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Abstract

A stable boundary element tearing and interconnecting domain decomposition
method is considered for the parallel solution of the Helmholtz equation. In partic-
ular, we discuss the preconditioned iterative solution of the resulting linear system
and present some numerical results.

1 Introduction

Tearing and interconnecting domain decomposition methods [2, 3] are well established
for an efficient and parallel solution of various elliptic partial differential equations by
using finite and boundary element methods. But in the case of the Helmholtz equation,
additional difficulties may appear. Although the global boundary value problem admits a
unique solution, local subdomain solvers as used in the tearing and interconnecting approch
may fail due to spurious modes. In a recent paper [7] we have introduced a boundary
element tearing and interconnecting domain decomposition approach which is robust for
all local wave numbers. The aim of the present paper is the discussion of some efficient
preconditioners which are needed in the iterative solution of the resulting linear system.
In particular we will use preconditioners of the opposite order [6] for the solution of the
local boundary value problems, while the construction of the global preconditioner is based
on the use of planar waves following the FETI–H method as introduced in [1]. Numerical
results confirm the efficiency and the robustness of the proposed solution strategies.

∗This work was supported by the Austrian Science Fund (FWF) within the project Data sparse boundary

and finite element domain decomposition methods in electromagnetics under the grant P19255.
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2 Formulation of the domain decomposition approach

As a model problem we consider the Neumann boundary value problem of the Helmholtz
equation

∆u(x) + [κ(x)]2u(x) = 0 for x ∈ Ω,
∂

∂nx
u(x) = g(x) for x ∈ Γ, (2.1)

where Ω ⊂ R
3 is a bounded domain with Lipschitz boundary Γ = ∂Ω. We assume that

the boundary value problem (2.1) admits a unique solution. Since the wave number κ(x)
is assumed to be piecewise constant, i.e. κ(x) = κi for x ∈ Ωi, i = 1, . . . , p, instead of (2.1)
we consider the local boundary value problems

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ωi,

∂

∂ni
ui(x) = g(x) for x ∈ Γi ∩ Γ, (2.2)

together with the transmission or interface boundary conditions, see Fig. 1,

ui(x) = uj(x) for x ∈ Γij, (2.3)

∂

∂ni
ui(x)+

∂

∂nj
uj(x) = 0 for x ∈ Γij. (2.4)

To avoid non–unique solutions of either local Dirichlet
or Neumann boundary value problems, instead of the
Neumann transmission boundary condition in (2.4) we
consider a Robin type interface condition given as

Γ12

Γ23

Γ34
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Γ
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Ω4

Figure 1: Decomposition

∂

∂ni
ui(x) +

∂

∂nj
uj(x) + iηijRij [ui(x) − uj(x)] = 0 for x ∈ Γij , i < j, (2.5)

together with the Dirichlet transmission conditions (2.3). Note that the operators Rij :

H1/2(Γij) → H̃−1/2(Γij) are assumed to be self–adjoint and H1/2(Γij)–elliptic, and ηij ∈
R\{0}.
The local subdomain boundary Γi = ∂Ωi of a subdomain Ωi is considered as the union

Γi = (Γi ∩ Γ) ∪
⋃

Γij

Γij,

where Γi ∩ Γ corresponds to the original boundary where Neumann boundary conditions
are given, while Γij denotes the coupling boundary with an adjacent subdomain. We define

(Riu|Γi
)(x) := (Riju|Γij

)(x) for x ∈ Γij (2.6)

and

ηi(x) :=






ηij for x ∈ Γij, i < j,

−ηij for x ∈ Γij, i > j,

0 for x ∈ Γi ∩ Γ .

