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Program

Friday, 5.10.2007
15.00–16.20 Coffee
16.20–16.30 Opening
16.30–17.00 W. Kreuzer (Acoustics Research Institute, Wien)

A BEM model of a tunnel in an orthotropic layered halfspace
17.00–17.30 S. Engleder (TU Graz)

Boundary element methods for the Helmholtz equation
17.30–18.00 D. Copeland (JKU Linz)

BEM–based FEM for Helmholtz and Maxwell equations on
arbitrary polyhedral meshes

18.00–18.30 C. Fasel (Universität des Saarlandes)
Advances in nonlocal electrostatics

18.30 Dinner
Saturday, 6.10.2007

9.00–9.30 J. O. Watson (UNSW, Sydney)
Introduction to enriched boundary elements for fracture mechanics

9.30–10.00 K. Thöni (TU Graz)
Efficient calculation of non–linear problems using the boundary
element method

10.00–10.30 W. Elleithy (JKU Linz)
Adaptive coupling of boundary element and finite element methods
for elasto–plastic analysis

10.30–11.00 Coffee
11.00–11.30 D. Pusch (ABB Switzerland)

Numerical experiments for 3D eddy–current simulations
11.30–12.00 P. Urthaler (TU Graz)

Fast evaluation of Newton potentials in BEM
12.00–12.30 A. Salvadori (Universita di Brescia)

Issues on fracture mechanics and boundary integral equations
12.30 Lunch
15.00–15.30 Coffee
15.30–16.00 B. Auchmann (CERN, Genf)

A geometrical approach to BEM
16.00–16.30 J. Ostrowski (ABB Switzerland)

Robust Maxwell formulations
16.30–17.00 S. Zaglmayr (JKU Linz)

High–order finite element methods for computational electromagnetics
17.00–17.30 Break
17.30–18.00 D. Brunner (Universität Stuttgart)

Investigation of sound emission from ships by a coupled
FE/Fast BE approach

18.00–18.30 O. Steinbach (TU Graz)
Coupled FE/BE formulations for the acoustic–structure interaction

18.30 Dinner
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Sunday, 7.10.2007
9.00–9.30 A. Chernov (ETH Zürich)

Sparse p version BEM for first kind boundary integral equations
with random data

9.30–10.00 L. Illyashenko–Raguin (ETH Zürich)
A spectral boundary integral equation method for optical response
of plasmon resonant nanoparticles with non–smooth boundaries

10.00–10.30 M. Windisch (TU Graz)
Stable boundary element methods for electromagnetic scattering

10.30–11.00 Coffee
11.00–11.30 C. Pechstein (JKU Linz)

Hybrid tearing and interconnecting methods in unbounded domains
11.30–12.00 R. Prato (Universität Hannover)

FE/BE coupling for time–dependent interface problems in
electromagnetics

12.00–12.30 L. Kielhorn (TU Graz)
Boundary element methods in time domain by using
a symmetric Galerkin method

12.30 Lunch
13.30–18.00 Hiking tour
18.30 Dinner

Monday, 8.10.2007
9.00–9.30 D. Praetorius (TU Wien)

Energy norm based a posteriori error estimation for BEM
9.30–10.00 G. Haase (KFU Graz)

A high performance parallel linear algebra toolbox:
Building blocks for general parallel solvers

10.00–10.30 Coffee
10.30–11.00 S. Börm (MPI Leipzig)

Hierachical compression
11.00–11.30 M. Bebendorf (Universität Leipzig )

Recompression techniques for adaptive cross approximation
11.30 Closing
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A Geometrical Approach to BEM

B. Auchmann1, S. Kurz2, S. Rjasanow3

1CERN, Genf, 2ETAS, Stuttgart, 3Universität des Saarlandes, Saarbrücken

We propose a symmetric BEM which approximates the integral kernel by consecu-
tive application of de Rham map (discretization) and Whitney map (interpolation).
The latter concepts belong to the discrete exterior calculus, which constitutes the
theoretical framework for discrete electromagnetic theories (Finite Differences, first–
order Finite Elements, Finite Integration Technique, Cell Method).
We note that our BEM formulation features so–called pairing matrices, which are
known in discrete exterior calculus to represent mappings of degrees of freedom from
a primal mesh to a barycentrically dual mesh. As a consequence we can discuss
structural similarities between the convential Galerkin BEM and the generalized
collocation BEM.
Our method reduces the dimension of the quadrature domains. Furthermore, the
method is easy to implement. We thus hope to contribute to a further dissemination
of the boundary element method in the engineering community. The 2-D BEM has
been coupled to a nonlinear discrete electromagnetic formulation. First numerical
experiments have shown encouraging convergence behaviour. The 3-D formulation
is under investigation.
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Recompression techniques for adaptive cross approximation

