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Abstract

While an integration by parts formula for the bilinear form of the hypersingular boundary
integral operator for the transient heat equation in three spatial dimensions is available in
the literature, a proof of this formula seems to be missing. Moreover, the available formula
contains an integral term including the time derivative of the fundamental solution of the
heat equation, whose interpretation is difficult at second glance. To fill these gaps we provide
a rigorous proof of a general version of the integration by parts formula and an alternative
representation of the mentioned integral term, which is valid for a certain class of functions
including the typical tensor-product discretization spaces.

Keywords: Heat equation, boundary element method, space-time, hypersingular operator, inte-
gration by parts formula
2020 MSC: 65M38, 45E10

1 Introduction

The transient heat equation is the archetype of a parabolic partial differential equation in space
and time. Nevertheless, it has quite a few things in common with elliptic partial differential
equations in space like the Laplace equation, when it comes to integral equations. For example,
one can define the single layer boundary integral operator V' and hypersingular boundary in-
tegral operator D for the heat equation as integral operators on a lateral space-time boundary
Y =002 x(0,T) CRYx R in a similar way as for elliptic partial differential equations. Sur-
prisingly, one can even show that both operators are elliptic in suitable anisotropic Sobolev
spaces [2,4]. This makes it particularly interesting to consider Galerkin variational formulations
for the solution of integral equations of the form V¢ = ¢ or Du = h and related boundary
element methods.

Evaluating the hypersingular operator D for the heat equation is as challenging as in the
elliptic case. The problem is that the operator cannot be expressed as an integral in a classical



sense. In case of the Laplace equation and other elliptic partial differential equations there
exist several approaches to regularize the hypersingular operator. One particularly interesting
strategy is to regularize the bilinear form associated with D instead of the operator itself. Some
sort of integration by parts is applied and eventually leads to a representation in terms of
weakly singular integrals in a discrete setting. This approach has been applied to a wide class of
partial differential equations, e.g., for the Laplace equation |15], the Helmholtz equation [12,16],
time-harmonic Maxwell equations [16] and linear elastostatics [94/10].

For the hypersingular operator of the heat equation or rather the corresponding bilinear form
an integration by parts formula is also available. In [4] a formula for the 241D case, i.e. two
space dimensions plus the additional time dimension, is provided together with an outline of its
proof. A formula for the 3+1D case can be found for example in [5] and [14], but to the best of
our knowledge no proof is provided in the literature. In addition, the formula in the mentioned
works contains a boundary integral including the time derivative of the fundamental solution of
the heat equation, which per se is locally not integrable on the considered integration domain.
This makes it difficult to understand the formula in a general setting. In this work we want
to fill these gaps by giving a rigorous proof of the integration by parts formula in 3+1D in a
rather general form. The problematic integral term with the time derivative will appear here in
a general form, whose evaluation is again difficult for non-smooth functions. However, we will
derive an integral representation which is valid for a certain class of functions including the ones
typically used for discretization and overcomes the problem of the locally non integrable time
derivative.

The remaining paper is structured as follows. Section [2| serves as preparation for the rest
of the paper. Here we introduce the relevant function spaces and provide a few results which
will be used in the main proofs. In Section [3| we focus on the transient heat equation. We
discuss solvability aspects and introduce the boundary integral operators, including the hyper-
singular operator D. As a side result we give a proof of Theorem which is a generalization
of the classical parabolic maximum principle and is needed later on. In Section [4] we finally
consider the general integration by parts formula for the bilinear form of D, which is formulated
in Theorem and proven in Section The aforementioned 'time derivative term’ of this
formula, will be further investigated in Section [5| Here we will give the details why the formu-
lation in [5,|14] is not adequate in general and provide our alternative in Theorem Section @
concludes the paper with a short summary and outlook.

2 Preliminaries

In this section we introduce the basic notation used throughout the paper and discuss a few
concepts and results which we need for the main proofs of the paper.

2.1 Anisotropic Sobolev spaces, trace operators and a surface curl

For an open set A C R? we denote by C(A), C*(A) and C*(A) for k € NU {co} the usual sets
of continuous and k times continuously differentiable functions on A or A in the appropriate
sense. Functions in C*°(A) with compact support are denoted by C°(A). By LP(A), p € [1, ]
we denote the standard Lebesgue spaces on A. When referring to functions in these spaces, we



always mean the related equivalence classes. We use bold face letters to denote spaces containing
functions mapping to R™, whose components are in the respective function space. Whenever we
consider such functions, the dimension n is clear from context, so we do not specify it.

Throughout this work, let £2 C R3 be a bounded Lipschitz domain as in Definition with
boundary I', let 7' > 0 be finite and @ := 2 x (0,T") be the space-time cylinder with lateral
boundary X' := I' x (0,T). In addition let @ > 0. All our considerations in this paper are related
to the initial boundary value problem for the heat equation

gtu —alAu=0 in @, (1)
u(-,0) =0 in 2, (2)
with an additional Dirichlet or Neumann boundary condition
u=yg on X, (3a)
’yf’ltzu =h on X, (3b)
respectively. For the study of these problems we consider the anisotropic Sobolev space
HYY2(Q) == 170, T; H'(2)) N HY?(0,T; L*(92)),
and its subspaces
HG*(Q) == L*(0,T; H' (1)) N Hy*(0,T; L*(82)),
HIG Q) = LX(0.T: HY(2)) N H (0. T: LX(92)),

where we use the standard notation for Bochner spaces and Sobolev spaces. The space H ;10’71/ 2(Q)

can be interpreted as the subspace of H1/ 2(Q) containing functions which are 0 at t = 0, or, to

be more precise, the functions whose extension by zero for ¢ < 0 is in HY'/2(02 x (=00, T)), see

e.g. [11, Proposition 5.2]. The space H ;1761/ 2(Q) contains functions vanishing at ¢ = 7" in the same

sense. Particular representations of the norms of these anisotropic spaces are not needed here,
so we only refer to [4] and [6] for them. Note that we use the notation of [6]. In [4], H1/2(Q)

(T)
and H'1/2(Q) denote the spaces equivalent to H;lo’yl/ 2(Q) and H ;1761/ 2(@).
The following density result will be used several times throughout the paper.

Proposition 2.1. The space
C (T x (0,T)) i= {u: u = Tilg, € CX(R® x (0,T))} (1)
is dense in H"'/2(Q), H}O’}/Q(Q), and H;%61/2(Q).
Sketch of the proof. In |4, Proof of Lemma 2.22] it is mentioned, that
C2(2 x (0,T]) := {u:u=1|g,u € CR> x (0,00)}
is dense in H, ;10’71/ ?(Q), and that this follows from the density of C>(£2) in H'(£2) and the density

of CX((0,T)) ={f: f = ﬂ(o,T)aJ? € CX(0,00)} in H37/2(0,T) by tensor product arguments.
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The same tensor product arguments can be used to show the three density results stated above,
since C°(0,T) is dense in H'/2(0,T), see e.g. [8, Theorem 1.4.2.4], and also in H017/2(0, T) and
H’%/2(O,T), see [24, Theorem 2.2.2]. O

Following [6], we consider in addition the anisotropic Sobolev space
HY2VA(8) .= L2(0,T; HY*(I')) n HY4(0,T; L*(I"))

on X with the norm

T T r H90(7t> - @(77)“%2 1/2
o L A12 )
ol sz = ( GOy ar+ [ D arar)

where || - || j1/2( ) denotes the usual Sobolev—Slobodeckij norm on I', and its dual
H—1/2,—1/4(Z) _ (H1/2’1/4(Z))/.

By (-,-)s we denote the duality product on H~/2-1/4(x) x HY/?1/4(%) which is understood
as the continuous extension of the L? inner product

T
()2 (x) :/0 /Fi/J(w,t)tp(ac,t)dsmdt

from L?(X) x HY/?V4(X) to H-V/2-1/4( %) x HY/2V4(5).
Our interest in the space H'/%1/4(%) is explained by the fact that it can be interpreted as
the trace space of H}O’,l/ 2(Q). Indeed, the following theorem holds.

Theorem 2.2 (|11, Theorem 2.1], [4, Lemma 2.4]). There exists a unique continuous operator
% from H}O’}m(Q) to H'2VA(L) such that v{™u = uly for all u € C°(2 x (0,T)). This
operator s surjective.

Remark 2.3. The trace operator ’y(iftz can also be considered as a surjective operator from
HY12(Q) or Hiblm(@) to H'/2/4(%). In a slight abuse of notation, we denote all three oper-

int

ators by g’y

Corollary 2.4. There exist continuous operators

Ey : H1/2’1/4(E) N H1’1/2(Q),
Bryo: HYVAE) » H(Q),

”

which are right-inverses of the operator 'yiOI}tE on the respective space on Q.

For the definition of the Neumann trace operator we introduce the space

HEY%(Q,0/0t — an) = {u € Hy'"*(Q) : gtu —alu e LQ(Q)}



with the usual norm, see [4,/6], and consider Green’s first identity for the heat equation, which

reads
T
/ / -Vu)vdsg dt = — / /(—aAu)vdscdt—i—a/ /Vu-Vvd:cdt
0o Jn
—l—/ /—Udazdt

for functions v € C%(Q) and v € C*(Q). As usual, we can use this identity to generalize the

Neumann trace n - Vu for u € H 101 2(@ 0/0t — aA), if we can ensure that the right-hand side

is well-defined and continuous for such u and suitable v. This is not immediately clear for the
last integral on the right-hand side, but is established in the following proposition.

Proposition 2.5 ([4, cf. Lemma 2.6]). The bilinear form
T
d(u, v) ::/ / 0 Yo, £) da dt (5)
0o Jo ot
can be continuously extended from C°(2 x (0,T]) x C*(02 x [0,T)) to H1 1/2(62) X H;l,él/z(Q)

and is bounded by a constant cg, which does not depend on 2.