(2.7)
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We assume, that ηi(x) for x ∈ Γi does not change its sign. This can be guaranteed either
when considering a checker board domain decomposition [1], or when enforcing Robin type
boundary conditions only on a part of the local boundary Γi, i.e. setting ηij = 0 on some
coupling boundaries Γij.
The solutions of the local boundary value problems (2.2) are given by using the represen-
tation formulae [4, 5]

ui(x) =

∫

Γi

U∗
κi

(x, y)ti(y)dsy −

∫

Γi

∂

∂ny

U∗
κi

(x, y)ui(y)dsy for x ∈ Ωi, (2.8)

where

U∗
κi

(x, y) =
1

4π

eiκi|x−y|

|x− y|
, ti(y) :=

∂

∂ny

ui(y), y ∈ Γ

are the fundamental solution of the Helmholtz equation and the associated normal deriva-
tive of the solution ui, respectively. By taking the Dirichlet and Neumann traces of the
representation formulae (2.8) we obtain systems of local boundary integral equations which
can be written by means of the Calderon projector on Γi as

(
ui

ti

)
=

( 1
2
I −Kκi

Vκi

Dκi

1
2
I +K ′

κi

)(
ui

ti

)
. (2.9)

In (2.9),

(Vκi
ti)(x) =

∫

Γi

U∗
κi

(x, y)ti(y)dsy, (Dκi
u)(x) = −

∂

∂nx

∫

Γi

∂

∂ny

U∗
κi

(x, y)ui(y)dsy

are the single layer potential and the hypersingular integral operator, and

(Kκi
ui)(x) =

∫

Γi

∂

∂ny
U∗

κi
(x, y)ui(y)dsy, (K ′

κi
ti)(x) =

∫

Γi

∂

∂nx
U∗

κi
(x, y)ti(y)dsy

are the double layer and the adjoint double layer potential, respectively. The mapping
properties of all boundary integral operators as introduced above are well known [4, 5].
By considering a Galerkin boundary element discretisation of the boundary integral equa-
tions (2.9) by using piecewise constant basis functions for the local Neumann data ti and
piecewise linear basis functions for the local Dirichlet data ui, by inserting the transmis-
sion boundary conditions (2.3) and (2.5), and when applying a tearing and interconnecting
approach, we finally obtain the linear system [7]



Vκ1,h −K̃κ1,h

K̃ ′
κ1,h Dκ1,h + iηR1,h −B⊤

1
. . .

...

Vκp,h −K̃κp,h

K̃ ′
κp,h Dκp,h + iηRp,h −B⊤

p

B1 . . . Bp







t1
u1
...
tp
up

λ




=




0
g

1
...
0
g

p

0




.

(2.10)

3



Note that K̃κi,h := (1
2
Mi,h + Kκi,h), and Bi are boolean matrices which ensure the conti-

nuity of the Dirichlet data. Since the related global bilinear form is coercive satisfying a
G̊arding inequality, unique solvability of the linear system (2.10) follows if the mesh size
h is sufficiently small [7]. After eliminating the primal degrees of freedom we end up with
the Schur complement system

Fλ =

p∑

i=1

(
0 Bi

)(
Vκi,h −K̃κi,h

K̃ ′
κi,h

Dκi,h + iηiRi,h

)−1(
0

B⊤
i λ

)
(2.11)

= −

p∑

i=1

(
0 Bi

)(
Vκi,h −K̃κi,h

K̃ ′
κi,h

Dκi,h + iηiRi,h

)−1(
0
g

i

)
= d .

3 Construction of preconditioners

For an iterative solution of the linear system (2.11) by using a GMRES method in parallel,
we need to have efficient preconditioners. This involves the construction of a global precon-
ditioner CF for the assembled stiffness matrix F , and the derivation of local preconditioners
CAi

for the local matrices

Ai =

(
−Vκi,h K̃κi,h

K̃ ′
κi,h

Dκi,h + iηiRi,h

)
, i = 1, . . . , p. (3.1)

3.1 Local preconditioners

We first describe local preconditioners CAi
for the local systems (3.1). For this we use a

block diagonal preconditioner which is based on the idea of operators of opposite order [6],

C−1
Ai

:=

(
−M−1

0,i,hDi,hM
−1
0,i,h

M−1
1,i,hV i,hM

−1
1,i,h

)
, (3.2)

where M0,i,h and M1,i,h are the mass matrices using constant and linear basis functions,
respectively. The matrix V i,h is the Galerkin discretisation of the single layer potential by
using piecewise linear and continuous basis functions,

V i,h[ℓ, k] =
1

4π

∫

Γi

φi,ℓ(x)

∫

Γi

1

|x− y|
φi,k(y)dsydss.