M. Bebendorf

Universität Leipzig

The adaptive cross approximation method generates low-rank approximations to
suitable m × n subblocks of discrete integral formulations of elliptic boundary va-
lue problems. A characteristic property is that the approximation, which requires
k(m + n), k ∼ | log ε|∗, units of storage, is generated in an adaptive and purely
algebraic manner using only few of of the matrix entries. In this article we present
three recompression techniques which bring the required amount of storage down
to kr, where r depends logarithmically on the accuracy of the approximation but
is independent of the matrix size.
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Hierarchical Compression

S. Börm

MPI Leipzig

Discretizing an integral operator by a standard finite element scheme usually leads
to a dense stiffness matrix, and handling this matrix efficiently is a major challenge.
Most approaches to this problem fall into two categories: analytical techniques,
e.g. the multipole and panel–clustering expansions of the kernel functions or the
wavelet representation of the trial and test spaces, and algebraical techniques, e.g.,
approximative factorizations of matrix blocks.
Both approaches have advantages and disadvantages, but most of them have one
thing in common: they are based on low–rank approximations of matrix blocks,
therefore they lead to a representation of the dense matrixby a hierarchical matrix.
Matrices in this form require only a relatively small amount of storage, and they
can be used to construct efficient preconditioners for the frequently ill–conditioned
integral equations.
This talk focuses on H2–matrices, a combination of hierarchical matrix techniques
with ideas of multilevel methods. For large problems, H2–matrices require far less
storage than hierarchical matrices. If we want to take advantage of this property,
we need algorithms for constructiong an H2–matrix approximation with a little
additional storage as possible, and we want these algorithms to be flexible enough to
use any of the popular low–rank approximation schemes (like multipole expansion,
adaptive cross approximation or interpolation).
The standard schemes for the construction of low–rank approximations split the ma-
trix into a number of blocks and treat each block separately. Whiles this approach
leads to simple and efficient algorithms, it cannot take advantage of connections
between the blocks to reduce the storage requirements even further. In this talk, I
present a technique for recovering these connections and using them to reduce sto-
rage requirements by representing the dense matrix by an H2–matrix. The recovery
algorithm adds only a small computational overhead, and experiments show that it
already provides an advantage for moderate problem dimensions and becomes more
efficient as the number of degrees of freedom grows. Since it is based on general
low–rank approximations, any of the approximation schemes mentioned above can
be used to construct an initial approximation, and the algorithm will turnit into a
nearly optimal H2–matrix.
The basic idea of the algorithm is to convert submatrices into H2–matrices and then
merge these submatrices to form larger submatrices until the entire matrix has been
approximated. The merging process is carried out by computing the singular value
decomposition of small matrices, and the singular values provide enough informa-
tion to guarantee that the approximation error can be closely controlled. Since all
submatrices are converted into the H2–matrix representation as soon as possible,
the algorithm requires only a small amount of additional storage.
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Investigation of Sound Emission from Ships by a
Coupled FE/ Fast BE Approach

D. Brunner1, M. Junge1, L. Gaul1, C. Cabos2

1 University of Stuttgart, 2Germanischer Lloyd, Hamburg

The legal limits of noise level of ships are continuously reduced. Ships should be
quiet onboard for people’s comfort and the underwater noise pol lution is to be
minimized, since the water is the living environment of m arine mammals.
Simulation of the vibro–acoustic behavior of ships needs dealing with fl uid–structure
coupled problems, since the surrounding water has a signif icant influence on the
vibration behavior. For the structural part, name ly the ship, the finite element
method (FEM) is used. The commercial fini te element package ANSYS is applied
for setting up the mass and stiffness matrices. The surrounding water is modelled
with the fast multipole boun dary element method (FBEM). Different formulati-
ons are investigated for the totally submerged and partially immersed case. For the
last mentioned case, a special halfspace formulation is applied to incorporate the
pres sure boundary condition of the infinite water surface. Iterative precondi tioned
solvers are employed and the numerical efficiency is compared. The applicability
of the coupling schemes is demonstrated using a real–worl d shipmodel. Finally, a
non–conforming coupling scheme is presented, whe re the nodes of the coarse fluid
elements are coinciding with some of the nodes of the fine structure mesh. The
pressure on the remaining nodes is interpolated linearly.
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Sparse p version BEM for first kind boundary integral equations with
random data

