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Berichte aus dem

Institut für Angewandte Mathematik

Bericht 2021/9





Technische Universität Graz

A new approach to space-time boundary integral

equations for the wave equation

O. Steinbach, C. Urzúa-Torres
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A new approach to space-time boundary integral equations
for the wave equation

Olaf Steinbach∗ Carolina Urzúa-Torres†

Abstract

We present a new approach for boundary integral equations for the wave equation with zero ini-
tial conditions. Unlike previous attempts, our mathematical formulation allows us to prove that the
associated boundary integral operators are continuous and satisfy inf-sup conditions in trace spaces of
the same regularity, which are closely related to standard energy spaces with the expected regularity
in space and time. This feature is crucial from a numerical perspective, as it provides the foundations
to derive sharper error estimates and paves the way to devise efficient adaptive space-time boundary
element methods, which will be tackled in future work. On the other hand, the proposed approach is
compatible with current time dependent boundary element method’s implementations and we predict
that it explains many of the behaviours observed in practice but that were not understood with the
existing theory.

1 Introduction
Different strategies have been used to derive variational methods for time domain boundary integral
equations for the wave equation. The more established and successful ones include weak formula-
tions derived via the Laplace transform, and also space-time energetic variational formulations, often
referred as energetic BEM in the literature. These approaches started with the groundbreaking works
of Bamberger and Ha Duong [4], and Aimi et al. [3], respectively. In spite of their extensive use
[1, 2, 5, 12, 13, 14, 15, 16, 17, 18, 23, 24, 25] at the time of writing this article, the numerical anal-
ysis corresponding to these formulations was still incomplete and presents difficulties that are hard to
overcome, if possible at all.

One of these difficulties is the fact that current approaches provide continuity and coercivity estimates
which are not in the same space-time (Sobolev) norms. Indeed, there is a so-called norm gap arising
from a loss of regularity in time of the related boundary integral operators. Yet, recent work by Joly and
Rodrı́guez shows that these norm gaps are not present in 1D [18]. Moreover, to the best of the authors’
knowledge, there is no proof nor numerical evidence that such loss of time regularity should hold for
higher dimensions either. These two observations encouraged us to believe that one may be able to prove
sharper results using different mathematical tools. Another disadvantage of current strategies is that they
do not provide the foundations for space-time boundary element methods, which are basically boundary
element discretizations where the time variable is treated simply as another space variable, in contrast to
techniques such as time-stepping methods and convolution quadrature methods [25].

Space-time discretization methods offer an increasingly popular alternative, since they allow the treat-
ment of moving boundaries, adaptivity in space and time simultaneously, and space-time parallelization
∗Institute of Applied Mathematics, TU Graz, Austria
†Delft Institute of Applied Mathematics, TU Delft, The Netherlands.

This publication arises from research funded by the John Fell Oxford University Press Research Fund.
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[11, 26, 27, 29]. However, in order to exploit these advantages, one needs to have a complete numerical
analysis of the corresponding Galerkin methods.

We construct a new approach to boundary integral equations for the wave equation by working di-
rectly in the time domain. Furthermore, we develop a mathematical framework that not only overcomes
the aforementioned difficulties, but also paves the way to stable space-time FEM/BEM coupling. We
present these new results following the standard pieces and arguments from classical boundary integral
equations. We hope this highlights some mathematical intuitions behind the obtained results and makes
the article easier to read for those familiarized with the boundary integral equation literature. In addition
to a new boundary integral equation formulation, we provide novel existence and uniqueness results for
the Dirichlet and Neumann wave equation initial boundary value problems, when initial conditions are
zero.

The structure of this article is as follows. Section 2 introduces notation and summarizes results from
the literature that will be needed later in the paper. We begin by using some key ideas of recent work on
the wave equation in H1(Q) [30, 34]. Then, in Section 3, we introduce trace spaces, trace operators and
their corresponding properties for three different families of spaces. With this we aim, on the one hand,
to emphasize the link between the existing space-time (volumetric) variational formulations and our new
results. On the other hand, we prove that the related trace spaces are indeed connected, which provides a
new and deeper understanding of the different existing boundary integral formulations and their relation.
Section 4 presents some required results on initial boundary value problems for the wave equation, while
all the remaining building blocks of the new boundary integral equation formulation are presented in
Section 5. This final section concludes with the existence and uniqueness results for solutions of related
boundary integral equations.

2 Preliminaries

2.1 Model problem
Let Ω ⊂ Rn, n = 1, 2, 3, with boundary Γ := ∂Ω. We assume Ω to be an interval for n = 1, or a bounded
Lipschitz domain for n = 2, 3. Let 0 < T < ∞. For a finite time interval (0,T ), we define the space-time
cylinder Q := Ω × (0,T ) ⊂ Rn+1, and its lateral boundary Σ := Γ × [0,T ]. We also introduce the initial
boundary Σ0 := Ω × {0}, and the final boundary ΣT := Ω × {T }. We denote the D’Alembert operator by
� := ∂tt − ∆x, and write the interior Dirichlet initial boundary value problem for the wave equation as

�u(x, t) = f (x, t) for (x, t) ∈ Q,
u(x, t) = g(x, t) for (x, t) ∈ Σ,

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ Ω.

(2.1)

2.2 Notation and mathematical framework
Let O ⊆ Rm, m ∈ N. We stick to the usual notation for the space C∞(O) of functions which are bounded
and infinitely often continuously differentiable; the subspace C∞0 (O) of compactly supported smooth func-
tions; the spaces Lp(O) of Lebesgue integrable functions; and the Sobolev spaces Hs(O). Moreover, inner
products of Hilbert spaces X are denoted by standard brackets (·, ·)X , while angular brackets 〈· , ·〉O are
used for the duality pairing induced by the extension of the inner product (·, ·)L2(O). For a Hilbert space X
we denote by X′ its dual with the norm

‖ f ‖X′ = sup
0,v∈X

|〈 f , v〉O|
‖v‖X

for f ∈ X′.
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In particular, we will use

H1(O) := C∞(O)
‖·‖H1(O) , H1

0(O) := C∞0 (O)
‖·‖H1(O) ,

where

‖φ‖H1(O) :=

‖φ‖2L2(O) +

m∑
i=1

‖∂xiφ‖
2
L2(O)

1/2

.

In the specific case O = Q = Ω × (0,T ) ⊂ Rn+1 we identify H1(Q) with the Sobolev space

H1,1(Q) := L2(0,T ; H1(Ω)) ∩ H1(0,T ; L2(Ω))

using Bochner spaces, see, e.g., [20, Sect. 1.3, Chapt. 1] and [21, Sect. 2, Chapt. 4]. Furthermore, let

H1
0,(0,T ; L2(Ω)) :=

{
v ∈ L2(Q) : ∂tv ∈ L2(Q), v(x, 0) = 0 for x ∈ Ω

}
,

H1
,0(0,T ; L2(Ω)) :=

{
v ∈ L2(Q) : ∂tv ∈ L2(Q), v(x,T ) = 0 for x ∈ Ω

}
.

With this we introduce

H1,1
;0, (Q) := L2(0,T ; H1(Ω)) ∩ H1

0,(0,T ; L2(Ω)),

H1,1
;,0 (Q) := L2(0,T ; H1(Ω)) ∩ H1

,0(0,T ; L2(Ω)),

with norms

‖u‖H1,1
;0, (Q) :=

√
‖∂tu‖2L2(Q) + ‖∇xu‖2L2(Q) ,

‖v‖H1,1
;,0 (Q) :=

√
‖∂tv‖2L2(Q) + ‖∇xv‖2L2(Q) .

Note that the space H1
;0,(Q) corresponds to 0H1(Q) as used in [16, 20, 21]. In the case of zero Dirichlet

boundary data along the lateral boundary Σ we define the subspaces

H1,1
0;0,(Q) := L2(0,T ; H1

0(Ω)) ∩ H1
0,(0,T ; L2(Ω)),

H1,1
0;,0(Q) := L2(0,T ; H1

0(Ω)) ∩ H1
,0(0,T ; L2(Ω)).

We remark that H1,1
;0, (Q) and H1,1

0;0,(Q) prescribe zero initial values at t = 0, while H1,1
;,0 (Q) and H1,1

0;,0(Q)
have zero final values at t = T .

