt︸ ︷︷ ︸
=:Ir,q [1,1]

and further

Br,q
h [1, 1] =− 1

π

∫ 1

0

∫ 1

0

F r,q
0 ((1− ξ)ηh1, ηh1)h21 η︸ ︷︷ ︸

=:Gr,q0,1(ξ,η)

dξ dη

− 1

π

∫ 1

0

∫ 1

0

F r,q
0 (ξh1, (1− η)ξh1)h

2
1 ξ︸ ︷︷ ︸

=:Gr,q0,2(ξ,η)

dη dξ − Ir,q[1, 1]

≈− 1

π

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G
r,q
0,1(ξν1,n1 , ξν2,n2)

− 1

π

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G
r,q
0,2(ξν1,n1 , ξν2,n2)− Ir,q[1, 1] =: B̃r,q

h [1, 1], (3.10)

where the integration domain is split and integration by substitution is applied.
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Second, we examine the indices k = ` = N , i.e.

Br,q
h [N,N ] =− 1

π

∫ T

tN−1

αq(t)

∫ T

tN−1

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
βr(s) ds dt

=− 1

π

∫ T

tN−1

∫ T

tN−1

αq(t) ln

[
tan

π(s+ t)

4T
(2T − s− t)

tan π|t−s|
4T

|s− t|

]
βr(s)︸ ︷︷ ︸

=:F r,qN (s,t)

ds dt

− 1

π

∫ T

tN−1

αq(t)

∫ T

tN−1

ln
|s− t|

2T − s− t
βr(s) ds dt︸ ︷︷ ︸

=:Ir,q [N,N ]

.

Again, splitting the integration domain and integration by substitution yield

Br,q
h [N,N ] =− 1

π

∫ 1

0

∫ 1

0

F r,q
N (tN−1 + (1− ξ)ηhN , tN−1 + ηhN)h2N η︸ ︷︷ ︸

=:Gr,qN,1(ξ,η)

dξ dη

− 1

π

∫ 1

0

∫ 1

0

F r,q
N (tN−1 + ξhN , tN−1 + (1− η)ξhN)h2N ξ︸ ︷︷ ︸

=:Gr,qN,2(ξ,η)

dη dξ − Ir,q[N,N ]

≈− 1

π

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G
r,q
N,1(ξν1,n1 , ξν2,n2)

− 1

π

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G
r,q
N,2(ξν1,n1 , ξν2,n2)− Ir,q[N,N ] =: B̃r,q

h [N,N ]. (3.11)

Third, for the indices k, ` = 1, . . . , N , excluding the cases k = ` = 1 and k = ` = N , it
holds true that

Br,q
h [k, `] =− 1

π

∫ t`

t`−1

αq(t)

∫ tk

tk−1

ln

[
tan

π(s+ t)

4T
tan

π |t− s|
4T

]
βr(s) ds dt

=− 1

π

∫ t`

t`−1

∫ tk

tk−1

αq(t) ln

[
tan

π(s+ t)

4T

tan π|t−s|
4T

|s− t|

]
βr(s)︸ ︷︷ ︸

=:F r,q(s,t)

ds dt

− 1

π

∫ t`

t`−1

αq(t)

∫ tk

tk−1

ln |s− t| βr(s) ds dt︸ ︷︷ ︸
=:Ir,q [k,`]
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and further

Br,q
h [k, `] =− 1

π

∫ 1

0

∫ 1

0

F r,q(tk−1 + (1− ξ)ηhk, t`−1 + ηh`)hkh` η︸ ︷︷ ︸
=:Gr,qk,`,1(ξ,η)

dξ dη

− 1

π

∫ 1

0

∫ 1

0

F r,q(tk−1 + ξhk, t`−1 + (1− η)ξh`)hkh` ξ︸ ︷︷ ︸
=:Gr,qk,`,2(ξ,η)

dη dξ − Ir,q[k, `]

≈− 1

π

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G
r,q
k,`,1(ξν1,n1 , ξν2,n2)

− 1

π

n1∑
ν1=1

n2∑
ν2=1

ων1,n1ων2,n2G
r,q
k,`,2(ξν1,n1 , ξν2,n2)− Ir,q[k, `] =: B̃r,q

h [k, `]. (3.12)

In (3.10), (3.11) and (3.12), a tensor Gauß quadrature (3.9) is applied for the regular
part, whereas the singular parts Ir,q[1, 1], Ir,q[N,N ] and Ir,q[k, `] are calculated analyti-
cally or, alternatively, with an adapted numerical integration. Hence, this leads to the
approximation