A sketch of the proof of Proposition is given in Section [A.2] Here we continue with the
definition of the Neumann trace operator 'ymt

Proposition 2.6 ([4, cf. Lemma 2.16]). The map
W+ Hg(Q.0/0t —ad) —» BT ()

defined by
(Y, )5y = —/OT/Q (EZ;,O@z;(gt - aA)u —Vu- V(Eg;mb)) dzdt + d(u, Ex. o)) (6)

for all u € H1 1/2(62,8/815 —al) and Y € HY?YYX) is well-defined and continuous. In

particular, it does not depend on the choice of the extension Ex;. o from HY24(5) to H1 1/2(Q).
Furthermore, for u € C*(Q) there holds fymt u=mn-Vu|s.

For later reference, we introduce the surface curl of a function in HY/2/4(%). We define it
using a weak variational definition, inspired by the definitions of the purely spatial tangential
trace and surface curl in [19], see the definition of yr and VF in Sections 16.2 and 16.10,
respectively.

Definition 2.7. The surface curl curly ¢ € H™Y/2=V4(X) of a function p € HY/?V4(X) is
defined by

(curlg p, )5 = (VEsp, curl(Ext))12q) forall ¢ € HY/214 (%), (7)

where Fy is the continuous right inverse of fymt from Corollary and its application to a
vector valued function is understood componentwise.



Proposition 2.8. The operator curly, : HY/2V/4(5) — H~Y/2-1/4( %) is well-defined and con-
tinuous. In particular, is independent of the extension Ex. If € C*(Q) and p = @|x, then
there holds

curly p = Vg x n. (8)

The proof of this proposition is again given in Section in the appendix.

2.2 Selected results from distribution theory

For the proof of the integration by parts formula in Theorem we collect a few definitions and
results of distribution theory, which can be found in a standard textbook like [21] to which we
refer for the missing details.

By D'(A) we denote the distributions on an open set A C R%, which are those linear function-
als on CZ°(A) which are sequentially continuous with the usual notion of convergence in C2°(A),
see e.g. |13 page 65]. In the same manner we define £'(A) as the set of all linear, sequentially
continuous functionals on C°°(A). We use the notation u[w] for the application of u in D’(A)
or £'(A) to a function w in C°(A) or C*°(A), respectively.

Let LL_.(A) be the set of all measurable functions u on A such that ||ul| (k) < oo for all
compact subsets K of A. For each u € L{ (A) we can define a distribution by setting

loc
ufw] ::/uwda:.
A

A distribution that can be represented by a function in L{ (A) in this way is called regular.
For a multi-index o € N the derivative D% of a distribution S € D’(A) is defined by

D*S[w] = (=11 S[DYw)

for all w € CZ°(A), where || := 37, [a;]. The derivative DS is itself a distribution.

The restriction S|p of a distribution S € D’'(A) to an open subset B of A is defined by
setting S|p[w] = S[w] for all w € C°(B), where w denotes the extension by zero of w to A.
There holds S|p € D/(B). The support supp(S) of a distribution S € D'(A) is defined as the
largest relatively closed subset F' of A such that S|4\ = 0. In [21, Theorem 24.2] it is shown
that

E'(A) ={S € D'(A) : supp(S) is a compact subset of A}.

In the following we focus on distributions on the whole space R?. We define the convolution
of a distribution S € D'(R?) and a test function u € C°(R?) by

Sxu: x> Sylu(x —-y)],

where the index y added to S indicates that it acts with respect to this variable. It can
be shown that this is a function in C®°(R?) or even in C°(R?) if supp(S) is compact, see
e.g. |21, Theorem 27.3]. For S € D'(RY), R € &(R?) and u € C2°(R?) we can also consider the
functions

Sylula +4)] : @ Sylu(@+-y)



and Ry[u(-z + -y)], which are in C*°(R?) and C2°(RY), respectively. This follows directly from
the alternative representation Sylu(x + -y)] = (S *%)(—x), where @(x) := u(—x). In particular,
we can define the convolution of S € D'(R?) and R € £'(RY) as an element in D'(R?) via

(S * R)[u] := Sz[Rylu(-z + -y)]] for all u € C°(R?) (9)
and similarly (R * S) € D'(R?) by

(R*S)[u] := Rg[Sy[u(-z + y)]] for all u € C°(RY).
Let us collect some properties of the convolution of distributions defined in this way.

Proposition 2.9 (|21, Theorem 27.4, Propositions 27.3 and 27.5]). Let S € D'(R%), R € &'(RY)
and a € N&. Then

S+R=R=xS,
D*(S*R) = (D*S)* R= S (D*R),
do*xS =28,

where §o is the delta distribution defined by dow] = w(0) for all w € C*(RY).

Two distributions playing an important role in this paper are the adjoint operators ('y(i)‘}tz)’
and (’yi“tz)’ of the trace operators. If we interpret the Dirichlet trace operator 'y(i)f“i; as a continuous
operator from C®°(R? x R) to HY/>1/4(%), its adjoint (7% - H-1/2-14(5) = £'(R3 x R) is
given by

(00%) () [w] := (0, 55w) (10)
for ¢ € H=Y/2~Y4(%) and w € C®(R3 x R). Similarly, we consider the Neumann trace opera-
tor 'yintz as a continuous operator from C®(R3 x R) to H~1/2~1/4(%) by setting vintxu =n-Vu
for u € C*°(R? x R), and end up with its adjoint (7{"%;)" : HY2V4(5) — £ (R? x R) defined by

(%) (W)[w] = (sw, v) s (11)

for 1y € HY2Y4(5) and w € C®(R? x R).

3 The transient heat equation in space-time — selected results

In Section we have introduced the initial-boundary value problem f for the transient
heat equation. Here we want to give some more details about its solution with a focus on
results which are relevant for our later considerations. The first theorem which we state is
a classical existence and uniqueness result, which can be found in a more general form in [1,
Theorem 6.2.8]. The second result known as the parabolic maximum principle is also standard,
see e.g. |7, Section 2.3.3, Theorem 4].

Theorem 3.1. Let g € C(X) such that g(x,0) = 0 for all © € I'. Then the Dirichlet initial
boundary value problem f admits a unique classical solution u € C(Q) N C>(Q).
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Proposition 3.2. Let u € C(Q) N C*(Q) satisfy (1). Then

max_u(x,t) = max u(x,t)
(z,t)eQ (z,t)e(XU(2x{0}))

and the same holds if the maximum is replaced by the minimum on both sides.

Switching to the setting of the anisotropic Sobolev spaces introduced in Section [2.1] allows
us to consider more general Cauchy data and retain the unique solvability. A proof of the
following result can be found for example in [4], see Theorem 2.9 for the Dirichlet problem and
Corollary 3.17 for the Neumann problem.

Theorem 3.3. Let g € HY/?>Y4(X) or h € H-Y271V4X). Then the initial boundary value
problem f with Dirichlet boundary condition or Neumann boundary condition

admits a unique solution u € H;})’}/Q(Q).

A possible strategy to determine the solution of the initial boundary value problem of the
heat equation is to consider related boundary integral equations. The solution « in Theorem
satisfies the representation formula |4, cf. Theorem 2.20]

U= —W*y[iftzu + V(oz’yilf‘txu), (12)
with the single layer potential V : H—1/2-1/4(52) - H;lo”lﬂ(Q) defined by
Vg =Gax ((%)q) (13)

and the double layer potential W : H/21/4(x) — H.lo’l/Z(Q) given by

1y

W = Gax ((a"%) ) . (14)

Here, (’yé?tz)' and (’yintz)' are the adjoint trace operators defined in and , respectively,
G, is the fundamental solution of the heat equation

1 ||
I - — for ¢
Gl t) = { (dmat)?2 P ( 4at> ort=0 (15)
0 otherwise,

and the convolution is understood as convolution of distributions defined in @, where we identify
G, with the regular distribution induced by it. For (z,t) € (R? x (0,T))\X we have the usual
representations of the single and double layer potentials as

_ t
Vq(z,t) :/0 /FGa(m —y,t—7)q(y,7)dsydr,

t 0G,
Weo(x,t) = /0 /F a@ny (x—y,t —7)p(y,7)dsydr.

The latter integral is well-defined for all ¢ € HY21/4(%), while for general ¢ € H-1/2-1/4(x)
the integral representation of V¢ has to be understood in the sense of the duality pairing (-, ) 5.



By applying the Dirichlet and Neumann trace operators to the potentials V and W we get
the usual boundary integral operators, i.e. the single layer operator V', double layer operator K,
adjoint time reversed double layer operator K/, and hypersingular operator D defined by

Vi HV2TUN(E) o g2, Vg =%V,
1, .
K H'/?V(5D) » BY2(5), Ko =5 (WEWe +165We),

1/2— 1/9.— 1 int -
K« HV27UNE) 5 27048), K= g (asVa + anfiva),

D : HY2V4(5) o g=1/2-14(5), Dy = asWe,

see [4, Defintion 3.5]. In that paper the interested reader can also find a proper definition of the
exterior traces ’ygf‘g and wlef‘g, which is skipped here because these operators are not considered
anymore in the following. Regarding the notation and naming of K. we want to point out
that K/ is not the adjoint of K, but the adjoint of the time reversed double layer operator
Kr :=Oro K, with Orf(z,t) := f(z,T —t).

The boundary integral operators can be used in the usual way to obtain solutions of the initial
boundary value problems 7, see e.g. [4,6]. Our focus in this paper lies on the hypersingular
operator D and in particular its application. Before dealing with that, we conclude this section
with Theorem which is a generalization of the maximum principle in Proposition and
will be required in the proof of Theorem For Theorem [3.0] in turn, we have to state yet
another solvability result, namely Theorem

Remark 3.4. In the following theorem non-tangential limits and the non-tangential maximal
function N (u) of a function u in @ will appear. We will use that

N(u)(@,t) := sup{lu(y, 7)| : (y,7) € 7(z, 1)} <sup{|u(y,7)|: (y,7) € Q} (16)

for all (x,t) € X, where y(x,t) C @ is the so-called parabolic non-tangential approach region
of (x,t) € X. The non-tangential limit of a function v in @ at (x,t) € X' is also defined with
respect to this region as

lim u(y, 7).
Y(,t)3(y,7) = (2,0) .7

For the later discussion we do not need the concrete definition of ~(x,t), so we refer to [3,
Section 1] for it.