In this paper we will consider, as in [31], a generalized variational formulation to describe solutions
of the wave equation (2.1) also for f ∈ [H1,1

0;,0(Q)]′, instead of f ∈ L2(Q), as usually considered, e.g., [19].
Therefore we introduce the extended space-time cylinder Q− := Ω × (−T,T ). For u ∈ L2(Q), we define
ũ ∈ L2(Q−) as zero extension,

ũ(x, t) :=

 u(x, t) for (x, t) ∈ Q,
0 for (x, t) ∈ Q−\Q.

The application of the wave operator � to ũ ∈ L2(Q−) is defined as a distribution on Q−, i.e., for all test
functions ϕ ∈ C∞0 (Q−), we define

〈�ũ, ϕ〉Q− :=
∫ T

−T

∫
Ω

ũ(x, t)�ϕ(x, t) dx dt =

∫ T

0

∫
Ω

u(x, t)�ϕ(x, t) dx dt .
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This motivates to consider the Sobolev space H1
0(Q−) with the norm

‖φ‖H1
0 (Q−) =

√
‖∂tφ‖

2
L2(Q−) + ‖∇xφ‖

2
L2(Q−) for φ ∈ H1

0(Q−),

the dual space [H1
0(Q−)]′, and the duality pairing 〈·, ·〉Q− as extension of the inner product in L2(Q−).

We also introduce the restriction operator R : H1
0(Q−) → H1,1

0;,0(Q), i.e., Rφ := φ|Q, and its adjoint
R′ : [H1,1

0;,0(Q)]′ → [H1
0(Q−)]′. Moreover, let E : H1,1

0;,0(Q) → H1
0(Q−) be any continuous and injective

extension operator with norm

‖E‖H1,1
0;,0(Q),H1

0 (Q−) := sup
0,v∈H1,1

0;,0(Q)

‖Ev‖H1
0 (Q−)

‖v‖H1,1
0;,0(Q)

,

and its adjoint E′ : [H1
0(Q−)]′ → [H1,1

0;,0(Q)]′, satisfying REφ = φ for all φ ∈ H1,1
0;,0(Q).

As in [31] we introduce the Banach space

H(Q) :=
{
u = ũ|Q : ũ ∈ L2(Q−), ũ|Ω×(−T,0) = 0, �ũ ∈ [H1

0(Q−)]′
}
,

with the norm ‖u‖H(Q) :=
√
‖u‖2L2(Q) + ‖�ũ‖2

[H1
0 (Q−)]′

, where

‖�ũ‖[H1
0 (Q−)]′ = sup

0,v∈H1,1
0;,0(Q)

|〈�ũ,Ev〉Q− |
‖v‖H1,1

0;,0(Q)
.

By completion, we finally define the Hilbert spaces

H0;0,(Q) := H1,1
0;0,(Q)

‖·‖H(Q)

⊂ H;0,(Q) := H1,1
;0, (Q)

‖·‖H(Q)

⊂ H(Q),

e.g.,
H;0,(Q) =

{
u ∈ H(Q) : ∃(un)n∈N ⊂ H1,1

;0, (Q) with lim
n→∞
‖u − un‖H(Q) = 0

}
.

Note that H1,1
0;0,(Q) ⊂ H0;0,(Q) and H1,1

;0, (Q) ⊂ H;0,(Q), see [31, Lemma 3.5] for the first inclusion.

2.3 Transformation operatorHT

For u ∈ L2(0,T ) we consider the Fourier series

u(t) =

∞∑
k=0

uk sin
((
π

2
+ kπ

) t
T

)
, uk =

2
T

∫ T

0
u(t) sin

((
π

2
+ kπ

) t
T

)
dt.

As in [30] we introduce the transformation operatorHT as

HT u(t) :=
∞∑

k=0

uk cos
((
π

2
+ kπ

) t
T

)
,

and it’s inverse, i.e., for v ∈ L2(0,T ),

H−1
T v(t) :=

∞∑
k=0

vk sin
((
π

2
+ kπ

) t
T

)
, vk =

2
T

∫ T

0
v(t) cos

((
π

2
+ kπ

) t
T

)
dt.

By construction we haveHT : H1
0,(0,T )→ H1

,0(0,T ), andH−1
T : H1

,0(0,T )→ H1
0,(0,T ). In the following,

we summarize some additional properties fulfilled by the operatorsHT andH−1
T , see [30, 34].
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Proposition 2.1.

1. For any u, v ∈ L2(0,T )

〈HT u, v〉L2(0,T ) = 〈u,H−1
T v〉L2(0,T ).

2. For all u ∈ H1
0,(0,T )

∂tHT u = −H−1
T ∂tu.

3. HT andH−1
T are norm preserving, i.e.,

‖HT w‖L2(0,T ) = ‖w‖L2(0,T ), ‖H−1
T w‖L2(0,T ) = ‖w‖L2(0,T ) ∀w ∈ L2(0,T ).

4. For all w ∈ L2(Q)

〈w,HT w〉L2(0,T ) ≥ 0.

We conclude this subsection by extending the modified Hilbert transformation HT to our functional
spaces. For u ∈ L2(Q) we first have the decomposition

u(x, t) =

∞∑
k=0

∞∑
i=0

ui,k sin
((
π

2
+ kπ

) t
T

)
ϕi(x),

ui,k =
2
T

∫
Q

u(x, t) sin
((
π

2
+ kπ

) t
T

)
dt ϕi(x) dx,

where ϕi are the Neumann eigenfunctions of the Laplacian, i.e.,

−∆ϕi = λiϕi in Ω, ∂nxϕi = 0 on Γ, ‖ϕi‖L2(Ω) = 1, 0 = λ0 < λi ∀i ∈ N.

They are an orthonormal basis in L2(Ω) and an orthogonal basis in H1(Ω), e.g., [19, Chapt. 2]. With this
we define

HT u(x, t) :=
∞∑

k=0

∞∑
i=0

ui,k cos
((
π

2
+ kπ

) t
T

)
ϕi(x), (x, t) ∈ Q,

withHT : H1,1
;0, (Q)→ H1,1

;,0 (Q). Analogously,H−1
T : H1,1

;,0 (Q)→ H1,1
;0, (Q).

Remark 2.2. The time-reversal map κT , defined as [8, Eq. (2.36)]

κT w(x, t) := w(x,T − t) for (x, t) ∈ Q,w ∈ H1(Q), (2.2)

is often used instead of the transformation operatorHT : H1,1
;0, (Q)→ H1,1

;,0 (Q).

2.4 Fundamental solution and retarded potentials
Let us briefly present the boundary layer potentials for the wave equation, often called retarded potentials.
We refer the reader to [9] and [16] for further details. First, we introduce the fundamental solution of the
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wave equation,

G(x, t) =



1
2

H(t − |x|), n = 1,

1
2π

H(t − |x|)√
t2 − |x|2

, n = 2,

1
4π

δ(t − |x|)
|x|

, n = 3,

(2.3)

with δ the Dirac distribution, and H the Heaviside step function. Let S be the single layer potential and
D the double layer potential, i.e., for (x, t) ∈ Q and regular enough densities w and z, respectively,

(S w)(x, t) :=
∫ t

0

∫
Γ

G(x − y, t − τ) w(y, τ) dsy dτ, (2.4)

(Dz)(x, t) :=
∫ t

0

∫
Γ

∂nyG(x − y, t − τ) z(y, τ) dsy dτ. (2.5)

Concretely, for n = 3, these are

(S w)(x, t) :=
1

4π

∫
Γ

w(y, t − |x − y|)
|x − y|

dsy, (2.6)

(Dz)(x, t) :=
1

4π

∫
Γ

[
∂ny

z(y, t − |x − y|)
|x − y|

−
∂ny |x − y|

|x − y|
∂tz(y, t − |x − y|)

]
dsy. (2.7)

The fact that the time argument is the retarded time τ = t − |x − y| motivates that S and D are usually
called retarded potentials.