B̃r,q
h ≈ Br,q

h . (3.13)

As a special case of (3.13), we consider the approximations

Ã0,0
h ≈ A0,0

h and Ã0,1
h ≈ A0,1

h (3.14)

of the matrices given in (3.1) and (3.5). Thus, with the representations (3.2), (3.4), (3.8),
we have the computable approximations

Ãh := Z0,0
Ah
Ã0,0
h (Z0,0

Ah
)> ≈ Ah, (3.15)

M̃h := Z0,0
Ah

(
Ã0,1
h (Z0,0

Ah
)> + Ã0,0

h S0,0
Mh

)
≈Mh (3.16)

and
f̃ := Z0,0

Ah
Ã0,0
h a ≈ f̂ (3.17)

for the special case of piecewise linear ansatz and test functions, i.e. p = 1, in (1.6). The
treatment of the case of higher polynomial degrees, i.e. p > 1, in (1.6) is straightforward.

3.2 Exponential convergence of the tensor Gauß quadrature

In this subsection, we show that the proposed tensor Gauß quadrature (3.9) applied in
(3.10), (3.11) and (3.12) converges exponentially. To prove that, the integrands of (3.10),
(3.11) and (3.12) should have an analytical extension with respect to every variable on an
ellipse Eρ ⊂ C with focal points 0, 1 and the sum of the half-axes ρ > 1/2, see [10, p.
330]. In particular, the following theorem states that these integrands can be analytically
extended.

12



Theorem 3.1 Let the mesh (1.5) fulfil the assumption max` h` ≤ T
2

and let the function
G : [0, 1]× [0, 1]→ R be one of the functions Gr,q

0,1, G
r,q
0,2, G

r,q
N,1, Gr,q

N,2, Gr,q
k,`,1 or Gr,q

k,`,2, which
are the integrands of (3.10), (3.11) and (3.12). Then, the function G : [0, 1] × [0, 1] → R
can be componentwise analytically extended, i.e. ρ > 1/2 exists such that for all ξ ∈ [0, 1],
the function

Gξ : [0, 1]→ R, Gξ(η) := G(ξ, η),

can be extended to an analytic function G̃ξ : Eρ → C, and for all η ∈ [0, 1], the function

Gη : [0, 1]→ R, Gη(ξ) := G(ξ, η),

can be extended to an analytic function G̃η : Eρ → C.

Proof. We prove only the case G = Gr,q
0,1 since the other cases are analogous. With the

tanc function

tanc(z) =

{
tan(z)
z
, z ∈

{
w ∈ C : Re(w) ∈

(
−π

2
, π
2

)}
,

1, z = 0,

we have the representation

Gr,q
0,1(ξ, η) = F r,q

0 ((1− ξ)ηh1, ηh1)h21 η

= αq(ηh1) ln

[
tan π(2−ξ)ηh1

4T
π(2−ξ)ηh1

4T

tan πξηh1
4T

πξηh1
4T

π2

16T 2

]
βr((1− ξ)ηh1)h21 η

= αq(ηh1) ln

[
tanc

(
π(2− ξ)ηh1

4T

)
tanc

(
πξηh1

4T

)
π2

16T 2

]
βr((1− ξ)ηh1)h21 η

for ξ, η ∈ [0, 1]. Since the tanc function is analytic and different from zero on the strip{
w ∈ C : Re(w) ∈

(
−π

2
, π
2

)}
, the logarithm ln(·) can be extended to the complex loga-

rithm. As all involved functions have an analytic extension, for all η ∈ [0, 1], the function
Gr,q

0,1,η : [0, 1]→ R, Gr,q
0,1,η(ξ) := Gr,q

0,1(ξ, η), can be extended to an analytic function on

{z ∈ C : Re(z) ∈ (−2, 2)} ,

since for ξ, η ∈ [0, 1], it holds true that

πξηh1
4T

∈
(
−π

2
,
π

2

)
⇐⇒ ξη︸︷︷︸

∈[0,1]

∈
(
−2T

h1
,
2T

h1

)
⊃ (−4, 4)

and
π(2− ξ)ηh1

4T
∈
(
−π

2
,
π

2

)
⇐⇒ (2− ξ)η︸ ︷︷ ︸

∈[0,2]

∈
(
−2T

h1
,
2T

h1

)
⊃ (−4, 4),

where the assumption max` h` ≤ T
2

enters. For all ξ ∈ [0, 1], the analytic extension of
Gr,q

0,1,ξ : [0, 1]→ R, Gr,q
0,1,ξ(η) := Gr,q

0,1(ξ, η), follows in the same manner.
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Corollary 3.2 Let the mesh (1.5) fulfil the assumption max` h` ≤ T
2

. The tensor Gauß
quadrature (3.9) applied in (3.10), (3.11) and (3.12) converges exponentially with respect
to the number of Gauß integration nodes.