Theorem 3.5 (|3, Theorems 8.1 and 8.3]). The operator (—1/2 [+ K) is an isometry from L*(X)
to L3(X). In particular, for any g € L*(X) the function

u:W((—;I—I-K)_lg) (17)

1s well-defined. Furthermore, it is the unique function satisfying the following properties:

(i) ue C>®(Q) and (0/0t — aA)u =0,



(ii) we C(2x1[0,T)) and u(-,0) =0,
(iii) the non-tangential mazimal function N(u) is in L*(X%),
(iv) uw= g on X in the sense of non-tangential limits almost everywhere.

Theorem 3.6 (Extended parabolic maximum principle). Let g € L°(X) and u be the solution
to the initial Dirichlet boundary value problem f given by . Then there holds

sup{u(. )] : (.1) € Q} < llgllz~ () (18)

Proof. The idea is to approximate the boundary datum ¢ in L?(X) by a sequence {g, }, in C(X)
such that g,(x,0) = 0 for all z € I" and ||gn|| o (x) < [|g]| oo (x), to construct solutions uy, of the
homogeneous heat equation by Theorems and such that u,, = g, on X, and to show
by contradiction using Proposition for u, and a continuity argument.

We start with the construction of the sequence {gy, }». Due to the density of C(X) in L?(X)
we find a sequence {f,}, in C(X) such that f,, — g in L?(X). Let us first define g, by

fulz,t), if (x,t) is such that [f.(x,?)] < [|gll Lo (),
sign(fn(x,t))||gllLoe(xy, otherwise.

gn(x,t) := {

It is easy to see that g, € C(X) and [|gnllzoo(5) < [|g]lLoc(s) for all n € N. In addition, g, — g
in L?(Y), which follows from the estimate

|§n(mat) —g(a:,t)| < |fn(mat) - g(m,t)\

for all n € N and almost all (x,t) € X¥. Since gp(x,0) = 0 might be violated for some & € I"
we set

tgn(x, 1), ifo<t<i,
e L CONE L
gn(x, 1), otherwise.

By construction, there holds g, € C(X), gn(-,0) = 0 on I' and ||gnllrec(xy < ||gllzee(s for
all n € N. In addition, g, — g, — 0 in L?(X) which implies the convergence of g, to g in L?(X).
Therefore, {gn}n is a sequence in C(X) with the desired properties.

By Theorem [3.1} we can find for each n € N a unique u,, € C*°(Q) N C(Q) which solves the
heat equation and and satisfies u, = g, on Y. From the classical parabolic maximum
principle in Proposition [3.2]it follows that

sup{|un (@, )| : (®,1) € @} < llgnllLoo () < lI9llLoe(5)- (19)

Together with this yields N(up) < [|g]/po(x) on X and thus N(u,) € L*(X). Hence, u,
satisfies all properties of Theorem [3.5] and we obtain the representation

wow( () )

With this representation we can show that u, — wu locally in @ in L?. In fact, let Q. :=
{(x,t) € Q : dist(x, ') > €}. Then the convergence of u, to u in L?(Q.) follows immediately

10



from g, — g in L?(X), since (=31 4+ K) is an isomorphism in L?*(X) as stated in Theorem
and W : L?(X) — L?(Q.) is continuous, which is easy to see.

Suppose now that ( . ) does not hold true. Then there exists a space-time point (xg,tg) € Q
such that |u(xo,t0)| > [|g|lre(x). Since u is continuous in @ due to Theorem [3.5| (7i), we can
find some € > 0, § > 0 and an open set A C Q. with measure |A| > 0 such that (xo,tg) € A
and |u(z,t)| > ||glpeo(sy + 0 for all (z,t) € A. Together with it follows that

// (2, ) — u(a, 1) |2dacdt>// lun (2, ) — u(@, 1) dw dt > 62| 4]
Qe

for all n € N, which is a contradiction to u, — u in L?*(Q.). Therefore, is satisfied. O

4 An integration by parts formula for the evaluation of (D-,-)

The hypersingular boundary integral operator D : H'/21/4 — H=1/2=1/4( %) was introduced in
Sectlon I as —a’ymt W, so formally it is given by

8n$/ / any —y,t—7)q(y,7)dsy dr.

A major difficulty when dealing with this operator is to find an explicit representation for its
evaluation. Since the kernel ((x,t), (y,7)) = 0/0nz0/0nyGq(x — y,t — 7) is not integrable in
a vicinity of the diagonal (x,t) = (y,7) one cannot simply exchange the order of differentiation
and integration in the above formula. Often however, one does not consider the operator D
itself but the associated bilinear form (D-,-)sx on HY/>/4(5) x H'/?1/4(%). For this bilinear
form an alternative representation via integration by parts is available, which eventually allows
for an evaluation by means of weakly singular integrals. A general form of this representation
formula is provided in the following theorem. Its proof is one of the main results in this paper.

Dq(x,t)

Theorem 4.1. Let I' be the boundary of a bounded Lipschitz domain and X = I' x (0,T).
For ¢,y € H1/2’1/4(E) there holds the integration by parts formula

(D, ) s, = a*(curls 9, V(curls @) s + ab(p, ). (20)

Here, the single layer boundary integral operator V is applied componentwise to curly ¢ and the
bilinear form b(-,-) : HY/2Y4(5) x HY21/4(5) = R is defined by

bovt) i= (5 OB (Vien) ) ) 9] 1= = (Viom), grom) (21)
for ¢ € HY2YA(5), ¢ € 4 (C2(R3 x (0,7))) and ¢ € C2(R? x (0,T)) such that ¢ = 1|5,

and as its continuous extension for general ¥ € H1/2’1/4(E).

We will give a rigorous proof of this theorem in Section [£.] A corresponding result for
the 2D case has been given in |4, Theorem 6.1], including an outline of the proof. In that paper
the bilinear form b is represented by b(y, 1) = (0/0tV(pn),yn)s and it is stated in the proof
that it has to be interpreted in the sense of a continuous extension. For the 3D case a similar
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statement can be found in [5, Section 4.7] and |14, Section 3.1.3], but no proof is given. In
addition, the latter authors formulate the result in a less rigorous way and do not clarify how
the second term on the right-hand side of , which they represent as

_a/OT/qu(m,t)n(w)./ot/Fa;a ( —y,t — 7)oy, T)n(y) dsydrdsgdt,  (22)

has to be understood for general ¢ and . In Proposition we will show that the kernel of this
bilinear form, i.e. the function ((x,t), (y,7)) — 0/07 Go(x —y,t —7) is not Lebesgue integrable
on X x Y. This makes it even more difficult to give a suitable meaning to representation .

Since we define the bilinear form b as continuous extension of it is a priori not clear,
how to evaluate it for nonsmooth . The reason is that neither V(¢n) nor ¢ does admit a
weak derivative with respect to time in general, which is why the second term in has to
be understood in the stated distributional sense for smooth 1 as above. In Theorem we
present an alternative representation of b valid for certain classes of functions, which overcomes
this deficiency.

4.1 A proof of the general integration by parts formula

The proof of Theorem is split into three main steps, to each of which we dedicate a separate
paragraph. In the first paragraph we derive an alternative representation of aVW . The steps
in the second and third paragraph are based on the ideas given in [4, Proof of Theorem 6.1]. We
show an integration by parts formula on an auxiliary boundary inside of the space-time domain @
in the second paragraph, using the representation of aVW e from the first one. In the third
paragraph we construct a sequence of auxiliary boundaries X, inside of () which approximate 3/
and show that the integration by parts formula on X' is obtained from the formulas on X, in
the limit as m tends to infinity. The actual proof of Theorem [4.1]is given at the end of the third
paragraph.

An alternative representation of the gradient of the double layer potential

The double layer potential W of a function ¢ € H'/21/ 4(X)) is given by , i.e. the convolution
of the fundamental solution G, in (15) with the distribution (cwif}tz)’ ¢. We use this definition
to derive an alternative representation of its distributional gradient. This approach is motivated
by the proof of the integration by parts formula for elliptic operators in [18, Section 3.3.4].

Proposition 4.2. Let ¢ € HY/>Y/4(5) and u = W be defined by (14). Then there holds
_ 9 . .
aVu = —Go * (a curl curl(yg’s,) (agn) + &(76?%)’@%)) +(10) (apn)  (23)

in the distributional sense on R3 x R, where the convolution is understood componentwise. In
particular, inside of Q) there holds

aVu = — (a curl curl('y(iftg)’(agon)) * Go — <§5(7&1};)'(agpn)> * Go (24)

in the classical sense, and the terms on the right-hand side can be understood as functions

in C*(Q).

12



Proof. The double layer potential u = W is defined in as the convolution of two distri-
butions and therefore it is itself a distribution on R3 x R. We want to take the distributional
gradient of it. For this purpose, let v € C(R? x R). Then there holds

aVu [v] = —auldivy] = —a(Ga * ((a*yifjtz)’cp)) [div v] (25)
= —a(Ga) @ (W) P) (g [div V(- + -y, 0 + )]

where we used the definition of the convolution of distributions in @ With the definition
of (%) in and (%)’ in it follows that

((a’Yifltz)/sO)(yJ) [divo(z + -, t+ )]
= <(04’Yir,lt2)y,r(divv(az gyt ), )5
T
- / / o(y,7)an(y) - Vdive(z +y,t + 7)dsy dr
0 r
= ((7(1)1,1%)/(049071))(%7) Vdivo(z + -y, t + )]

for each (x,t) € R3 xR. By inserting this into and using V divv = curlcurlv + Av, where
A is applied componentwise to v, we get

aVulv] = —a(Ga) @ [(%) (a0n)) g [(curleurl +A)v (4 + -y, + )]
= —a(Ga * ((fy(iftz)’(agon))) [curl curlv + Av]
= —acurlcurl (Ga * ((’y(i)l?tx)’(mpn)» [v] — @A (Ga * ((’y&‘%)’(&(pﬂ))) [v].