3 Green’s Formula, Trace Spaces and Trace Operators
We introduce the lateral interior trace operator γi

Σ
: u 7→ u|Σ as continuous extension of the trace map

defined in the pointwise sense for smooth functions. As in [22, Lemma 4.1] we can write a space-time
Green’s formula for ϕ ∈ C2(Q) and ψ ∈ C1(Q) as

Φ(ϕ, ψ) =

∫ T

0

∫
Ω

�ϕψ dx dt +

∫ T

0

∫
Γ

∂nxϕ γ
i
Σψ dsx dt −

∫
Ω

[
∂tϕψ

]T

t=0
dx,

where

Φ(ϕ, ψ) := −
∫ T

0

∫
Ω

∂tϕ ∂tψ dx dt +

∫ T

0

∫
Ω

∇xϕ · ∇xψ dx dt . (3.1)

In particular, for ϕ ∈ C2(Q) with ∂tϕ(x, t)|t=0 = 0 for x ∈ Ω and for ψ ∈ C1(Q) with ψ(x,T ) = 0 for x ∈ Ω,
this gives Green’s first formula

Φ(ϕ, ψ) =

∫ T

0

∫
Ω

�ϕψ dx dt +

∫ T

0

∫
Γ

∂nxϕ γ
i
Σψ dsx dt. (3.2)

3.1 Traces on H1,1
;0, (Q), H1,1

;,0 (Q), andH;0,(Q)

Following [21, Theorem 2.1, Chapt. 4 and p. 19] we get that the interior trace map γi
Σ

is continuous and
surjective from H1(Q) to H1/2(Σ). In addition, let EΣ : H1/2(Σ)→ H1(Q) be a continuous right inverse.
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Let us introduce the spaces

H1/2
0, (Σ) := L2(0,T ; H1/2(Γ)) ∩ H1/2

0, (0,T ; L2(Γ)),

H1/2
,0 (Σ) := L2(0,T ; H1/2(Γ)) ∩ H1/2

,0 (0,T ; L2(Γ)),

with H1/2
0, (0,T ; L2(Γ)) and H1/2

,0 (0,T ; L2(Γ)) defined by interpolation as

H1/2
0, (0,T ; L2(Γ)) := [H1

0,(0,T ; L2(Γ), L2(0,T ; L2(Γ)]1/2,

H1/2
,0 (0,T ; L2(Γ)) := [H1

,0(0,T ; L2(Γ), L2(0,T ; L2(Γ)]1/2.

Then, we have the following result, which is stated in [16] without a proof. Here we provide one for
completeness.

Lemma 3.1. The interior trace map γi
Σ

is continuous and surjective from H1,1
;0, (Q) to H1/2

0, (Σ).

Proof. We adapt the proof of [21, Theorem 2.1, Chapt. 4] to H1,1
;0, (Q) (instead of H1(Q)). Recall that

u ∈ H1,1
;0, (Q) = L2(0,T ; H1(Ω)) ∩ H1

0,(0,T ; L2(Ω)).

Without loss of generality, we can take Ω = {x ∈ Rn : xn > 0} and Γ = {x ∈ Rn : xn = 0}. Then, by using
the notation x = {x′, xn}, with x′ = {x1, . . . , xn−1}, we can write:

u ∈ H1
;0,(Q) ⇔ u ∈ L2(R+,xn ; L2(0,T ; H1(Rn−1

x′ )) ∩ L2(0,T ; L2(Rn−1
x′ )),

u ∈ L2(R+,xn ; L2(0,T ; L2(Rn−1
x′ )) ∩ H1

0,(0,T ; L2(Rn−1
x′ )).

Then, we can apply Theorem 4.2 from [20, Chapt. 1] with

X = L2(0,T ; H1(Rn−1
x′ )) ∩ H1

0,(0,T ; L2(Rn−1
x′ )), Y = L2(0,T ; L2(Rn−1

x′ )),

to get that u(x′, 0, t) ∈ [X,Y]1/2. Now, let us point out that Theorem 13.1 in [20, Chapt. 1] gives

[X,Y]1/2 = [L2(0,T ; H1(Rn−1
x′ )) ∩ H1

0,(0,T ; L2(Rn−1
x′ )),Y]1/2

= [L2(0,T ; H1(Rn−1
x′ )),Y]1/2 ∩ [H1

0,(0,T ; L2(Rn−1
x′ )),Y]1/2.

Consequently, by interpolation we get

[X,Y]1/2 = L2(0,T ; H1/2(Rn−1
x′ )) ∩ H1/2

0, (0,T ; L2(Rn−1
x′ )),

which corresponds to H1/2
0, (Rn−1

x′ × [0,T ]). Hence, we conclude that γi
Σ
u ∈ H1/2

0, (Σ). Surjectivity also
follows from Theorem 4.2 in [20, Chapt. 1]. �

By similar arguments, one can also prove:

Lemma 3.2. The interior trace map γi
Σ

is continuous and surjective from H1,1
;,0 (Q) to H1/2

,0 (Σ).

Finally, we define the lateral trace space

H0,(Σ) :=
{
v = γi

ΣV for all V ∈ H;0,(Q)
}

with the norm
‖v‖H0,(Σ) := inf

V∈H;0,(Q):γi
Σ
V=v
‖V‖H(Q) .

7



Remark 3.3. By the definition of H0,(Σ) and using the linearity of γi
Σ
, we have that for any v ∈ H0,(Σ)

there exists a sequence (vn)n∈N ⊂ H1/2
0, (Σ) such that lim

n→∞
‖v − vn‖H0,(Σ) = 0.

Remark 3.4. The trace spaces investigated in this paper are closely related to the spaces used in the
classical time dependent BEM approach for the wave equation, introduced by Bamberger and Ha–Duong
[4]. Indeed, as pointed out in [16, Remark 2], H1/2

0, (Σ) agrees with

H1/2,1/2
σ,Γ :=

{
u ∈ LT (σ,H1/2(Γ)) ;

∫
R+iσ
|û|1/2,ω,Γ dω < ∞

}
when σ = 0. Additionally,

(
H1/2

0, (Σ)
)′

corresponds to

H−1/2,−1/2
σ,Γ :=

{
u ∈ LT (σ,H−1/2(Γ)) ;

∫
R+iσ
|û|−1/2,ω,Γ dω < ∞

}
when σ = 0. Remarkably, σ is taken to be zero for practical computations and numerical experiments,
yet the classical time dependent BEM does not cover this case. We refer to [16] for the detailed definitions
and a more comprehensive discussion.

4 Initial boundary value problems

4.1 Homogeneous Dirichlet data
Instead of (2.1), let us first consider the Dirichlet initial boundary value problem with zero boundary
conditions,

�u(x, t) = f (x, t) for (x, t) ∈ Q,
u(x, t) = 0 for (x, t) ∈ Σ,

u(x, 0) = ∂tu(x, t)|t=0 = 0 for x ∈ Ω.

(4.1)

A possible variational formulation of (4.1) is to find u ∈ H1,1
0;0,(Q) such that

−

∫ T

0

∫
Ω

∂tu ∂tv dx dt +

∫ T

0

∫
Ω

∇xu · ∇xv dx dt =

∫ T

0

∫
Ω

f v dx dt (4.2)

is satisfied for all v ∈ H1,1
0;,0(Q). When assuming f ∈ L2(Q) we are able to construct a unique solution

u ∈ H1,1
0;0,(Q) of the variational formulation (4.1), satisfying the stability estimate [30, Theorem 5.1], see

also [19, Chapt. IV, Theorem 3.1],

‖u‖H1,1
0;0,(Q) ≤

1
√

2
T ‖ f ‖L2(Q).

While the variational formulation (4.2) is well posed also for f ∈ [H1,1
0;,0(Q)]′, it is not possible to prove

a related inf-sup condition to ensure the existence of a unique solution u ∈ H1,1
0;0,(Q), see [34, Theorem

4.2.24]. However, by definition we have the inf-sup condition

‖�ũ‖[H1
0 (Q−)]′ = sup

0,v∈H1,1
0;,0(Q)

|〈�ũ,Ev〉Q− |
‖v‖H1,1

;,0 (Q)
for all u ∈ H0;0,(Q), (4.3)

and therefore we conclude unique solvability of the variational formulation to find u ∈ H0;0,(Q) such that

〈�ũ,Ev〉Q− = 〈 f , v〉Q (4.4)
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is satisfied for all v ∈ H1,1
0;,0(Q), see [31, Theorem 3.9]. Moreover, for the solution u it holds

‖�ũ‖[H1
0 (Q−)]′ = sup

0,v∈H1,1
0;,0(Q)

|〈�ũ,Ev〉Q− |
‖v‖H1,1

0;,0(Q)
= sup

0,v∈H1,1
0;,0(Q)

|〈 f , v〉Q|
‖v‖H1,1

0;,0(Q)
≤ ‖ f ‖[H1,1

0;,0(Q)]′ .