Proof. This follows immediately from Theorem 3.1 with [10, Theorem 5.3.15, p. 330].

3.3 Approximation of the stiffness and mass matrices with hier-
archical matrices

As the stiffness matrix Ah and mass matrix Mh in (1.7) are dense for piecewise polynomial
functions, the memory consumption of storing these matrices is O(N2). A way out is the
usage of hierarchical matrices (H matrices) with a memory consumption of O(N logN),
see, e.g., [1, 2, 6, 9]. In this subsection, we consider the special case of piecewise linear
functions, i.e. p = 1, in (1.6). As a first step towards H matrices, a geometrical clustering
with respect to the elements

τ` = (t`−1, t`), ` = 1, . . . , N,

is used. For the resulting block cluster tree, the admissibility condition

max {diam(C1), diam(C2)} ≤ ηACA · dist(C1, C2) (3.18)

for clusters C1, C2 with a admissibility parameter ηACA > 1 identifies admissible blocks.
Here, diam(·) denotes the diameter of the cluster and dist(·, ·) denotes the distance of two

clusters. Next, the construction of an approximation for the matrix B̃r,q
h , given in (3.13), via

H matrices is realised with the help of the Adaptive Cross Approximation (ACA), where
the parameter εACA > 0 controls the approximation accuracy of the low–rank matrices,
see, e.g., [1, 9]. Hence, this procedure gives low–rank approximations

B̃r,q,ACA
h ≈ B̃r,q

h ≈ Br,q
h (3.19)

of (3.13) as well as

Ã0,0,ACA
h ≈ Ã0,0

h ≈ A0,0
h and Ã0,1,ACA

h ≈ Ã0,1
h ≈ A0,1

h (3.20)

of (3.14).

3.4 Realisation of the linear system for piecewise linear functions

The linear system corresponding to (1.6),

(Ah + µMh)u = f̂ ,

14



with the approximation f̂ ≈ f of the right–hand side given in (3.8) is equivalent to the
linear system [

A0,0
h (Z0,0

Ah
)> + µ

(
A0,1
h (Z0,0

Ah
)> + A0,0

h S0,0
Mh

)]
u = A0,0

h a, (3.21)

where the representations (3.2), (3.4), (3.8) are used. First, replacing the matrices A0,0
h and

A0,1
h in (3.21) with their approximations (3.14), i.e. using Ãh ≈ Ah in (3.15), M̃h ≈Mh in

(3.16) and f̃ ≈ f̂ in (3.17), gives the linear system[
Ã0,0
h (Z0,0

Ah
)> + µ

(
Ã0,1
h (Z0,0

Ah
)> + Ã0,0

h S0,0
Mh

)]
ũ = Ã0,0

h a (3.22)

with the approximation ũ ≈ u. Second, replacing the matrices A0,0
h and A0,1

h in (3.21) with
their low–rank approximations (3.20) gives the linear system[

Ã0,0,ACA
h (Z0,0

Ah
)> + µ

(
Ã0,1,ACA
h (Z0,0

Ah
)> + Ã0,0,ACA

h S0,0
Mh

)]
ũACA = Ã0,0,ACA

h a (3.23)

with the approximation ũACA ≈ u. Note that at every iteration of an iterative solver, e.g.,
GMRES, for the linear system (3.23), the matrix–vector product of the system matrix in
(3.23) with a vector v is realised as

Ã0,0,ACA
h

[
((Z0,0

Ah
)> + µS0,0

Mh
)v
]

+ Ã0,1,ACA
h

[
µ(Z0,0

Ah
)>v
]
,

where the matrix–vector product for H matrices occurs.

4 Numerical results for piecewise linear functions

In this section, numerical experiments show the exponential convergence of the numerical
integration of Subsection 3.1 and the advantages of the usage of H matrices as described
in Subsection 3.3, where only the special case of piecewise linear functions, i.e. p = 1, in
(1.6) is examined.