Here and in the following the convolution of G, and a vector valued distribution like ('y(i]f‘tz)’ (avpn)

is understood componentwise. By differentiation rules for convolutions of distributions, which
follow from the one stated in Proposition [2.9] it follows

~acurleurl (Go + (4§1%) (agn)) ) [o] = —(Ga * (o curleurl(4§5) (0gn)) ) o],
—al (G * (%) (apm)) ) [o] = ((—adGa) * (%) (apn)) ) o]

Since G, is a fundamental solution of the heat equation there holds 0/0t G, — aAG, = do,
where dg denotes the delta distribution concentrated at 0. As a consequence we can rewrite the
second equation as

((-a8Ga) » (i) (aom) o) = ( (— Gt o) = () (aom) ) o

=~ (Gax (5085 (@om)) ) 0]+ () (agm)lol

Collecting all results we see that

aVulo] = = (Ga+ (acurleurl ) (agn) + 2 () (aem) ) ) o] + (i) (aen)lol

13



Since v € C°(R? x R) was arbitrary, we conclude that holds.
Let us now interpret both sides of as elements in D’'(Q) by restricting the test functions
to C2°(Q). Since the support of (yé?tz)’(acpn) is a subset of X there holds

aVulv] = — <Ga * (a curl curl('y(iftz)'(agon) + ;(*yé?tg)’(agonO) [v]

for all v € CX(Q). The left-hand side can be interpreted as a regular distribution on @ induced
by aVu € L2(Q), because u € H;10’71/2(Q). The first term on the right-hand side can be rewritten
as

int

Gq * (a curl curl(’y(iftz)’(agon)) = (a curl curl(’yo72)'(agpn)) * Gy

Since G, € C°°((R? x R)\{0}) and the distribution curl curl('y(i]f‘tz)’(acpn) has support in X,

one can show that (curl curl(’y(i)r"tg)’ (apm)) * G, is a regular distribution on @ and can be

interpreted as a function in C*°(Q). The same arguments apply to
a int \/ _ a int \/
Go * a(%,z) (pm) | = 5(’70,2) (apn) | * G O

For later reference we define g1, g2 € C*(Q) in agreement with Proposition by

int

g1 = — (oz curl curl('yo,z)’(agon» * G, (26)
9 in
go = — (at('yQtE)’(agon)) * Gy. (27)
Equation can then be written in the short form

aVu = g1 + g in Q. (28)

An integration by parts formula inside the space-time domain ()

The next major step in the proof of Theorem [4.1]is to show a result equivalent to the integration
by parts formula (20) on an auxiliary boundary X, inside of Q). This is formulated in Proposi-
tion The approach is motivated by the smoothness of u = W or rather aVu inside of @,
which permits us to represent normal derivatives of u on X, in a classical way. Furthermore it
allows us to interpret derivatives appearing in duality products (-,-) s = in a distributional sense
and thus to integrate by parts.

Proposition 4.3. Let 2,, be a Lipschitz domain satisfying £2,, C £2 with outward normal vec-
tor m,, and boundary L, = 082y,. Let Qn = 2 x (0,T) and X, = I, x (0,T). Let
o€ HY2Y4Y ), u= Wy and ,, € HY/>'/4(2,,). Then

—a (P w5, = a2 (curls,, Y, 7% V(curls ),

N R T
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Before proving Proposition we consider two lemmata. Keeping in mind the decompo-
sition , we focus first on g; in . In Lemma we show that it is related to the first
term on the right-hand side of . For this purpose we have to draw a connection between
curl(’y(i)r’ltz)’ (¢n) and the surface curl of ¢ defined in (7). This is done in Lemmawhose proof
is given in Section A similar result for purely spatial curls is proven in |18, cf. Lemma 3.3.21].

Lemma 4.4. Let ¢ € H'/>/4(X). Then
curl(y’s)'(on) = (10'%) (curlys ¢) (30)
in D'(R3 x R).

Lemma 4.5. Let X,, be given as in Proposition|4.5 Let o € HY?Y4(X), p,, € HY2V4(5,)
and g, be defined by . Then

- <nm : Pylol;ltz'mgl7 ¢m>27n = az <Cur12m ¢m7 ’Yé?tzwmf/:(curlz cp)>27n' (31)

Proof. Since g1 € C*°(Q) we can interpret
int r int /
— (N, - 7(1)1712m91>¢m>2m = _/0 . Ym (T, ) () - g1(x,t) dsg dt = _('VE)I,IEm) (Ymmnm)|g1],

with (v(iftzm)’(@bmnm) € €'(Q). By we have

gL =— (a curl curl('yg}tg)'(a@n)) x Gy = —a? curl ((curl('y(iftz)'(gon)> * Ga)
and we see that

—(%, ) Gt g1] = 02 (87,) () [curl ((curl(ziis) (om) ) = Ga )|
= o curl(yf%;, ) (tmmm) | (curl(v§5) (¢n)) * Gal ,
i.e. we can integrate by parts in a distributional sense in the duality pairing of £'(Q) and C*°(Q).
The identity , which obviously still holds if X is replaced by X, combined with the previous
equations yields
— (T A, 91, Ym) 5, = @2 (0,) (curls,, ) [ (%) (curly ¢) ) = Ga|
= a?(y%, ) (curls,, ¥) [V(curly )|

=a? (curly, m, 'y(iftzm V(curlg ©)) 5

where we used the definition of V in in the second line and understand its application here
in a componentwise way. [

Proof of Proposition[{.3. We have seen in that the scaled gradient aVu can be written as
the sum of the functions g1,g2 € C*°(Q) given in and . As a consequence, the scaled

Neumann trace a’yif}tzmu on the boundary X, inside of @) is simply given by

int int

int _ int _
vy, U = ANy ‘VO,Em(VU) = Mm% 5,91 T m * ,5,,92

15



and hence

- <’7¥i€mU, 7pm>2m = *<nm : ’Y(i)l,lz‘?mglv wm>2m - <nm : ’Y(i]r,l},mg% ¢m>2m

for all 1, € HY?Y4(%,,). By Equation the first term on the right-hand side of this
equation coincides with the first term on the right-hand side of . Since

92 =~ (505 (egm)) # G = =0 () (9m) = Gu) = 0 5 V(om)

where V' from is applied componentwise again, the equality of the other terms follows
immediately. O

The integration by parts formula as limit case of (29)

Propositionprovides us with an integration by parts formula on artificial boundaries Y/,
inside of . The final step in the proof of Theorem is to deduce the actual integration by
parts formula therefrom. For this purpose, we consider a sequence {{2,},, of smooth
domains approximating (2 as established by Theorem and denote @, := 2,, x (0,T) and
Ym = Iy x(0,T) as before. We will refer to { X, },,, in the following as a smooth approzimating
sequence of X. Let o, € H'/2Y4(X) and define v, € H/?1/4(X,,) to be the restriction of

the extension Ex. g1 € Hi()l/Q(Q) of ¥ to X, i.e.
Y = Y0, (B 00). (32)

Then, the left-hand side and the first term on the right-hand side of converge to the
respective terms of in the limit as m tends to infinity. This is the content of the next two
lemmata. For the convergence of the remaining term, which is handled in Lemma [1.8] additional
assumptions on v are required.

Lemma 4.6. Let { X, },, be a smooth approzimating sequence of X as introduced at the beginning
of the paragraph. Let o, € HY/2V4(X), uw =W, and v, be defined by . Then
lim —a <’Yir,lt2mu7 ¢m>2m = <D(pa ¢>2 (33)

m—0o0

Proof. By the definition of 'ying via Green’s first identity in @ there holds

_ T
(Dp. )z = —alyiu v)x = —a ( | ] Ve V(B 0w) dedt + d EE;,OW) ,

where we use that (0/0t — aA)u = 0, since v = Wep. The Neumann trace on X, is defined
analogously and thus

. T
0 (4 ) s, = —0 ( /0 /Q Vu- V(Es, o) dedt + o, (u, EE;,W)) ,

where we use that (Ex,0v)|qg,, is an extension of 1), into H;{bl/ 2(Qm) and the bilinear form

do,, : Hiil/ 2(Qm) X H;%él/ 2(Qm) — R is defined in the same way as the bilinear form d in
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replacing only {2 by (2,,,. Note that we identify here and in the following u and Ex g) with the
restrictions u|g,, and (Ex. 0¢)|q,,, respectively, when operating on @, to simplify the notation.
By subtracting the second equation from the first it follows that

(D)5 + o (1%, 1, Ym) 53|
(34)

S « + a ’d(u7 EE77Ow) - dQ'm <u7 EE”O’(/})‘ °

/ / Vu - V(EE;,()’(ﬁ) da dt
0 JN2m,

The first term on the right-hand side converges to 0 as m — oo, since u, Ex. g9 € HYM/2(Q)
implies Vu, VEx. 0t € L*(Q) and [£2\$2,,,| — 0.

It is slightly more difficult to see that the second term in converges to zero. The
problem is that d and dg,, are defined only as continuous extensions of for general functions

n H;lo’yl/2(Q) and H;%61/2(Q). Therefore, let {uy}, be a sequence of functions in C°(§2 x (0,T])
converging to u in H}O’}/Z(Q) and {vy, },, be a sequence in C°(2x[0,7T')) converging to v := Ex. g1
in Hl(’]l/Z(Q) The restrictions uy,|g,, € C°(2y, x (0,T]) and v,|n,, € C(2,, x [0,T)) of these
functions converge to ulg,, in H ; 1/ 2(Qm) and v|q,, in H.,; ! 1/ (Qm,), respectively. In particular,
it follows that

lim d(uy,v,) = d(u,v), nh_)rgo dg,, (Un,vn) = dg,, (u,v),

n—00
by the continuity of dg and dg,, stated in Proposition This motivates us to estimate

|d(u, v) = dq,, (u,v)| < |d(u,v) = d(un, vn)| + |d(un, vn) = dq,, (tn, vn)] (35)
+1dQ,, (un, vn) — dq,, (u, v)|

and to show that the right-hand side can be bounded by an arbitrarily small ¢ for a suitably
chosen n and sufficiently large m.
Let € > 0 be fixed. The last summand in can be estimated by

40, (ttn, 0n) = g, (4, 0)] < Idg, (un, 0n) — da, (1, 00)] + |dg, (4, vn) — dg, (u,0)
< callu = wnll e g 1oall i + €alltl grasa 10 = allyrara g