In fact, (4.4) is the variational formulation of the operator equation E′�ũ = f in [H1,1
0;,0(Q)]′, i.e.,

fu(v) := 〈E′�ũ, v〉Q = 〈�ũ,Ev〉Q− for v ∈ H1,1
0;,0(Q) ⊂ H1,1

;,0 (Q)

is a continuous linear functional with norm

‖ fu‖[H1,1
;,0 (Q)]′ = sup

0,v∈H1,1
0;,0(Q)

| fu(v)|
‖v‖H1,1

;,0 (Q)
= sup

0,v∈H1,1
0;,0(Q)

|〈�ũ,Ev〉Q−
‖v‖H1,1

;,0 (Q)
= ‖�ũ‖[H1

0 (Q−)]′ .

Recall that for u ∈ H1,1
0;0,(Q) ⊂ H0;0,(Q) we have

fu(v) = 〈�ũ,Ev〉Q− = −〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q) for all v ∈ H1,1
0;,0(Q).

Using the Hahn–Banach theorem, e.g., [33, Chapt. IV., Sect. 5], [6, Theorem 5.9-1], there exists a linear
continuous functional f̃u : H1,1,

;,0 (Q)→ R satisfying

f̃u(v) = fu(v) for all v ∈ H1,1
0;,0(Q), (4.5)

‖ f̃u‖[H1,1
;,0 (Q)]′ = ‖ fu‖[H1,1

;,0 (Q)]′ = ‖�ũ‖[H1
0 (Q−)]′ .

Indeed, for u ∈ H1,1
0;0,(Q), we have the explicit representation

f̃u(v) := 〈�ũ,Ev〉Q− = −〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q) ∀ v ∈ H1,1
;,0 (Q). (4.6)

In the following we assume f ∈ [H1,1
;,0 (Q)]′, and we consider the variational formulation to find λi ∈

[H1/2
,0 (Σ)]′ such that

〈(γi
Σ)′λi, v〉Q = 〈λi, γ

i
Σv〉Σ = f̃u(v) − 〈 f , v〉Q for all v ∈ H1,1

;,0 (Q). (4.7)

For v ∈ H1,1
0;,0(Q) ⊂ H1,1

;,0 (Q), it holds

f̃u(v) − 〈 f , v〉Q = fu(v) − 〈 f , v〉Q = 〈�ũ,Ev〉Q− − 〈 f , v〉Q = 0,

i.e.,
f̃u − f ∈ (ker γi

Σ)0 = (H1,1
0;,0(Q))0 :=

{
g ∈ [H1,1

;,0 (Q)]′ : 〈g, v〉Q = 0 ∀ v ∈ H1,1
0;,0(Q)

}
.

By the closed range theorem, we obtain

f̃u − f ∈ Im[H1/2
,0 (Σ)]′ (γ

i
Σ)′,

which ensures existence of a solution λi ∈ [H1/2
,0 (Σ)]′ of the variational formulation (4.7). Since the norm

in [H1/2
,0 (Σ)]′ is defined by duality, this immediately implies the inf-sup condition

‖λ‖[H1/2
,0 (Σ)]′ = sup

0,v∈H1,1
;,0 (Q)

|〈λ, γi
Σ
v〉Σ|

‖v‖H1,1
;,0 (Q)

for all λ ∈ [H1/2
,0 (Σ)]′,
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and therefore uniqueness of λi ∈ [H1/2
,0 (Σ)]′. Moreover, this also gives

‖λi‖[H1/2
,0 (Σ)]′ = sup

0,v∈H1,1
;,0 (Q)

|〈λi, γΣv〉Σ|
‖v‖H1,1

;,0 (Q)

= sup
0,v∈H1,1

;,0 (Q)

| f̃u(v) − 〈 f , v〉Q|
‖v‖H1,1

;,0 (Q)
≤ 2 ‖ f ‖[H1,1

;,0 (Q)]′ ,

where we used

sup
0,v∈H1,1

;,0 (Q)

| f̃u(v)|
‖v‖H1,1

;,0 (Q)
= ‖ f̃u‖[H1,1

;,0 (Q)]′

= ‖ fu‖[H1,1
;,0 (Q)]′ = ‖�ũ‖[H1

0 (Q−)]′ ≤ ‖ f ‖[H1,1
;,0 (Q)]′ .

We now rewrite the variational formulation (4.7) as

f̃u(v) = 〈 f , v〉Q + 〈λi, γ
i
Σv〉Σ, v ∈ H1,1

;,0 (Q).

In particular, for u ∈ H1,1
0;0,(Q), and using (4.6), this gives

−〈∂tu, ∂tv〉L2(Q) + 〈∇xu,∇xv〉L2(Q) = 〈 f , v〉Q + 〈λi, γ
i
Σv〉Σ, v ∈ H1,1

;,0 (Q).

i.e.,
Φ(u, v) = 〈 f , v〉Q + 〈λi, γ

i
Σv〉Σ.

When comparing this with Green’s first formula (3.2) for suitable chosen functions, we observe that
λi corresponds to the spatial normal derivative of u. Hence, also in the general case we shall write
γi

Nu := ∂nx u = λi and call this distribution the interior spatial normal derivative of u ∈ H0;0,(Q), i.e.,

γi
N : H0;0,(Q)→ [H1/2

,0 (Σ)]′.

In a similar way, we also define
γi

N : H0;,0(Q)→ [H1/2
0, (Σ)]′.

For a related approach in the case of an elliptic equation, see also [22, pp. 116–117].

4.2 Inhomogeneous Dirichlet data
Next we consider the Dirichlet boundary value problem (2.1). For g ∈ H0,(Σ) there exists, by definition,
an extension ug = EΣg ∈ H;0,(Q), and the zero extension ũg ∈ L2(Q−). Thus, it remains to find u0 :=
u − ug ∈ H0;0,(Q) satisfying

〈�ũ0,Ev〉Q− = 〈 f , v〉Q − 〈�ũg,Ev〉Q− for all v ∈ H1,1
0;,0(Q).

Note that ug ∈ H;0,(Q) ⊂ H(Q) involves �ũg ∈ [H1
0(Q−)]′. For the solution u0 we obtain

‖�ũ0‖[H1
0 (Q−)]′ = sup

0,v∈H1,1
0;,0(Q)

|〈�ũ0,Ev〉Q− |
‖v‖H1,1

;,0 (Q)
= sup

0,v∈H1,1
0;,0(Q)

|〈 f , v〉Q − 〈�ũg,Ev〉Q− |
‖v‖H1,1

;,0 (Q)

≤ ‖ f ‖[H1,1
0;,0(Q)]′ + ‖E‖H1,1

0;,0(Q),H1
0 (Q−)‖g‖H0,(Σ),
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where we have used

‖�ũg‖[H1
0 (Q−)]′ ≤

√
‖ug‖

2
L2(Q) + ‖�ũg‖

2
[H1

0 (Q−)]′
= ‖ug‖H(Q) = ‖g‖H0,(Σ).

As before, we can determine λi ∈ [H1/2
,0 (Σ)]′ as unique solution of the variational formulation (4.7), and

where γi
Nu := λi is again the spatial normal derivative of the solution u of the Dirichlet boundary value

problem (2.1), satisfying

‖λi‖[H1/2
,0 (Σ)]′ ≤ 2 ‖ f ‖[H1,1

0;,0(Q)]′ + ‖E‖H1,1
0;,0(Q),H1

0 (Q−)‖g‖H0,(Σ) . (4.8)

Specially, for f ≡ 0, this describes the interior Dirichlet to Neumann map g 7→ λi = γi
Nu, where u is the

solution of the homogeneous wave equation with zero initial data. This can be written as λi = Si g, where
Si : H0,(Σ) → [H1/2

,0 (Σ)]′ is the so-called Steklov-Poincaré operator, and from (4.8) we immediately
conclude

‖Si g‖[H1/2
,0 (Σ)]′ ≤ cS i

2 ‖g‖H0,(Σ) for all g ∈ H0,(Σ), (4.9)

with cS i
2 := ‖E‖H1,1

0;,0(Q),H1
0 (Q−).