4.1 Numerical integration

As an example for the quality of the numerical integration of Subsection 3.1, consider the
non–uniform time mesh

0.0 = t0 < t1 = 0.625 < t2 = 1.25 < t3 = 1.875 < t4 = 2.5 < t5 = 6.25 < t6 = T = 10.0

with n = n1 = n2 Gauß–Legendre points per coordinate direction and analytic integration
of Ir,q in (3.10), (3.11) and (3.12) for the calculation of the auxiliary matrices Ã0,0

h , Ã0,1
h

in (3.14). After assembling with the representations (3.2) and (3.4), the results for the
stiffness matrix Ah and mass matrix Mh in (1.7) are given in Table 1, where we observe
exponential convergence with respect to the number of Gauß integration nodes, as stated
in Corollary 3.2. Different numerical experiments, i.e. more degrees of freedom N , show
the same behaviour of the proposed numerical quadrature.
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n maxk,` |Ah[k, `]− Ãh[k, `]| maxk,` |Mh[k, `]− M̃h[k, `]|
1 5.0287e-02 3.2988e-01
2 7.3350e-04 4.7820e-03
4 7.6937e-07 4.6192e-06
8 4.6935e-12 2.7540e-11

16 4.9741e-13 7.4433e-12
32 4.9730e-13 7.4435e-12
64 4.9716e-13 7.4424e-12

Table 1: Numerical results of the numerical integration with n Gauß–Legendre points per
coordinate direction with a non–uniform time mesh for the stiffness matrix Ah and the
mass matrix Mh for piecewise linear functions.

4.2 Approximations with hierarchical matrices

Consider the ordinary differential equation (1.1) with µ = 10, T = 10 for the exact solutions

u1(t) = e−
t
5 sin(10πt), u2(t) = t3/4,

where u1 is smooth and u2 ∈ H5/4−δ(0, T ), δ > 0, has less regularity. The time mesh is
given by

t` = `
T

N
, ` = 0, . . . , N,

for N = 4 · 2L with the levels L = 0, . . . , 11, i.e. a uniform mesh with a uniform refinement
strategy is considered. The numerical integration is realised with n = n1 = n2 = 10 Gauß–
Legendre points per coordinate direction and analytic integration of Ir,q in (3.10), (3.11)

and (3.12) for the calculation of the auxiliary matrices Ã0,0
h , Ã0,1

h in (3.14). The appearing
integrals for the L2 projection (3.7) of the related right–hand side are computed by the
usage of high–order integration rules. In Table 2 the L2 and H1 errors of the Galerkin finite
element formulation (1.6), realised via solving the approximated linear system (3.22), for
the exact solution u1 are given, where the optimal convergence rates are achieved. In
Table 3 the convergence rates for the singular solution u2 are presented, which are reduced
due to the less regularity of the solution u2.

In the last part of this section, numerical results for the linear system (3.23) are given in
Table 4 and Table 5, where the experiments are the same as in Table 2 and Table 3. Here,
the admissibility parameter is ηACA = 2.0 in (3.18) and the accuracy parameter εACA > 0
is chosen such that the additional approximations via H matrices are smaller than the
approximation error of the finite element method. Table 4 and Table 5 show that the
memory consumption can be significantly decreased via H matrices, including the same
range for the L2 and H1 error, where the numbers of the errors are the same as in Table 2
and Table 3. Note that the memory consumptions mem(Ã0,0,ACA

h ) and mem(Ã0,1,ACA
h ) in

Table 4 and Table 5 contain also the memory consumption for the hierarchical clustering,
i.e. the cluster trees. The last column of Table 4 and Table 5 gives the relative error in the
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L N
‖u1−u1,h‖

L2(0,T )

‖u1‖L2(0,T )
eoc

|u1−u1,h|
H1(0,T )

|u1|H1(0,T )
eoc

0 4 1.01e+00 0.00 9.83e-01 0.00
1 8 9.89e-01 0.03 1.01e+00 -0.04
2 16 9.65e-01 0.04 1.00e+00 0.01
3 32 1.13e+00 -0.22 9.94e-01 0.01
4 64 1.14e+00 -0.02 9.96e-01 -0.00
5 128 4.77e-01 1.26 6.48e-01 0.62
6 256 1.31e-01 1.87 3.46e-01 0.91
7 512 3.37e-02 1.96 1.76e-01 0.97
8 1024 8.51e-03 1.99 8.84e-02 0.99
9 2048 2.13e-03 2.00 4.43e-02 1.00
10 4096 5.34e-04 2.00 2.21e-02 1.00
11 8192 1.34e-04 2.00 1.11e-02 1.00

Table 2: Numerical results of (3.22) with uniform meshes for T = 10, µ = 10 and the
function u1 for piecewise linear functions.