< — — .
< (igg{\|vn|rHibm(Q)} + HunH;d}m(Q)) (Il = wnll 272 gy + 10 = vall gy )

Here we used that the Sobolev norms of functions restricted to @, can be estimated by the
respective norms on () and that the bilinear forms dg,, can be bounded by a constant cq4
independent of the domains (2,,,, as stated in Proposition [2.5] Due to the convergence of u,, to u
and vy, to v there exists an n(e) independent of m such that for all n > n(e)

—1
max {HU - unHH;ldilﬂ(Q)’ ”’U - UTLHH;l’bl/Q(Q)} 6 Ca <Sup {HU’NH 1 1/2(Q)} + HUHHSO’}N(Q)) .

ne

For all such n we conclude that

£
4 (un, va) = day, (w,v)] < 5.
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By repeating the same arguments for the first term in it follows that

d(u,v) = d(un, va)| <

for all n > n(e), where n(e) can be chosen to be the same for both terms.
The second summand in is given by

|d(wn,vn) — dg,, (Un,vn)| = / Ot x,t)vy(x, t) de dt—/ / 8un (x,t)v, (2, t) de dt
0 m

Bt(

/ / 8un (z,t)vp(x, t) de dt|.
O\ 2,

Note that we can use the explicit representation of d and dg,, since u, and v, are smooth.
The convergence of [£2\(2,,,| to zero as m tends to infinity allows us to find an m(e, n) such that

g
’d(umvn) - de(umvn)‘ < §

for all m > m(e,n). Hence, for a fixed n > n(e) and all m > m(e,n) we can bound the right-
hand side of by . Therefore, both terms on the right-hand side of converge to zero
as m — 0o. O

Lemma 4.7. Let { X, }, be a smooth approzimating sequence of X as introduced at the beginning
of the paragraph. Let @, € H1/271/4(E) and Y., be defined by . Then

n%ign@(curlgm Vs ’yéntzmv(curlg ©))x,, = (curly ¥, V(curly ¢)) 5. (36)
Proof. By the definition of the surface curl in there holds

(curly ¥, V(curly ¢))x = (VEx. 0%, curl(‘~/(curlg )Lz Q)

—/ / VEsx. oY) (x,t) - curl(V (curly ¢))(x, t) da dt,

where we used that V(curly ¢) is an extension of V(curly ¢) and that the definition in is
independent of the extensions of the the function 1 and the test function, see Proposition
Similarly it follows that

(curly,, Q/Jm,%iftsz(curlggo / / (VEs. 00)(x,t) - curl(V(curly ¢))(x, t) de dt,

by using in addition, that (Ex.o1)|g,, is an extension of 1, due to its definition in .
Therefore

’(curlg Y, V(curly ¢)) s — (curly,, ¥, *y[l)ntsz/(curlg )5 ’

(VEs. o) (x,t) - curl(V(curls o))(x, t) da dt| .

N\ 2

Note that (VEx.o¢) € L3(Q) and so is curl(V(curly ¢)), due to V(curly ¢) € H1 1/2(62).
Hence, the right-hand side in the last equation converges to zero as m — oo because \Q\Q | — 0.
O
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To show a similar convergence result for the second term of the right-hand side in we
need to require the test function v to be more regular. The following result holds.

Lemma 4.8. Let ¢ € HY2V4(X), 4 € 4(C2(2 x (0,7))) and ¢ € C2(R3 x (0,T)) be
such that ¢ = 1Z|2 Let { X, }m be a smooth approzimating sequence of X' as introduced at the
beginning of the paragraph and vy, = |s, . . Then

iy (28, (57 (o)) ) = blond) (37)

m— 00

with b defined in .
Proof. We start by showing the identity
(mnalts, (5706m) om) = 2%, (385, (Fon) ) [0, (39
ym 8.[: ’ . at s24m y24m ’

where the right-hand side is understood as application of a distribution in D'(R* x (0,T)) to
Y € C°(R3 x (0,T)). For the duality product on the left-hand side there holds

(s, (7em ) ) = [ [ ST (@) m(a)io. 0 st

T _ o
_ _/0 | Vien)(@. 1) mn(a) G (1) dso

where we used classical integration by parts in the second step, which is possible because
V(en) € C®(Q), ¥ € C*(R? x (0,T)) and X, C Q. The right-hand side of this equation
can be interpreted as a duality product on D'(R3 x (0,T)) x C°(R? x (0,T)) by

—(%,) (W, (V(em)) - mum ) l%ﬂ = %(vé?tzm)’ (W, (V(pn)) - 1 ) [,

where the last equality is just the definition of the distributional time derivative. Therefore,

holds true.
Due to the convergence in follows if we can show that

9 in in 1/ 9 in :
57005,) (85, (V(en) - nun) = 5 (LY (Vign) -n)  in D'(R® x (0.7)).  (39)
For this purpose, let w € C°(R3 x (0,T)). Then

i) (Vion) - n)lul - 2685, ) (35, (7 (en) - n) ]

T w T ~ w
/0 /F V(en)(z,t) - n(w)aat(a:, t)dsg dt — /0 " V(en)(x,t) - nm(a:)%t(a:, t)dsg dt
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Since the product of dw/dt and V(en) is in L2(0,T; H(£2)) we can apply the divergence
theorem to both surface integrals in the previous line and get

/OT/Q (div(V(tpn))(w,t)%f(x,t) +V(pn)(x,t)-V (%1;) (m,t)) de dt

_/OT /Qm (div(x?(cpn))(w,t)%‘t“(m,t) +V(pn)(@,t) - V (‘3;;’) (ac,t)) da dt‘

T L~ ow T ~ ow
< // dlv(V(gpn))(m,t)(m,t)dmdt‘—l— // V(gpn)(m,t)-V() (m,t)d:r:dt‘
0 Jo\2n, ot 0o Jo\om, ot
s ow ~ ow
<l div(V ()l 20w | o I emlaan v (57) .
L2(Q\Qm) L2(Q\Qm)

The norms in the last line are bounded for all m and converge to 0 as m — oo, since |Q\ Q| — 0.
Therefore, we have established the convergence in and thus in (37]). O

Finally, we are ready to give a proof of Theorem by collecting all the results.

Proof of Theorem [{.1] Let {X,,},, be a smooth approximating sequence of X' as introduced
at the beginning of the paragraph. As in Lemma [£.8] we assume first that the test function
(NS 75“3(030@ x (0,T))), i.e. ¢ = ¥| g for some ¢ € C2(R? x (0,T)), and denote 1y, := ¢,
On each boundary X, the integration by parts formula derived in Proposition is valid
for ¢ and v.,,,. By applying Lemmata the limit of as m — oo is given by

(D, ) s = a*(curls 1, V(curls ) 5 + ab(p, 1),

which is the desired integration by parts formula on 2.
It remains to show that holds also for general ¢ € H/21/ 4(X) in the appropriate sense.
By reordering the terms in the integration by parts formula we get

ab(p,¥) = (Dp, )5 — o (curls i, V(curly ¢)) 5

for 1 € A% (C°(2 x (0,T))). Since the three operators D : HY/ZV4(5) — H-1/2-1/4(x),
curly : HY/2V4( %) - H-Y2-VY4( %) and V : H Y/2"V4(x) - HY2Y4(X) are continuous,
the right-hand side of that equation interpreted as a bilinear form on HY24(X) x HY/21/4(x)
is continuous too. Hence, also the left-hand side, i.e. the bilinear form

b(-,) « HYPVA(Z) x (O (2 % (0,7))) = R

0
(0.0) -+ bprb) = (Vign), 5vm)
b))
is continuous with respect to the norm in HY/21/4(X) x HY/21/4(%) and it admits a unique,
continuous extension to this space due to the density of fy(i]‘}tE(Cgo (2 x (0,7))) in HY2/4(x%).

In particular, holds for general ¢, € HY/%1/ 4(X) by continuity, if we identify b with its
continuous extension. O
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5 The bilinear form b(-, )

In this section we focus on special situations in which we can express the bilinear form b(-, ) on
the right-hand side of the general integration by parts formula in terms of weakly singular
integrals.

To start off, we consider representation and show that the corresponding integral kernel
0G /0T is not Lebesgue integrable on X x X.

Proposition 5.1. The function ((x,t), (y,7)) — 0Gy/0T(x—y,t—T) is not Lebesgue integrable
on X x M.

The proposition can be shown by a direct computation for arbitrary Lipschitz domains. For
smooth boundaries I" a simpler proof is available, which we present in the following.

Proof. Let I' be smooth. For € > 0 we consider the integral

T (t—e)* 9G,
=)
o JrJo r Or

where (t — &)™ := max(t — ¢,0). It suffices to show that I. diverges as ¢ — 0. Since the kernel
((x,t),(y, 7)) = 0Go/0T(x —y,t—7) is smooth on the integration domain in for all e > 0,
we can first integrate with respect to the time variables and get

(x —y,t—7)dsydrdsgdt, (40)

T rt—e)t 9@ T
// a(w—y,t—T)det:/ (Gol@ —y,2) — Golz — y, 1)) di
o Jo or <
T

7 exp(m_y|2>+ erf(w_m) L erf<|x_y|)
(4mae)3/? dae dralx — y| 2v/aT dralx — y| 2\/ag )’
The integrals of the last two terms over I' x I" are uniformly bounded for arbitrary € > 0 since
the integrands are products of an error function, which is bounded on R, and a scaled Laplace

kernel, which is integrable on I" x I.
For the first term one can show that |20, cf. Theorem 2.1 for smooth I']

T—¢ |z — y|? T—c¢ _
/F 7(4#0(5)3/2 exp ( ~ o )dsy = 4mm,(l + e Vo (x,€)) (41)

where (x,t) — U (2, t) is bounded on I" x [0,7]. The integral of with respect to « over I
is O(¢1/?). Hence, I. = O(¢~/?) and thus it diverges as ¢ — 0. O

Propositionindicates that is not an appropriate representation of the bilinear form b.
Nonetheless, it was used in applications where it yielded satisfactory results, see e.g. [14, Exam-
ple 3.2]. Let us further comment on this.