As before, we can write the variational formulation (4.7) as

f̃u(v) = 〈 f , v〉Q + 〈λi, γ
i
Σv〉Σ, v ∈ H1,1

;,0 (Q).

Now, for u ∈ H;0,(Q) there exists a sequence {un}n∈N ⊂ H1,1
;,0 (Q) with

lim
n→∞
‖u − un‖H(Q) = 0.

Hence we can write

f̃u(v) = lim
n→∞

f̃un (v) = lim
n→∞

[
− 〈∂tun, ∂tv〉L2(Q) + 〈∇xun,∇xv〉L2(Q)

]
.

In particular, for v ∈ H1,1
;,0 (Q) ∩ H2(Q), we can apply integration by parts to obtain

f̃u(v) = lim
n→∞

[
〈un,�v〉L2(Q) + 〈γi

Σun, γ
i
Nv〉Σ − 〈un(T ), ∂tv(T )〉L2(Ω)

]
= 〈u,�v〉L2(Q) + 〈γi

Σu, γi
Nv〉Σ − 〈u(T ), ∂tv(T )〉L2(Ω) .

With this we finally obtain Green’s second formula for the solution u ∈ H;0,(Q) of (2.1) and v ∈ H1,1
;,0 (Q)∩

H2(Q),
〈u,�v〉L2(Q) + 〈γi

Σu, γi
Nv〉Σ − 〈u(T ), ∂tv(T )〉L2(Ω) = 〈 f , v〉Q + 〈γi

Nu, γi
Σv〉Σ. (4.10)

4.3 The Neumann boundary value problem
We now consider (as in (4.7)) the variational problem to find u ∈ H;0,(Q) such that

f̃u(v) = 〈 f , v〉Q + 〈λ, γi
Σv〉Σ for all v ∈ H1,1

;,0 (Q), (4.11)

when λ ∈ [H1/2
,0 (Σ)]′ is given. This is the generalized variational formulation of the Neumann boundary

value problem
�u = f in Q, γi

Nu = λ on Σ, u = ∂tu = 0 on Σ0. (4.12)
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Lemma 4.1. For all u ∈ H;0,(Q) there holds the inf-sup stability condition
√

2
√

2 + T 2
‖u‖H(Q) ≤ sup

0,v∈H1,1
;,0 (Q)

| f̃u(v)|
‖v‖H1,1

;,0 (Q)
. (4.13)

Proof. Using (4.5) and the norm definition by duality, we first have

‖�ũ‖[H1
0 (Q−)]′ = ‖ f̃u‖[H1,1

;,0 (Q)]′ = sup
0,v∈H1,1

;,0 (Q)

| f̃u(v)|
‖v‖H1,1

;,0 (Q)
.

Now, for 0 , u ∈ H;0,(Q), there exists a non-trivial sequence (un)n∈N ⊂ H1,1
;0, (Q), un . 0, with

lim
n→∞
‖u − un‖H(Q) = 0.

For each un ∈ H1,1
;0, (Q) we can write, as in (4.6),

f̃un (v) = −〈∂tun, ∂tv〉L2(Q) + 〈∇xun,∇xv〉L2(Q) for all v ∈ H1,1
;,0 (Q),

and we define wn ∈ H1,1
;,0 (Q) as the unique solution of the variational formulation

−〈∂tv, ∂twn〉L2(Q) + 〈∇xv,∇xwn〉L2(Q) = 〈un, v〉L2(Q) for all v ∈ H1,1
;0, (Q).

This variational formulation corresponds to a Neumann boundary value problem for the wave equation
with a volume source un ∈ L2(Q), and zero conditions at the terminal time t = T . As for the related
Dirichlet problem we conclude the bound

‖wn‖H1,1
;,0 (Q) ≤

1
√

2
T ‖un‖L2(Q).

In particular, for the test function v = un, the variational formulation gives

−〈∂tun, ∂twn〉L2(Q) + 〈∇xun,∇xwn〉L2(Q) = ‖un‖
2
L2(Q).

With this, we now conclude

‖ f̃un‖[H1,1
;,0 (Q)]′ = sup

0,v∈H1,1
;,0 (Q)

| f̃un (v)|
‖v‖H1,1

;,0 (Q)
≥
| f̃un (wn)|
‖wn‖H1,1

;,0 (Q)

=
| − 〈∂tun, ∂twn〉L2(Q) + 〈∇xun,∇xwn〉L2(Q)|

‖wn‖H1,1
;,0 (Q)

=
‖un‖

2
L2(Q)

‖wn‖H1,1
;,0 (Q)

≥

√
2

T
‖un‖L2(Q) .

Completion for n→ ∞ now gives

‖ f̃u‖[H1,1
;,0 (Q)]′ ≥

√
2

T
‖u‖L2(Q) .

Hence, we can write, for some α ∈ (0, 1),

‖ f̃u‖2[H1,1
;,0 (Q)]′

= α ‖ f̃u‖2[H1,1
;,0 (Q)]′

+ (1 − α) ‖ f̃u‖2[H1,1
;,0 (Q)]′

≥ α
2

T 2 ‖u‖
2
L2(Q) + (1 − α) ‖�ũ‖2[H1

0 (Q−)]′

= (1 − α)
(
‖u‖2L2(Q) + ‖�ũ‖2[H1

0 (Q−)]′

)
= (1 − α) ‖u‖2

H(Q),
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when
1 − α = α

2
T 2

is satisfied, i.e.,

α =
T 2

2 + T 2 , 1 − α =
2

2 + T 2 .

This concludes the proof. �

Lemma 4.2. For all 0 , v ∈ H1,1
;,0 (Q), there exists a function uv ∈ H;0,(Q) such that

f̃uv (v) > 0. (4.14)

Proof. For 0 , v ∈ H1,1
;,0 (Q), there exists a unique solution uv ∈ H1,1

;0, (Q) ⊂ H;0,(Q), satisfying

−〈∂tuv, ∂tw〉L2(Q) + 〈∇xuv,∇xw〉L2(Q) = 〈v,w〉L2(Q) for all w ∈ H1,1
;,0 (Q),

and, for w = v, we obtain

f̃uv (v) = −〈∂tuv, ∂tv〉L2(Q) + 〈∇xuv,∇xv〉L2(Q) = ‖v‖2L2(Q) > 0.

�

The inf-sup condition (4.13) and the surjectivity condition (4.14) ensure unique solvability of the varia-
tional formulation (4.11), i.e., for the unique solution u ∈ H;0,(Q) we obtain

√
2

√
2 + T 2

‖u‖H(Q) ≤ sup
0,v∈H1,1

;,0 (Q)

| f̃u(v)|
‖v‖H1,1

;,0 (Q)

= sup
0,v∈H1,1

;,0 (Q)

|〈 f , v〉Q + 〈λ, γi
Σ
v〉Σ|

‖v‖H1,1
;,0 (Q)

≤ ‖ f ‖[H1,1
;,0 (Q)]′ + ‖λ‖[H1/2

,0 (Σ)]′ ,

and when taking the lateral trace this gives

‖γi
Σu‖H0,(Σ) ≤ ‖u‖H(Q) ≤

1
√

2

√
2 + T 2

[
‖ f ‖[H1,1

;,0 (Q)]′ + ‖λ‖[H1/2
,0 (Σ)]′

]
. (4.15)

In particular, for f ≡ 0, this defines the interior Neumann to Dirichlet map λ 7→ γi
Σ
u which can be written

as γi
Σ
u = S−1

i λwhen using the inverse of the Steklov–Poincaré operator Si. From (4.15) we then conclude

‖S−1
i λ‖H0,(Σ) ≤ cS −1

i
2 ‖λ‖[H1/2

,0 (Σ)]′ for all λ ∈ [H1/2
,0 (Σ)]′, cS −1

i
2 :=

1
√

2

√
2 + T 2 . (4.16)