L N
‖u2−u2,h‖

L2(0,T )

‖u2‖L2(0,T )
eoc

|u2−u2,h|
H1(0,T )

|u2|H1(0,T )
eoc

0 4 7.48e-02 0.00 6.06e-01 0.00
1 8 2.83e-02 1.40 4.62e-01 0.39
2 16 8.48e-03 1.74 2.75e-01 0.75
3 32 2.52e-03 1.75 1.65e-01 0.74
4 64 7.92e-04 1.67 1.05e-01 0.64
5 128 2.81e-04 1.50 7.55e-02 0.48
6 256 1.12e-04 1.32 5.92e-02 0.35
7 512 4.77e-05 1.24 4.85e-02 0.29
8 1024 2.05e-05 1.22 4.04e-02 0.26
9 2048 8.79e-06 1.22 3.39e-02 0.26
10 4096 3.74e-06 1.23 2.84e-02 0.25
11 8192 1.59e-06 1.24 2.39e-02 0.25

Table 3: Numerical results of (3.22) with uniform meshes for T = 10, µ = 10 and the
function u2 for piecewise linear functions.
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Euclidean norm between the solution of the linear system (3.22) with a direct solver and
the solution of the linear system (3.23) with the GMRES method with GMRES accuracy
10−10. As implementation of the H matrices, the GYPSILAB software [14] is used.

L N
mem(Ã0,0,ACA

h )

mem(Ã0,0
h )

mem(Ã0,1,ACA
h )

mem(Ã0,1
h )

εACA ‖ũ1−ũACA
1 ‖

2

‖ũ1‖2
0 4 5.12 5.12 5.0e-05 3.1e-15
1 8 2.41 2.41 2.5e-05 6.6e-15
2 16 1.54 1.54 1.3e-05 3.3e-15
3 32 1.23 1.23 6.3e-06 4.7e-14
4 64 1.10 1.10 3.1e-06 7.6e-11
5 128 0.83 0.82 1.6e-06 6.4e-07
6 256 0.56 0.55 7.8e-07 7.5e-06
7 512 0.36 0.36 3.9e-07 3.3e-06
8 1024 0.22 0.22 2.0e-07 4.0e-06
9 2048 0.13 0.13 9.8e-08 3.8e-06
10 4096 0.08 0.08 4.9e-08 5.7e-06
11 8192 0.06 0.05 2.4e-08 4.1e-06

Table 4: Numerical results of (3.23) with uniform meshes for T = 10, µ = 10 and the
function u1 for piecewise linear functions.

L N
mem(Ã0,0,ACA

h )

mem(Ã0,0
h )

mem(Ã0,1,ACA
h )

mem(Ã0,1
h )

εACA ‖ũ2−ũACA
2 ‖

2

‖ũ2‖2
0 4 5.12 5.12 5.0e-05 2.4e-15
1 8 2.41 2.41 2.5e-05 1.9e-15
2 16 1.54 1.54 1.3e-05 1.3e-14
3 32 1.23 1.23 6.3e-06 3.0e-09
4 64 1.10 1.10 3.1e-06 4.9e-09
5 128 0.82 0.83 1.6e-06 2.6e-08
6 256 0.56 0.56 7.8e-07 1.4e-07
7 512 0.36 0.36 3.9e-07 2.4e-07
8 1024 0.22 0.22 2.0e-07 1.1e-07
9 2048 0.13 0.13 9.8e-08 4.3e-08
10 4096 0.08 0.08 4.9e-08 4.7e-08
11 8192 0.06 0.05 2.4e-08 5.6e-08

Table 5: Numerical results of (3.23) with uniform meshes for T = 10, µ = 10 and the
function u2 for piecewise linear functions.
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5 Conclusions

We have proposed a realisation of the modified Hilbert transform HT , which is based on
its integral representation. This appearing integral is split into a regular part and into
a singular part. For the first, a numerical quadrature is applied, where an exponential
convergence of the quadrature with respect to the number of Gauß integration nodes is
achieved, and for the latter, the integration is done analytically. Furthermore, a fast
realisation of HT is derived via H matrices, where numerical examples show a significant
reduction of the memory consumption.

The proposed realisation of HT is directly applicable for the numerical solution of
parabolic evolution equations in anisotropic Sobolev spaces, see [13], for a tensor–product
space–time finite element space, where a realisation for higher polynomial degrees is straight-
forward. Moreover, the integral representation of HT gives the possibility for a realisation
of a space–time finite element method with unstructured and adaptive space–time meshes,
which is a topic for future work.
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