The standard way to discretize the bilinear forms induced by boundary integral operators of
the heat equation is to use a tensor product approach. To start off, the space-time boundary X
is approximated by a tensor product decomposition X}, = Iy, x I}, where Iy, := {Tk}i\il is a
decomposition of the time interval (0,7") into N; pairwise disjoint, possibly non-uniform, open
intervals 7, = (tx_1,t;) and I} is an admissible triangular mesh approximating the spatial
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boundary I'. Let S}?t (In,) be the space of piecewise constant functions defined on Iy, and
S}Lz (Iy) be the space of piecewise linear and globally continuous functions on the mesh I7,.
Then the tensor product space

SpE0 (Zn) = S}, (Ih) @ Sp, (I,) (42)

is a subspace of HY/21/4(X) typically used for its discretization. For ¢, € Sh (In) and the
indicator function 1., of an interval 7; € I, we have 1., ® @, € S,ll;‘@%t(ﬂh). By a very formal
computation we can evaluate « b(IlTj ® g, 1r; ® Yx) via yielding

ab(l; ® gz, 1r ® @g)

YLy
:_04//@m )0 (Y / / 0Cq t—7)drdtdsy dse

—a [ [ ea@olyn()- <y>/ Gol — 3.t~ t;1) dt sy s, (13)

tj—1

T)pz(y)n(y) dsy dr dsg dt

where we used that 0G,/07(x — y,0) is zero if @ —y # 0. The remaining expression is
then unproblematic since the kernel ((x,t),y) — Gq(x — y,t — tj_1) is Lebesgue integrable
on (I"xj)xI". However, the steps taken to get this expression cannot be easily justified. Indeed,
one cannot apply the classical Fubini theorem to change the order of integration, since the kernel
((x,t),(y, 7)) = 0G4 /0T(x — y,t — T) is not Lebesgue integrable on the integration domain as
seen in Proposition and one cannot ignore the singularities of (x,y) — 0G,/07(x — y,0)
at * = y. Nonetheless, numerical results indicate that the result in holds true. This
motivates us to find a representation of ab(-, ) that is similar to but overcomes the problem
of the locally non-integrable kernel.

5.1 An integral representation of the bilinear form b in a tensor product setting

Let Iy, := {Tk}ivél be a partition of the time interval (0,7") into IV; pairwise disjoint, possibly
non-uniform, open intervals 7, = (tx—_1, tx). Define the space

Cpw(In,) = {0 € L=(0,T) : ¢, € Cl(m), (#lr,) € L ()} (44)

The tensor product space (L®(I) N HY(I')) ® Chy(In,) is a subspace of HY21/4(%). For
functions in this subspace the bilinear form b admits the following representation.

Theorem 5.2. Let ¢ € (L>°(I') N HY*(I")) ® CL,,(In,) and 1 € HY>V4(2) N L>(X). Then

VAT N R A <

+ /F Go(x —y,t —tp_1)p(y, te—1+)n(y) dsy (45)

—y,t — 7)oy, T)n(y) dsy dr

t atp
+/ /Ga( —yt - 1) Py, )nly) dsy d7 | dsg dt,
ty—1 /I or
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where @(-, tx_14) denotes the right limit of ¢ with respect to time in tx_1. In particular, all
occurring integrands are Lebesgue integrable on the respective integration domains.

The representation is tailored to boundary element methods with tensor product spaces
used for discretization. The assumptions on ¢ and 1 are satisfied in this context. For example,
let I}, be a triangulation of a polyhedral boundary and X} = I}, x Iy,. Then ¢, ¢ € Si(@%t(ﬂh)

satisfy the assumptions of Theorem [5.2] and thus

tr tr—1
b( / ¢ €, t [ / 8 - Y, t— T)QO(y, T)n(y) dsy dr
th—1 /1 In 0T

+ /F Golx —y,t —tr—1)e(y, tk—1+)n(y) dsy | dsg dt.
h
(46)

The second term in this representation is similar to what we have formally derived in , SO
Theorem justifies the calculations found in the literature. In [25] it is described in detail
how to deal with the remaining integrals.

We conclude this section with a proof of Theorem The strategy is similar to the one in
the proof of Theorem [£.1] We show a corresponding result on a sequence of auxiliary bound-
aries { X, }, first in Lemma and then prove convergence when taking the limit with respect
to m.

Lemma 5.3. Let 2, be a Lipschitz domain with boundary I, such that §2,, C (2. Let
Em =T x (0,T), ¢ € (L) NHY(I") ® Cly(In,) and thn, € HY?V/4(Ly,). Then

(i, (;w)) ,wm>2m

L et [ [ 2

Y, t — 7)p(y, T)n(y) dsy dr

(47)

+ [ Gale =yt = ti)ply. tir+)nly) ds,

¢ dp
+ / / Go(x —y,t — 7)== (y, 7)n(y) ds, dr | dsz dt.

te_1JI 87'

Proof. For x € I, C {2 there holds
0 ~ 0 ¢
9 Vo) (@ t) = 2 (/ / Gl —y,t — 7)p(y, P)n(y) ds, dT>
T)e(y, T)n(y) dsy dr,

where we used the smoothness of G, away from zero to apply the Leibniz integral rule and
that Go(x — y,0) = 0 for all y € I'. Next, we use the identity 0G,/dt(x — y,t — 1) =
—0Go/0T(x —y,t — 7) for the integrand. For a given t € (0,T") let k be such that ¢t € (tx_1, 1],
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i.e. the interval 7 of the partition Iy, including its right endpoint. Then we can split up the
temporal integral in into integrals over (0,tx_1) and (tx—1,t). For the latter we get

t
-/ Y.t — 7)oy, TIn(y) dsy dr (49)
k—1
9y
= [ Gtz — vt~ ti eyt 0w s, + [ [ Galw -yt - 1) 2y, Tin(y) dsy dr
k—1

using integration by parts, which is possible since (7 +— ¢(y, 7)) € Cp, (In,) for almost all y € I,
and that Go(x —y,0) =0 for all y € I'. Finally, we can rewrite the bilinear form

. O ~ Ne oty O ~
int —
<nm 70,2, (atv(son)) 71/]771>2m = kgl /tkl . ¢m(w7 t)”’lﬂ(m) ’ av(gon)(wv t) dsg dit
and use with 0G,/0t(x —y,t —7) = —0G4o/0T(x — y,t — 7), the splitting of the temporal
integral and to complete the proof of the lemma. O

Proof of Theorem[5.4 Let {2} m, { Am}m and {w, }m be given as in Theorem Iy, =082,
and X, := I, x (0,T). For ¢ € HY/2Y4(X)NL>(X) let ¢ be the unique solutlon of the initial
boundary value problem (|1 . . with Dirichlet datum . Note that 1) admits the representation

U =W((-1/21+ K)"'p), (50)

cf. Theorem In particular, ¢ € C*°(Q) and thus we can define v, := 1Z| 5, in the classical
sense. The idea of the proof is to show that for this choice of X, and ,, the terms on the
right-hand side of converge to the respective terms of in the limit m — oo.

We start with the first term on the right-hand side of (47)). By transforming the integral
over I, into an integral over I" we get

Ne oty th—1
Z [t / / / ¢m($, t)nm(ic) . aaCj—a (:13 —y,t— T)Sp(y, T)'n,(y) dsy dr dsg dt
b1 /tk—1/Im

. . (51)
/k //k 1/ h,, )Y, t,7) - F(y, T)wm(x) dsy dr dsy dt,
tk—1
where we introduced the functions
0G,,
hm(x,y,t,7) = (ﬂ'3 =y, t — 7@, )np (), (52)
Ty, 7)==y, 7)n(y) (53)

and used the homeomorphism A, : I' = I}, and (i) of Theorem [A.3| Let {Z; }_; be a ﬁnlte
family of coordinate cylinders covering I" as in (i) of Theorem @ see also Deﬁmtlon We
split the outer spatial integrals in into segments

Uj Z:FﬂZj
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related to these coordinate cylinders. For this purpose, let {®; }37:1 be a smooth partition of unity
on I subordinate to {Zj}}]:p ie. &; € C*°(R?), supp(®;) C Z;, 0 < ;< land ) ; Pj(x) =1
for all & € I'. Then is further equal to

gt: ZJ: /:1 /Uj /Otk_l /F@j(fc)hm(/lm(m),y,tﬁ) f(y, T)wm(x)dsy drdsy dt.  (54)

k=1j=1

In particular, the convergence of the first term in to the first term in follows if we can
show that

m—r0o0

lim </ttk /U./Otkl/Féj(m)hm(/lm(m),y,t,T)~f(y,7')wm(a:)dsyd7'dswdt> -
k—1 JUj 55

ty

th—
/ / 1/(153'(96)h(9c,y,t,r)-f(y,r)dsyolmlswchs
U; JO r

tk—1

forall k € {1,...,N;} and j € {1,...,J}, where

Py, t,7) o= 0 @yt = ), ().