Now, using (4.9) and duality this gives

‖λ‖[H1/2
,0 (Σ)]′ = ‖Si γ

i
Σu‖[H1/2

,0 (Σ)]′ ≤ cS i
2 ‖γ

i
Σu‖H0,(Σ) = cS i

2 sup
0,µ∈[H0,(Σ)]′

|〈γi
Σ
u, µ〉Σ|

‖µ‖[H0,(Σ)]′
,

i.e., the inf-sup stability condition

1

cS i
2

‖λ‖[H1/2
,0 (Σ)]′ ≤ sup

0,µ∈[H0,(Σ)]′

|〈S−1
i λ, µ〉Σ|

‖µ‖[H0,(Σ)]′
for all λ ∈ [H1/2

,0 (Σ)]′. (4.17)
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Furthermore, using (4.16) for gi := γi
Σ
u and duality we obtain

‖gi‖H0,(Σ) = ‖γi
Σu‖H0,(Σ) = ‖S−1

i λ‖H0,(Σ)

≤ cS −1
i

2 ‖λ‖[H1/2
,0 (Σ)]′ = cS −1

i
2 sup

0,v∈H1/2
,0 (Σ)

|〈λ, v〉Σ|
‖v‖H1/2

,0 (Σ)
,

i.e., the inf-sup condition

1

cS −1
i

2

‖gi‖H0,(Σ) ≤ sup
0,v∈H1/2

,0 (Σ)

|〈Si gi, v〉Σ|
‖v‖H1/2

,0 (Σ)
for all gi ∈ H0,(Σ). (4.18)

4.4 Adjoint problems
Related to the variational problem (4.11) we now consider the adjoint problem to find w ∈ H1,1

;,0 (Q) such
that

f̃u(w) = 〈 f , u〉Q + 〈g, γi
Σu〉Σ (4.19)

is satisfied for all u ∈ H;0,(Q). For w ∈ H1,1
;,0 (Q), let uw ∈ H;0,(Q) be the unique solution of the variational

problem
f̃uw (v) = 〈∂tw, ∂tv〉L2(Q) + 〈∇xw,∇xv〉L2(Q) for all v ∈ H1,1

;,0 (Q).

For v = w, this gives
f̃uw (w) = ‖w‖2

H1,1
;,0 (Q)

.

Moreover, using the inf-sup stability condition (4.13), we obtain
√

2
√

2 + T 2
‖uw‖H(Q) ≤ sup

0,v∈H1,1
;,0 (Q)

| f̃uw (v)|
‖v‖H1,1

;,0 (Q)

= sup
0,v∈H1,1

;,0 (Q)

|〈∂tw, ∂tv〉L2(Q) + 〈∇xw,∇xv〉L2(Q)|

‖v‖H1,1
;,0 (Q)

≤ ‖w‖H1,1
;,0 (Q),

and thus it follows that

f̃uw (w) = ‖w‖2
H1,1

;,0 (Q)
≥

√
2

√
2 + T 2

‖uw‖H(Q)‖w‖H1,1
;,0 (Q).

In other words, we have
√

2
√

2 + T 2
‖w‖H1,1

;,0 (Q) ≤ sup
0,u∈H;0,(Q)

| f̃u(w)|
‖u‖H(Q)

for all w ∈ H1,1
;,0 (Q).

Since the inf-sup condition (4.13) also implies surjectivity, unique solvability of the variational formu-
lation (4.19) follows. In fact, for f ∈ [H;0,(Q)]′ and g ∈ [H0,(Σ)]′ we have w ∈ H1,1

;,0 (Q) as the weak
solution of the adjoint Neumann problem for the wave equation

�w = f in Q, γi
Nw = g on Σ, w = ∂tw = 0 on ΣT . (4.20)
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5 Boundary Integral Equations

5.1 Representation formula
Let u ∈ H;0,(Q) be a solution of the generalized wave equation E′�u = f in [H1,1

;,0 (Q)]′ . For (x, t) ∈ Q
and v(y, τ) = κtG(x − y, τ), with G(·, ·) being the fundamental solution introduced in (2.3) and κt the
time-reversal map from (2.2), formula (4.10) becomes the representation formula

u(x, t) =

∫ t

0

∫
Ω

f (y, τ) G(x − y, t − τ) dy dτ +
〈
γi

Nu , γi
Σv

〉
Σ
−

〈
γi

Σu , γi
Nv

〉
Σ
.

In particular, for f ≡ 0, we conclude the following representation formula

u(x, t) = (S γi
Nu)(x, t) − (Dγi

Σu)(x, t), (x, t) ∈ Q, (5.1)

with the single and double layer potentials S and D , defined as in (2.4) and (2.5), respectively.

5.2 Single layer potential
We first recall the definition (2.4) of the single layer potential

uw(x, t) = (S w)(x, t) =

∫ t

0

∫
Γ

G(x − y, t − τ) w(y, τ) dsy dτ, (x, t) ∈ Q.

Proposition 5.1. For the single layer potential we have

S : [H1/2
,0 (Σ)]′ → H;0,(Q).

Proof. For uw = S w and a suitable ψ, we can write the duality pairing as extension of the inner product
in L2(Q) as

〈uw, ψ〉Q =

∫ T

0

∫
Ω

uw(x, t)ψ(x, t) dx dt

=

∫ T

0

∫
Ω

∫ t

0

∫
Γ

G(x − y, t − τ) w(y, τ) dsy dτ ψ(x, t) dx dt

=

∫ T

0

∫
Γ

w(y, τ)
∫ T

τ

G(x − y, t − τ)ψ(x, t) dx dt dsy dτ

=

∫ T

0

∫
Γ

w(y, τ)ϕψ(y, τ) dsy dτ

= 〈w, γi
Σϕψ〉Σ,

where

ϕψ(y, τ) =

∫ T

τ

G(x − y, t − τ)ψ(x, t) dx dt, (y, τ) ∈ Q,

is a solution of the adjoint problem (4.20). Hence, for ψ ∈ [H;0,(Q)]′, we obtain ϕψ ∈ H1,1
;,0 (Q), and

therefore γi
Σ
ϕψ ∈ H1/2

,0 (Σ). From this, we conclude that uw ∈ H;0,(Q) when w ∈ [H1/2
,0 (Σ)]′ is given. �

As a corollary of the previous result, we can define the single layer boundary integral operator

V := γi
ΣS : [H1/2

,0 (Σ)]′ → H0,(Σ), (5.2)

and the normal derivative of the single layer potential,

γi
NS : [H1/2

,0 (Σ)]′ → [H1/2
,0 (Σ)]′. (5.3)
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5.3 Double layer potential
We first recall the definition (2.5) of the double layer potential

uz(x, t) = (Dz)(x, t) =

∫ t

0

∫
Γ

∂nyG(x − y, t − τ) z(y, τ) dsy dτ, (x, t) ∈ Q.

Proposition 5.2. For the double layer potential we have

D : H0,(Σ)→ H;0,(Q).

Proof. For uz = Dz and a suitable ψ we can write the duality pairing as extension of the inner product in
L2(Q) as

〈uz, ψ〉Q =

∫ T

0

∫
Ω

uz(x, t)ψ(x, t) dx dt

=

∫ T

0

∫
Ω

∫ t

0

∫
Γ

∂nyG(x − y, t − τ) z(y, τ) dsy dτ ψ(x, t) dx dt

=

∫ T

0

∫
Γ

z(y, τ) ∂ny

∫ T

τ

G(x − y, t − τ)ψ(x, t) dx dt dsy dτ

=

∫ T

0

∫
Γ

z(y, τ) ∂nyϕψ(y, τ) dsy dτ

= 〈z, γi
Nϕψ〉Σ,

where

ϕψ(y, τ) =

∫ T

τ

∫
Γ

G(x − y, t − τ)ψ(x, t) dx dt, (y, τ) ∈ Q,

is a solution of the adjoint problem (4.20). Hence, for ψ ∈ [H;0,(Q)]′ we obtain ϕψ ∈ H1,1
;,0 (Q), and

γi
Nϕψ ∈ [H0,(Σ)]′. From this we conclude uz ∈ H;0,(Q) when z ∈ H0,(Σ) is given. �

With the previous result we are in a position to consider the lateral trace of the double layer potential

γi
ΣD : H0,(Σ)→ H0,(Σ), (5.4)

and the so-called hypersingular boundary integral operator as normal derivative of the double layer po-
tential,

W := −γi
ND : H0,(Σ)→ [H1/2

,0 (Σ)]′. (5.5)

5.4 Boundary integral operators and Calderón identities
Without loss of generality, let us consider the complementary domains

Ωc := BR \Ω and Qc := Ωc × (0,T ),

with BR := {x ∈ Rn : |x| < R} is a sufficiently large ball containing Γ. With this, we define the exterior
traces γe

Σ
and γe

N following the same ideas from Subsection 3.1, but using Qc instead of Q.