Accordingly, Di,h is the Galerkin discretisation of the stabilised hypersingular boundary
integral operator. When using integration by parts, the matrix entries are given as

Di,h[ℓ, k] =
1

4π

∫

Γi

∫

Γi

curlΓ ψi,k(y) · curlΓ ψi,ℓ(x)

|x− y|
dsydss + 〈1, ψi,k〉Γi

〈1, ψi,ℓ〉Γi
.

Since the local single layer potential Vκi,h is discretised by using piecewise constant basis
functions, also the preconditioning matrix Di,h has to be discretised by using the same
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piecewise constant basis functions. The application of curlΓ on a constant function can
be interpreted as a distribution on the edges which leads to a formulation based on line
integrals

Di,h[ℓ, k] =
1

4π

∫

∂τi,k

∫

∂τi,ℓ

ri,k · ri,ℓ

|x− y|
dsydsx + 〈1, ψi,k〉Γi

〈1, ψi,ℓ〉Γi
,

where ri,k and ri,ℓ are the direction vectors of the edges of the triangles τi,k and τi,ℓ. Note
that the described Galerkin discretisation of the hypersingular boundary integral operator
by using piecewise constant basis functions is non–conform, and requires special techniques
when evaluating singular line integrals involved.

3.2 Global preconditioners

For the construction of a global preconditioner we follow an idea of [1]. Let r be the
residual of the global problem (2.11), i.e.

r := d− Fλ.

The solution algorithm is modified in such a way that the residual r is orthogonal to a given
m–dimensional subspace which is represented by the columns of an orthogonal matrix Q,
i.e.

Q⊤r = Q⊤(d− Fλ) = 0. (3.3)

This restriction implies a solution constraint, since the residual represents the jump of the
Dirichlet data on the interface,

r = d− Fλ =

p∑

i=1

Biui.

To enforce the orthogonality relation (3.3), we first introduce a new iterate

λ̃ := λ+Qγ (3.4)

and obtain

Q⊤FQγ = Q⊤(d− Fλ).

By solving this equation we get from (3.4) the alternative representation

λ̃ = Pλ+ λ0

with the projector

P := I −Q(Q⊤FQ)−1Q⊤F
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and

λ0 = Q(Q⊤FQ)−1Q⊤d .

From Fλ = d we then obtain the linear system

FPλ+ Fλ0 = d ,

and after multiplication with the transposed projector P⊤ we have to solve the linear
system

P⊤FPλ = P⊤d .

Note that P⊤Fλ0 = 0. Moreover, due to

P⊤FP = (I − FQ(Q⊤FQ)−1Q⊤)F (I −Q(Q⊤FQ)−1Q⊤F ) = FP

we can save one application of P , and therefore one application of F in each iteration step.
It remains to discuss the choice of the subspace which is spanned by the orthonormal
matrix Q. As in [1] we consider planar waves, which are evaluated locally. In particular,
for each subdomain Ωi we consider a set of mi directions θj , and evaluate the planar wave
with the wave number κi locally at nodes xℓi

to obtain

Qi[ℓi, j] = eiκi(θj ,xℓi
) .

The global matrix is finally constructed by

Q = [Q1 . . . Qi . . . Qp].

By using this local approach one speeds up the construction of Q⊤FQ, since only a few
local subproblems have to be solved for every direction θj . However, we still have to ensure
that Q⊤FQ is invertible. For this one has to eliminate certain columns of Q which can be
realized when considering a LU factorization of Q⊤FQ.