For this purpose, we split the inner integral of y over I into an integral over
Vi=3Z;nT

and one over the remainder I"\V; and show the convergence of both parts using the classical
dominated convergence theorem.
First, we consider

173 te—1
/ /U /0 /F o, 2@ (@), ,8,7) - g, 7 (@) doy AT st (56)

and observe the pointwise convergence of wy, ()l (A (x),y,t,7) to h(x,y,t, 7) almost every-
where in the integration domain as m — oo. In fact, w,, — 1 pointwise almost everywhere
on I' by Theorem (iv). For the respective convergence of h, (A, (x),y,t,7) in to
h(x,y,t,7) we show the convergence of the individual terms. By (iii) of Theorem we get
that n,y, (A (x)) = n(x) for almost all « € I'. Furthermore A,,(x) — x even uniformly on I,
by (i). Thus, 0G,/0T(Am(x) —y,t —7) = 0G,/OT(x —y,t — ) for all x,y € I' and 7 < t.
Finally, we know that ¢, = TZ‘ »,, and that zz given by attains the Dirichlet boundary
values ¢ on X in the sense of non-tangential limits almost everywhere, see Theorem [3.5] Hence,
U (A (), t) — (x, t) since A, (x) approaches & non-tangentially by point (7) of Theorem[A.3

It remains to find an integrable function that dominates the sequence of integrands. Obvi-
ously there holds ¢; < 1 on U; by construction and |f(y, )| < [¢[/ze(x) almost everywhere
on Y. By Theorem (iv) we get in addition, that wy,,(x) < ¢! for a constant ¢ > 0 inde-
pendent of m and all € I'. Furthermore, ¢, (Am (x))1m(Am(2))| < |¥ po () for almost all
x € I by the extended maximum principle stated in Theorem [3.6 The only term left to bound
is 0Go/0T(Am(x) —y,t—7). Let r and h be the radius and height of the congruent cylinders Z;
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and let 0 := min(r, h). Due to we can assume without loss of generality that |x— A, (x)| < ¢
for all € I" and all m. Then we immediately get A,,(x) € 2Z; for all x € U; = I' N Z; and
thus [Ay,(x) —y|>d forx € Ujand y € I'\V; = F\SZj. This allows us to bound

0G,
or

(Am () —

L>((Br(0)\B;(0))x[0,T])

forallx € Uj, y € I'\Vj, and 0 < 7 <t < T, where Br(0) and Bs(0) are balls centered around
the origin with radii R and §, respectively, and R is so large that 2 C Bp /2(0). The right-hand
side in this estimate is bounded since (r,t) = 0G,/0t(r,t) € C(R3\0 x [0, T]). Altogether we
have found the desired dominating functlon, as

oG
|D5(®) R (A (@), y, 8, 7) - f (Y, T)wm (@)] < [l oo () [¥]] oo () ‘

Lo°((Br(0)\Bs(0))x[0,T7)

almost everywhere in the integration domain of . Therefore, we have established the con-
vergence of to

t t
/k / /k 1/ h(z,y,t,7)- f(y,7)dsy drds, dt. (57)
te—1 r\v;

To show we have to consider the remaining part
ty te—1
/ / / / () P (An(@), 4,1, 7) - £ (3, T)om (@) dsy dr dsg dt. (58)
t—1 Uj 0 V]

We use the parametrization of the regions A,,(U;) and V; by the Lipschitz functions 77( ™ and nj,
respectively, established in Theorem [A.3] - (ii). This is pos&ble since Ap,(Uj) C Iy N 2Z as seen
before. For the sake of simplicity we assume that the coordinates associated with the cylinder Z;
correspond to the original rectangular coordinates, i.e. we neglect additional translations and
rotations. Then can be transformed into

/tkl /B2r(0) /0 /B3r(0) Hu§m) (:ﬁ)dsj (A;"bl (L (@) b (Lin(2), T'(9), t, 7) (59)
(@), T)gm (&) g(9) A2 dr dgy dt.

where I'(9) := (9,1;(9)), Im(2) = (&, nj(m)(:%)), r is still the radius of Z;, B3, (0) the parameter

region of Vj, Z/{J(m) C B»,(0) the parameter region of A,,(U;) and g, (&) and g(9) denote the
surface elements given by

(@) = 11190 @E @) = T+ V@R

We compute the limit of for m — oo using the dominated convergence theorem again.
First we show that the integrand in converges to

L, (0)(®)P;(I'(@))h(I'(Z), I'(9),t,7) - F(I'(),7)9(2)9(Y) (60)
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for almost all &, 9, ¢ and 7 in the integration domain as m — oco. Since I}, (&) # A (I'(Z)) in
general, we cannot use the previous results about pointwise convergence to show this. Instead,
we consider again all terms of the integrand in depending on m separately to show pointwise
convergence. Recall the definition of A, in for this purpose. From Theorem (ii) we
know that nj(-m) converges uniformly to 7;. As a result, I},(x) — I'(&) for all & € B,(0) and
thus 0Go/0T(In (), [(§),t,7) converges to G, /0T (I'(&), I'(§),t,7) for all such &, and g, t
and 7 in the respective domains of integration. Since the convergence of I, (&) to I'(&) is
non-tangential it follows as before that 1, (I (Z),t) — Y(L[(&),t) for almost all & € By, (0)

and t € (tg_1,tx). From Theorem [A.3| (%) we know in addition that Vn](-m) converges pointwise

almost everywhere to Vn; in R2. This implies g,,,(Z) — g(2) for almost all & and furthermore
the convergence of 1, (1,(2)) to n(I'(2)) for almost all & € Ba,(0), due to the representations
1 1
gm(Z) 9(9)
Next we show the convergence of ﬂuqu to 1p, (g) pointwise almost everywhere in Ba.(0).

From it follows that for all & € Bs,(0) and sufficiently small € > 0 there exists an m(e)
such that for all m > m(e)

() = Vol™(@) 7, )T, (@) = (V@) T, -1

A (L N Zepo(&)) © (I N Z:()), (61)

where Z,() == {(£,3) € R® : |€ — &| < p,§ < h;} is the cylinder with center (&,0), radius
p > 0 and the same height h; as Z;. If & € B,(0) and ¢ is so small that (I' N Z.(2)) C Uj,
implies that I7,(Z) € A,,(U;) for all m > m(e). This means that & € Z/{J(m) and thus

]lu;m)(ﬁc) = 1= 1p(9)(&) for all m > m(e). Likewise, if & € Bo,(0)\B,(0) and ¢ is so small
that (I'N Z.(2)) NU; = 0, we get ﬂuj(.m) () = 0=1p, (&) for all m > m(e). Together this
proves Ilu(m) — 1p,(0) almost everywhere in By, (0).

J
Finally we have to show that @;(A;,!(I},,(2))) converges to ®;(I'()) in Ba,(0). Since ®; is
continuous it suffices to show the convergence of its arguments. This follows again from .
Indeed, for each £ > 0 we know by that for all m > m(e) there exists a @, such that
AN (2)) = T'(§m) and g, — &| < €. As a consequence there holds

A5 (L)) = T(@)| = 11 (Gm) = L(@)] = (G, 15 (Gm)) — (@,05(2))] < /1 + L3,

where L; is the Lipschitz constant of 7;. This yields the desired convergence. In particular, we
have shown that the integrand in converges pointwise almost everywhere to (60)).
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For the application of the dominated convergence theorem we bound the integrands in (59)
uniformly by using the estimates

Ilu;m>(ﬁ3)¢'(/17}1(Fm(53)))\ <1
[o(I'(@), T)n(L (@) < [l o (5,
|¢m(Fm(ﬁ:)7t)nm(Fm(ﬁ3))‘ < ||’¢||L°°(E)7
19| < 1+ V0 e,

gm ()] < \/1 + HV77§‘m)HL°°(R2) < \/1 + [1Vn;l Lo (r2)

for almost all &, y, ¢t and 7 in the integration domain. The first estimate is clear by definition.
The second one holds true due to the assumption that ¢ € L>°(X'). The third estimate is again a
consequence of the parabolic maximum principle in Theorem The last two estimates follow
from the definition of the surface elements and the fact that ||V7)J(-m) | zoo 2y < V)|l Lo (m2), se€
Theorem (7i). Therefore, the product of all these functions is bounded by a constant C

independent of m. The only term left to consider is the derivative of the heat kernel

|z —yl? )
- for ¢ .
exp ( 4a(t — 7_) ort>rT

8Ga($_ For) = 6a(t — 1) — |z — y|?
or Yy | (4a)5/2m3/2(t — 1)7/2

By considering only the first part of the numerator we can estimate |17}, cf. Chapter 13 §3]

bas e (- E) - (L2 " (P 3
xp| —— | = -— xp | ——
(4x)>/273/257/2 P dacs das P\ T4as | 2782 (4ar)3/457/4|p|3/2

3/4 3 1 1
<(3) " P g = ) g

(62)

for s =t — 7 > 0, where we used that ¢"" exp(—q) < m™exp(—m) for all m,q > 0. The
expression corresponding to the second part of the numerator can be handled similarly and we
end up with the estimate

0G,
or

S\ T &(a) é(a)
(L (@), I'(§),t,7)| < (T @) - TGP < TR

(63)

almost everywhere in the considered integration domain Bg,(0) X (tx_1,tx) X B3,(0) x (0,t5_1)
in . Since the function on the right-hand side of is integrable on this domain we have
found a function dominating the sequence of integrands.

By the dominated convergence theorem we get that converges to

/tk/ /tk/ ®;(I(@))h(I(Z), I(§),t,7) - F(T(G),7)g(®)g(9) dd dr dg dt
th—1 JBr(0) JO Bs(0)

t th_
-/ / /k 1/ ®j(x)h(x,y,t,7) - f(y,7)dsy dr ds, dt.
tp—1 JU; JO 7
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Together with the convergence of to we conclude .

Recall that we wanted to show that all terms on the right-hand side of converge to the
respective terms of . Equation implies the convergence of the first term. In particu-
lar, the integrand of the first term on the right-hand side of is Lebesgue integrable in the
corresponding integration domain, which is another consequence of the dominated convergence
theorem. The remaining two terms can be handled analogously. For both terms one can trans-
form the integrals of @ over I, into integrals over I" as in and split the integrals up as in
. The individual parts can then be handled as before by splitting the inner integral of y over
I' into integrals over V; and I'\V;. For both one applies the dominated convergence theorem
where one uses the estimate 1 1

Ga(r,t)] < C(Q)WMT/?’
which can be shown as in , to bound the heat kernel and in addition the estimates

‘@(%tk 1) < (s tre—1+) Lo (1)

wo)|<[5;

for y € I' and 7 € (t;_1,tx). Note that these estimates are reasonable due to the assumption
that ¢ € (L®(I) N HY*(IN) ® Chw(In,) with CL (In,) defined in ({@4)). O

Loo(I'x (tk—1,tk))

6 Conclusion

The integration by parts formula for the bilinear form of the hypersingular boundary integral
operator is a key result when it comes to its evaluation in Galerkin methods. In this paper we
have provided a general version of this formula for the 3-+1D transient heat equation in
together with a rigorous proof, which was missing in the literature to the best of our knowledge.
However, the general formula is not sufficient for the evaluation of the bilinear form for non-
smooth functions since it includes the bilinear form b(-,-) in , which is defined only as a
continuous extension. We have shown that the usual interpretation of this bilinear form in
the literature is problematic and provided a suitable alternative for certain types of functions
including the typical tensor product discretization spaces. As a side result we have provided a
proof of a generalization of the classical parabolic maximum principle in Theorem

An alternative strategy for the discretization of the boundary integral operators for the
heat equation is to discretize the space-time boundary X with tetrahedral instead of tensor
product meshes and to consider related discrete function spaces. The representation for the
bilinear form b(-, -) provided in Section [5|is not suitable for such function spaces. An alternative
representation might, however, be derived in a similar way as in that section.
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Appendix

A.1 Lipschitz domains and their smooth approximation

In this paper we use the following definition of Lipschitz domains similar to [3, Definition 2.1].