Remark 5.3. Clearly, the mappings

γe
Σ : H1,1

;0, (Qc)→ H1/2
0, (Σ), γe

Σ : H1,1
;,0 (Qc)→ H1/2

,0 (Σ),

γe
Σ : H;0,(Qc)→ H0,(Σ), γe

Σ : H;,0(Qc)→ H,0(Σ),

16



are continuous and surjective, while

γe
N : H1,1

;0, (Qc)→ [H1/2
,0 (Σ)]′, γe

N : H1,1
;,0 (Qc)→ [H1/2

0, (Σ)]′,

γe
N : H;0,(Qc)→ [H1/2

,0 (Σ)]′, γe
N : H;,0(Qc)→ [H1/2

0, (Σ)]′,

are continuous. Moreover, Green’s formulae and other properties of the interior trace operators γi
Σ

and
γi

N also apply to these exterior traces in their corresponding spaces. Indeed, following Propositions 5.1
and 5.2, we have the continuity of the mappings

S : [H1/2
,0 (Σ)]′ → H;0,(Qc), D : H0,(Σ) → H;0,(Qc).

We define the jumps across Σ by[
γΣu

]
:= γe

Σu − γi
Σu,

[
γNu

]
:= γe

Nu − γi
Nu,

which clearly do not depend on the choice of BR. Now we can state the following result:

Proposition 5.4. The following jump relations hold for all w ∈ [H1/2
,0 (Σ)]′ and z ∈ H0,(Σ),

[γΣS w] = 0, [γNS w] = −w, [γΣDz] = z, [γNDz] = 0.

Proof. The jump relations are known to hold when w and z are smooth, e.g., [10, Sect. 2.2.1], and
[25, Sect. 1.3]. We extend them to (w, z) ∈ [H1/2

,0 (Σ)]′ × H0,(Σ) by using that the combined trace map
(γΣ, γN) : u 7→ (γΣu, γNu) maps C∞0 (Rn × R+)

∣∣∣
Q onto a dense subspace of [H1/2

,0 (Σ)]′ × H1/2
0, (Σ) (cf. [7,

Lemma 3.5]), and that H1/2
0, (Σ) is dense inH0,(Σ). �

We can now define the boundary integral operators as follows:

Definition 5.5.

V w := γi
ΣS w = γe

ΣS w,

K z :=
1
2

(
γi

ΣDz + γe
ΣDz

)
,

K′ w :=
1
2

(
γi

NS w + γe
NS w

)
,

W z := −γi
NDz = −γe

NDz .

From this definition and (5.2), (5.3), (5.4), (5.5), we obtain:

Theorem 5.6. The boundary integral operators introduced in Definition 5.5 are continuous in the follow-
ing spaces:

V : [H1/2
,0 (Σ)]′ → H0,(Σ),

K : H0,(Σ) → H0,(Σ),

K′ : [H1/2
,0 (Σ)]′ → [H1/2

,0 (Σ)]′,

W : H0,(Σ) → [H1/2
,0 (Σ)]′.

Next, we take traces on the representation formula (5.1) and get

γi
Σu = (

1
2

I−K)γi
Σu + V γi

Nu,

γi
Nu = W γi

Σu + (
1
2

I + K′)γi
Nu.
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As usual, we can rewrite this as γi
Σ
u

γi
Nu

 =

 ( 1
2 I−K) V

W ( 1
2 I + K′)

︸                         ︷︷                         ︸
=:Ci

Q

 γi
Σ
u

γi
Nu

 (5.6)

with the interior Calderon projection Ci
Q.

Using standard arguments (see for example [25, Sect. 1.4]), we can now prove z
w

 = Ci
Q

 z
w

 , ∀w ∈ [H1/2
,0 (Σ)]′, z ∈ H0,(Σ).

Furthermore, this gives (Ci
Q)2 = Ci

Q, from which we get

V W = (
1
2

I−K)(
1
2

I + K), W V = (
1
2

I−K′)(
1
2

I + K′), V K′ = K V, K′W = W K .

5.5 Coercivity of boundary integral operators
In this subsection, we are going to prove coercivity properties of boundary integral operators, i.e., of
the single layer boundary integral operator V and the hypersingular boundary integral operator W, which
ensure unique solvability of related boundary integral equations.

Theorem 5.7. The single layer boundary integral operator V : [H1/2
,0 (Σ)]′ → H0,(Σ) satisfies the inf-sup

stability condition

cV
1 ‖w‖[H1/2

,0 (Σ)]′ ≤ sup
0,µ∈[H0,(Σ)]′

|〈V w, µ〉Σ|
‖µ‖[H0,(Σ)]′

for all w ∈ [H1/2
,0 (Σ)]′. (5.7)

Proof. For w ∈ [H1/2
,0 (Σ)]′ we consider the single layer potential u = S w which defines a solution

u ∈ H0,(Q) of the homogeneous wave equation. When taking the lateral trace of u this gives g = γi
Σ
u =

V w ∈ H0,(Σ). In fact, u is the unique solution of the Dirichlet boundary value problem

�u = 0 in Q, γi
Σu = g on Σ, u = ∂tu = 0 on Σ0.

When using the interior Steklov–Poincaré operator Si we can determine the related interior Neumann
trace

λi = γi
Nu = Si g ∈ [H1/2

,0 (Σ)]′.

Since the Steklov–Poincaré operator Si is invertible, this gives g = S−1
i λi, i.e., g = γi

Σ
u is the lateral trace

of the solution of the Neumann boundary value problem

�u = 0 in Q, γi
Nu = λi on Σ, u = ∂tu = 0 on Σ0.

From the inf-sup stability condition (4.17) of the inverse interior Steklov-Poincaré operator S−1
i we now

conclude
1

cS i
2

‖λi‖[H1/2
,0 (Σ)]′ ≤ sup

0,µ∈[H0,(Σ)]′

|〈S−1
i λi, µ〉Σ|

‖µ‖[H0,(Σ)]′
= sup

0,µ∈[H0,(Σ)]′

|〈V w, µ〉Σ|
‖µ‖[H0,(Σ)]′

For the exterior problem we can derive a related estimate, i.e.,

1

cS e
2

‖λe‖[H1/2
,0 (Σ)]′ ≤ sup

0,µ∈[H0,(Σ)]′

|〈V w, µ〉Σ|
‖µ‖[H0,(Σ)]′

,

18



where λe is the exterior Neumann trace of the single layer potential u = S w. Now, and using the jump
relation of the adjoint double layer potential, this gives

‖w‖[H1/2
,0 (Σ)]′ = ‖λi − λe‖[H1/2

,0 (Σ)]′

≤ ‖λi‖[H1/2
,0 (Σ)]′ + ‖λe‖[H1/2

,0 (Σ)]′ ≤ (cS i
2 + cS e

2 ) sup
0,µ∈[H0,(Σ)]′

|〈V w, µ〉Σ|
‖µ‖[H0,(Σ)]′

,

which implies the desired inf-sup condition. �

While the inf-sup stability condition (5.7) ensures uniqueness of a solution of a related boundary integral
equation, the following result will provide solvability.

Lemma 5.8. For any 0 , µ ∈ [H0,(Σ)]′ there exists a wµ ∈ [H1/2
,0 (Σ)]′ such that

〈V wµ, µ〉Σ > 0

is satisfied.

Proof. For given 0 , µ ∈ [H0,(Σ)]′ we define the adjoint single layer potential uµ ∈ H1,1
;,0 (Q) by

uµ(y, τ) =

∫ T

τ

∫
Γ

G(x − y, t − τ) µ(x, t) dsx dt for (y, τ) ∈ Q.

For the lateral trace γi
Σ
uµ ∈ H1/2

,0 (Σ) and arbitrary w ∈ [H1/2
,0 (Σ)]′ we then have

〈w, γi
Σuµ〉Σ =

∫ T

0

∫
Γ

w(y, τ)
∫ T

τ

∫
Γ

G(x − y, t − τ) µ(x, t) dsx dt dsy dτ

=

∫ T

0

∫
Γ

∫ t

0

∫
Γ

G(x − y, t − τ) w(y, τ) dsy dτ µ(x, t) dsx dt = 〈V w, µ〉Σ .