4 Numerical examples

4.1 Local preconditioners

We first test the local preconditioner as defined in (3.2) to solve a linear system with
the stiffness matrix (3.1) where Ri,h = D1,h is the Galerkin discretisation of the Yukawa
hypersingular integral operator, ηi = 1, and Ωi = (0, 1)3 is the unit cube. As solver we
use a standard GMRES algorithm with a relative accuracy of ε = 10−8. The right hand
side of the linear system to be solved is given by an evaluation of the sinus function, i.e.
no geometric information is used. In Table 1, the iteration numbers are given for several
wave numbers κ when solving the preconditioned local system (3.1). Note that N is the
number of triangles, and M is the number of nodes.
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Table 1: Number of iterations for preconditioned local system.

N M κ = 1.0 κ = 2.0 κ = 4.0 κ = 6.0 κ = 8.0
12 8 13 13 15 16 17
48 26 20 22 30 37 46
192 98 24 25 39 52 69
768 386 26 27 42 58 80
3072 1538 28 29 43 57 81
12288 6146 29 29 42 56 79

The number of iterations indicate that the proposed preconditioner is optimal with respect
to the boundary element mesh size h, as predicted in theory [6]. However, the spectral
condition number of the preconditioned system depends on the properties of the double
layer potential, which involves the dependency on the domain Ω, and on the wave number
κ. In particular, for an increasing wave number κ also the number of iterations increases
mildly.

4.2 Global preconditioners

As numerical example we consider the Neumann boundary value problem (2.1) for the
unit cube Ω = (0, 1)3 which is decomposed into p = n3 subdomains Ωi. The subdomain
boundaries Γi = ∂Ωi are discretised uniformly by using 24 plane triangular elements and
14 nodes on the coarsest level (L = 0), and are refined uniformly on the next levels. As
iterative solver we use a projected GMRES algorithm with a relative accuracy of ε = 10−8.
The boundary datum g is chosen such that the exact solution is the fundamental solution
U∗

κ(x, x) of the Helmholtz equation with the source x = (−0.2, 0, 0)⊤.
In Tables 2–4 we present the number of global GMRES iterations for different wave numbers
κ, and different numbers p of subdomains. By mi we denote the number of local planar
waves as used in the construction of the global preconditioner. We see, that the number of
iterations decreases as the number of planar waves increases, while the number of iterations
increases with an increasing wave number, as expected.

Table 2: Number of iterations in the case κ = 2.

p=8 p=27 p=64 p=125
L \ mi 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0 23 15 11 7 8 54 25 17 12 13 100 32 19 13 14 165 37 21 14 14
1 29 21 19 17 16 58 32 26 24 22 105 39 28 25 24 156 43 31 26 26
2 31 24 23 21 21 59 34 28 27 25 104 41 32 23 25 137 44 35 30 30
3 35 29 27 26 24 62 39 35 33 30 105 45 37 34 35 137 47 40 31 31
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Table 3: Number of iterations in the case κ = 4.

p=8 p=27 p=64 p=125
L \ mi 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0 27 19 13 6 12 69 36 23 17 22 130 47 28 18 19 215 59 31 18 17
1 32 23 21 18 16 70 38 33 28 24 128 52 39 33 29 205 60 40 35 33
2 35 27 24 22 21 68 39 33 29 27 121 50 41 36 29 191 56 44 38 34
3 40 31 27 25 24 71 44 39 36 31 119 52 45 40 36 181 57 49 43 38

Table 4: Number of iterations in the case κ = 8.

p=8 p=27 p=64 p=125
L \ mi 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

0 43 31 16 2 1 88 56 39 25 2 157 93 69 49 24 254 138 88 57 35
1 49 39 28 21 17 80 53 42 36 31 162 89 70 59 50 267 128 95 74 64
2 54 41 31 25 22 81 55 44 37 32 145 77 61 53 47 252 124 81 64 57
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