Definition A.1 (Lipschitz domain). A set Z; C R? is called an open coordinate cylinder with
radius r; > 0 and height h; > 0 if there exist a rectangular coordinate system of R3 obtained
from the standard Cartesian coordinate system by rotation and translation with corresponding
coordinates () € R? and s € R such that

Z; ={(x9,s9)) e R®: || <y, [sYU)| < By}
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A bounded, connected, open subset 2 C R? is called a Lipschitz domain, if there exists a
finite family {Z;}; of open coordinate cylinders covering I" := 02 and for each j there exists a
Lipschitz—continuous function n; : R? — R, i.e. [nj(x) — n;(y)| < L; |z — y| for some L; € R,
such that |n;(x)| < h; and

2Nz ={@9,s9) € 2;: 59 > (@)},

) A , 64
rnz;={9 ;")) : 2 e R} n z;, (6

where (2, s()) denote the coordinates associated with Zj; and h; its height.

Remark A.2. For each Lipschitz domain {2 we can find a family of coordinate cylinders {Z;};
covering I" as in Definition such that for all j the dilated cylinder
3Z; = {(&V),sV)) e R® : |2£U)| < 3r;,|sY)| < 3h;}
satisfies (64]) too, see 3| Definition 2.1] and [23| Section 0.2]. Furthermore we can choose the
cylinders to be congruent, i.e. to have the same radii and heights.
The following result provides us with a sequence {{2,, },, of smooth domains approximating

a given Lipschitz domain (2 from the inside.

Theorem A.3 ([3, Lemma 2.2], [22, Theorem A.1], [23, Theorem 1.12]). Let 2 be a Lipschitz
domain with boundary I'. Then there exist sequences of C*° domains {2y, }m, homeomorphisms
{Am}m and functions {wmy, }m that satisfy:

(i) 2, C 2 and the homeomorphisms Ay, : I' — Iy, := 082y, satisfy
lim (sup{|z — Ap,(x)| :x € I'}) = 0. (65)
In addition, Ay, (x) approaches x non-tangentially.

(ii) There exists a finite family of coordinate cylinders {Z;}; covering I' as in Remark [A.3
and associated Lipschitz functions {n;}; such that for each j and m there exists a function

nj(-m) € C*®(R?) that represents I}, in 37, i.e.

I'nnN3Z; = {(a:(j),n(«m)(w(j))) 2 e R} N3Z;.
(m)

— 15 uniformly and Vi, — Vi pointwise almost everywhere as m

tends to infinity, and Hn](-m)HLoo(Rg) < |[mjllpoe 2y for all m.

(m)

Furthermore, njm

(iii) The normal vectors n,, on Iy, convergence pointwise almost everywhere to the normal
vector v on I', in the sense that N, (Apy(x)) — n(x) for almost all x € I' as m tends to
infinity.

(iv) The functions wy, : I' = Rsq are such that

/wm(a:)dsm :/ dsy
E Am(E)

for all measurable sets E C I', where ds, and dsy denote the surface measures on I’
and Iy, respectively. Furthermore, there exists a constant ¢ > 0 such that ¢ < wy, < ¢!
for all m and w,, — 1 pointwise almost everywhere as m tends to infinity.

32



Remark A.4. In item (i) of Theorem we stated that A,,(x) approaches x non-tangentially.
Roughly speaking this means that the points A,,(x) all lie in a cone centered at . A rigorous
definition is given in [3,[23]. Some additional properties of the approximating domains {2, }m,
are given in the referenced works, and a proof of the theorem can be found in [22, Theorem A.1].

A.2 Postponed proofs

Here we collect the postponed proofs in the order in which they appeared in the paper.

Sketch of the proof of Proposition[2.5, Let u and v be in C2°(2 x (0,7]) and C°(£2 x [0,T)),
respectively. We can extend u to a function @ € H'(R; L?(2)) by setting u(t,-) = 0 for all t < 0
and then setting u(-,t) = u(-,27 —t) for all ¢ > T'. For this extension one can show that

il sz < el

where the constant ¢(7") does only depend on 7. Similarly, we can extend v to a function
v € HY(R; L?(£2)) such that

101l 172 msz2(2)) < C(T)HUHH;{SN(QY
Since u and v are compactly supported in 2 x (0,7] and {2 x [0,T), respectively, there holds

0 - -
d(u,v) / /—vdwdt /AavdwdtéCHU”H1/2(R;L2(Q))HU|’H1/2(R;L2(Q))

< .
= Cd( )HuHth/z(Q)”UHH}’E}M(Q)

(66)

The first estimate here can be shown by switching to the Fourier domain in time using Plan-
cherel’s theorem, where the estimate follows easily when considering the equivalent norms
in H'/?(R; L?(2)) defined via Fourier transforms. The second estimate is a consequence of
the two estimates above. By a density result similar to the one in the sketch of the proof of
Proposition the assertion follows. O

For the next proof we need to introduce another anisotropic Sobolev space, namely
1,1/2
Hy*(Q) = L2(0, T3 Hy(2)) 0 H'2(0,T5 12(92)),

which can be understood as the subspace of H/2(Q) whose functions vanish on X. In a similar
way as in Proposition it can be shown that C2°(Q) is dense in H1 1/2(62).

Proof of Proposition[2.8 We start by showing that the definition in is independent of the
extension Exp of the test function ¥ € HY/2V/4(X). For this purpose, let 1,b1 and 1 in

H'1/2(Q) denote two extensions of ¥ to Q. Then, the difference 1b; — 5 is in H0 1/2(62) and
therefore N _
(Vu, curlyp — curlapg)pzg) =0 (67)

for all u € H'/2(Q). Indeed, integration by parts yields

<VU, curl w>L2(Q) = <u, n - curl ’UJ>E — <’LL, diV(CUI‘l w)>L2(Q) =0
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for w € C°(Q) and thus follows from the density of C°(Q) in H ’1/2(62). This proves
that is independent of the extension Ex of 1.
Similarly, we conclude that is independent of the extension Exy of ¢ by using that

(Vu, curlw) gz ) = (Vu x n,w) 5 + (curl(Vu), w)12g) = 0

for all u € C(Q) and w € HV/2(Q).
To see that curly ¢ € H™/%~V/4(X) and that curly is continuous as a mapping from
HY21/4(5) to H-Y2~1/4(%) we estimate

[(curls @, ) 5| = (VEs@, curl(Ex))r2 @)l < [[VEz@llL2 (g ll curl(Exy)|lrz(g)
<c ||E290HH1»1/2(Q)||EE¢”HL1/2(Q) < CC%TH‘PHHI/ZWL(E)||"/’||H1/2,1/4(2),

where cit denotes the boundedness constant of the extension operators E;.
The only thing left to show is for € C?(Q) and ¢ = @|x. Since the definition of curly
n is independent of the extension of ¢ we can use the particular extension ¢ to get

(curly ¢, Y) s = (Vg curl(Exy))12(g) = (VO X n, ) 5 + (curl(VY), Exth)re()
= <V§5 XM, 1/’)2

for all ¢ € HY/21/ 4(X)), where we used integration by parts in the second step. In particular,
curly ¢ = V@ x m in H-V/2-1/4(x), O

Proof of Lemma[/.4} For all w € C>(R3 x R) there holds
T
curl(o5) (pn) ] = (%) (en)leurlw] = [ [ p(@.0n(@) - curlw(e,t) ds, dr
o Jr

Let us first assume that ¢ € ’y‘nt (C°(£2 x (0,T))), i.e. there exists g € C°(£2 x (0,T)) such
that ¢ = @|y. Then we can rewrite

o(z,t) curlw(zx, t) = curl(pw)(x,t) — Vo(x, t) X w(x,t)

for all ® € I" and t € (0,7). By inserting this into the previous equation we get

/ / -curl(pw)(x,t) dsy dt — / / (Vo(x,t) x w(x,t))ds, dt

The first integral vanishes, which follows by applying the divergence theorem and using that
div curl(pw) = 0. The integrand of the second integral is

n(xz) (Vo(x,t) x w(zx,t) = —w(x,t) - (Vo(x,t) x n(x)) = —w(x,t) - (curly ¢)

where we used in the last step. Hence,

curl(’y(‘)ntz) (pn)[w / / w(x,t) - (curly p)(x,t) ds, dt = (fﬁ)mg) (curly ¢)[w]
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and thus (30) holds for all ¢ € 4" (C°(2 x (0,T))).
Let us now consider a general ¢ € H'/21/4(X). The space ’ymt (C(02 x (0,T))) is dense

in HY/21/4(%), which follows from Proposition Therefore, we can find a sequence {pg}i in
’Y(l)ntg(coo(f? x (0,7T))) such that oy, — ¢ in H/21/4(5) as k — co. It follows that

int

curl(y'%) (orn) — curl(yg'y) (vn)

in the distributional sense as k — oo. In fact, for all w € C°(R3 x R) there holds

k—o0

lim curl(y(’]ntg) (ppm)[w hm / / or(x, t)n(x) - curlw(x, t) ds, dt
= lim (g, 1 - curl'w>L2(2) = (p,n - curlw) 25
k—o0
— curl(3%) (¢n)fuwl.
At the same time

lim curl(15s)'(gxn)[w] = lim (v5'%)' (curly pp)[w] = lim (eurly gr, 15w)
k—o0 k—o0 500 )

= (curly o, 1% w) s = (W% (Curlz ©)w],

for all w € CX(R? x R) due to the continuity of curly in H'/?1/4(X). Hence

curl(7)'%) (¢n) = (1'%)' (curly; )

holds for general ¢ € HY/>1/4(%). O
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