Moreover, we compute

Uµ(x, t) :=
∫ t

0
uµ(x, s) ds for (x, t) ∈ Q,

with the lateral trace gµ := γi
Σ
Uµ ∈ H1/2

0, (Σ) ⊂ H0,(Σ). Hence, there exists a unique solution vµ ∈ H;0,(Q)
of the Dirichlet problem for the wave equation,

�vµ = 0 in Q, vµ = gµ on Σ, vµ = ∂tvµ = 0 on Σ0.

We then conclude ∫ t

0

∫
Γ

∂

∂nx
vµ(x, s) ∂svµ(x, s) dsx ds

=

∫ t

0

∫
Ω

[
∂ssvµ(x, s) ∂svµ(x, s) + ∇xvµ(x, s) · ∇x∂svµ(x, s)

]
dx ds

=
1
2

∫ t

0

d
ds

∫
Ω

[
[∂svµ(x, s)]2 + [∇xvµ(x, s)]2

]
dx ds

=
1
2
‖∂tvµ(t)‖2L2(Ω) +

1
2
‖∇xvµ(t)‖2L2(Ω) ≥ 0 for all t ∈ (0,T ].

In the case
1
2
‖∂tvµ(t)‖2L2(Ω) +

1
2
‖∇xvµ(t)‖2L2(Ω) = 0 for all t ∈ (0,T ],
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and together with the zero initial conditions, we would conclude vµ ≡ 0 in Q, which then implies gµ ≡ 0
on Σ, and thus uµ ≡ 0. But this contradicts µ . 0. Therefore we have∫ T

0

∫
Γ

∂

∂nx
vµ(x, t) ∂tvµ(x, t) dsx dt =

1
2
‖∂tvµ(T )‖2L2(Ω) +

1
2
‖∇xvµ(T )‖2L2(Ω) > 0,

and with

∂tUµ = uµ in Q, ∂tvµ = ∂tgµ on Σ, gµ = γi
ΣUµ, wµ := γi

Nvµ ∈ [H1/2
,0 (Σ)]′

we finally conclude

〈V wµ, µ〉Σ = 〈wµ, γ
i
Σuµ〉Σ =

∫ T

0

∫
Γ

∂

∂nx
vµ(x, t) ∂tvµ(x, t) dsxdt > 0.

�

The solution of the Dirichlet boundary value problem

�u = 0 in Q, u = g on Σ, u = ∂tu = 0 on Σ0

is given by the representation formula

u(x, t) = (S γi
Nu)(x, t) − (Dg)(x, t) for (x, t) ∈ Q,

where we can determine the yet unknown Neumann datum w = γi
Nu ∈ [H1/2

,0 (Σ)]′ as the unique solution
of the first kind boundary integral equation

V w = (
1
2

I + K)g on Σ, (5.8)

i.e., of the variational formulation

〈V w, µ〉Σ = 〈(
1
2

I + K)g, µ〉Σ for all µ ∈ [H0,(Σ)]′. (5.9)

Solvability of the variational formulation (5.9) follows from Lemma 5.8, while uniqueness of the solution
is a consequence of Theorem 5.7. Instead of the variational formulation (5.9), we may use the modified
Hilbert transformation HT as defined in subsection 2.3 to end up with an equivalent variational problem
to find w ∈ [H1/2

,0 (Σ)]′ such that

〈HT V w, µ〉Σ = 〈HT (
1
2

I + K)g, µ〉Σ for all µ ∈ [H,0(Σ)]′. (5.10)

Due to the inclusion H1/2
,0 (Σ) ⊂ H,0(Σ), we obviously have [H,0(Σ)]′ ⊂ [H1/2

,0 (Σ)]′ which will allow for a
Galerkin–Bubnov space-time boundary element discretization of (5.10).

Remark 5.9. For a solution u of the homogeneous wave equation with zero initial data but inhomoge-
neous Dirichlet boundary conditions and a suitable test function v we can write Green’s first formula
as ∫ T

0

∫
Ω

∂nx u v dx dt =

∫ T

0

∫
Ω

[
∂ttu v + ∇xu · ∇xv

]
dx dt .
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In particular, for v = ∂tu, this results in the energy representation

E(u) : =

∫ T

0

∫
Ω

[
∂ttu ∂tu + ∇xu · ∇x∂tu

]
dx dt

=
1
2
‖∂tu(T )‖2L2(Ω) +

1
2
‖∇xu(T )‖2L2(Ω) > 0 .

Note that this representation is the basis of the energetic BEM, see, e.g., [3]. Instead, when using the
particular test function v = HT u and Proposition 2.1 this gives∫ T

0

∫
Γ

∂

∂nx
uHT u dsxdt =

∫ T

0

∫
Ω

[
HT∂tu ∂tu + ∇xu · HT∇xu

]
dx dt ≥ 0 .

Specifically, for the single layer potential u = S w in Rn+1\Σ we then conclude

〈w,HT V w〉Σ =

∫ T

0

∫
Ω

[
HT∂tu ∂tu + ∇xu · HT∇xu

]
dx dt ≥ 0 .

In fact, when considering the spatially one-dimensional case n = 1 we can prove the following ellipticity
estimate [28, 32]

〈w,HT V w〉Σ ≥ cV
1 ‖w‖

2
[H1/2

,0 (Σ)]′
for all w ∈ [H1/2

,0 (Σ)]′.

Since the single layer boundary integral operator V : [H1/2
,0 (Σ)]′ → H0,(Σ) is invertible, we can write the

solution of the boundary integral equation (5.8) as

w = γi
Nu = V−1(

1
2

I + K)g = Si g,

representing the Dirichlet to Neumann map with the interior Steklov–Poincaré operator

Si = V−1(
1
2

I + K) : H0,(Σ)→ [H1/2
,0 (Σ)]′ .

Hence we find that
V Si =

1
2

I + K : H0,(Σ)→ H0,(Σ)

is invertible. As we can formulate a related boundary integral equation also for the exterior Dirichlet
boundary value problem,

V γe
Nu = (−

1
2

I + K)g on Σ,

this gives that the exterior Steklov–Poincaré operator

Se = −V−1(
1
2

I−K) : H0,(Σ)→ [H1/2
,0 (Σ)]′

is invertible, and so is
1
2

I−K = −V Se : H0,(Σ)→ H0,(Σ) .

Consequently

V W = (
1
2

I−K)(
1
2

I + K) : H0,(Σ)→ H0,(Σ),

and thus
W = V−1(

1
2

I−K)(
1
2

I + K) : H0,(Σ)→ [H1/2
,0 (Σ)]′ .
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This finally implies that the hypersingular boundary integral operator W : H0,(Σ) → [H1/2
,0 (Σ)]′ satisfies

the inf-sup stability condition

cW
1 ‖v‖H0,(Σ) ≤ sup

0,η∈H1/2
,0 (Σ)

|〈W v, η〉Σ|
‖η‖H1/2

,0 (Σ)
for all v ∈ H0,(Σ). (5.11)

The solution of the Neumann boundary value problem

�u = 0 in Q, ∂nx u = λ on Σ, u = ∂tu = 0 on Σ0

is given by the representation formula

u(x, t) = (S λ)(x, t) − (Dz)(x, t) for (x, t) ∈ Q,

where we can determine the yet unknown Dirichlet datum z = γi
Σ
u ∈ H0,(Σ) as the unique solution of the

first kind boundary integral equation

W z = (
1
2

I−K)λ on Σ.

Unique solvability follows as described above.

6 Conclusions
In this paper, we presented a new framework to describe the mapping properties of boundary integral
operators for the wave equation. The results are similar as known for the boundary integral operators for
elliptic partial differential equations, i.e., providing ellipticity and boundedness with respect to function
spaces of the same Sobolev spaces. This will be the starting point to derive quasi-optimal error estimates
for related boundary element methods which are not available so far, and which will be reported in
forthcoming work. Other topics of interest include efficient implementations of the proposed scheme
using the modified Hilbert transformation, a posteriori error estimates and adaptivity, an efficient solution
of the resulting linear systems of algebraic equations, and the coupling with space-time finite element
methods.
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