A. Chernov, C. Schwab

ETH Zürich

We consider the weakly singular boundary integral equation Vu = g on a radomly
perturbed smooth closed surface Γ(ω) with deterministic g or on a deterministic
closed surface Γ with stochastic g(ω). The aim is the computation of the moments
Mku := E[⊗k

i=1u], k ≥ 1, if the corresponding moments of the perturbation are
known. The problem on the stochastic surface is reduced to a problem on the no-
minal deterministic surface Γ with the random perturbation parameter κ(ω). Note,
that u(ω) depends nonlinearly on κ(ω).
Resulting formulation for the kth moment is posed in the tensor product Sobolev
spaces and involve the the k–fold tensor product operators V(k) = ⊗k

i=1V. The
standard full tensor product Galerkin BEM requires O(Nk) unknowns for the kth
moment problem, where N is the number of unknowns needed to discretize the
normal surface Γ. Based on [3], we develop the p–sparse grid Galerkin BEM to reduce
the number of unknowns of O(N(log N)k−1) (cf. [1], [2] for the wavelet approach).

References

1. H. Harbrecht, R. Schneider, Ch. Schwab: Sparse second moment analysis for
elliptic problems in stochastic domains. In press.

2. T. von Petersdorff, Ch. Schwab: Sparse finite element methods for operator
equations with stochastic data. Appl. Math. 51 (2006), no. 2, 145–180.

3. V. N. Temlyakov: Approximation of periodic functions. Nova Science Publ.,
New York, 1994.
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BEM–Based FEM for Helmholtz amd Maxwell Equations on Arbitrary
Polyhedral Meshes

D. Copeland

Johannes Kepler University Linz

We present new finite element methods for the Helmholtz and Maxwell equations
on arbitrary three-dimensional polyhedral meshes, with boundary elements on the
surfaces of the polyhedral elements. The methods are based on domain decompo-
sition techniques, treating the polyhedral elements as subdomains. On a triangular
mesh of the skeleton, we use the lowest order polynomial spaces and obtain sparse,
symmetric linear systems despite the use of boundary elements. Moreover, piecewise
constant coefficients are permissible. The resulting approximation on the skeleton
mesh can be extended throughout the domain via representation formulas.
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Adaptive Coupling of Boundary Element and Finite Element Methods
for Elasto-Plastic Analysis 1

W. Elleithy, U. Langer

Johannes Kepler University Linz

In this talk we present an adaptive finite element-boundary element coupling me-
thod for solving problems in elasto-plasticity. In order to obtain a computationally
efficient coupling method, considerable attention is devoted to the generation and
progressive adaption of the FEM and BEM discretizations.
In an attempt to estimate regions susceptible for FEM discretization, we propose
the use of simple, and at the same time fast, post calculations, based on energetic
methods which follow a simple hypothetical elastic boundary element computation.
The FEM and BEM meshes are automatically generated over the estimated plastic
and the remaining linear elastic regions, respectively.
The present adaptive coupling method is practically advantageous as it does not
necessitate the predefinition and manual localization of the FEM and BEM sub-
domains. Moreover, the method is computationally efficient as it substantially de-
creases the size of FEM meshes, which plainly leads to reduction of required system
resources and gain in efficiency. The numerical results confirm the effectiveness of
the proposed method.

References

1. Costabel, M., Symmetric methods for the coupling of finite elements and boun-
dary elements. In: Boundary Elements IX, C. Brebbia, W. Wendland, and G.
Kuhn (eds.), Springer, Berlin, Heidelberg, New York, 1987, pp. 411.

2. Holzer, S. M., Das Symmetrische Randelementverfahren: Numerische Realisie-
rung und Kopplung mit der Finite-Elemente-Methode zur Elastoplastischen
Strukturanalyse. Technische Universität München, Munich, 1992.

3. Langer, U., Steinbach, O., Coupled Boundary and Finite Element Tearing and
Interconnecting Methods. Proceedings of the Fifteenth International Confe-
rence on Domain Decomposition, Berlin, Germany, July 2003, pp. 83-98.

4. Stephan, E. P., Coupling of Boundary Element Methods and Finite Element
Methods. Encyclopedia of Computational Mechanics, Vol. 1 Fundamentals,
Chapter 13, E. Stein, R. de Borst and T. J. R. Hughes (eds.), John Wiley &
Sons, Chichester, 2004, pp. 375-412.

5. Chernov, A., Geyn, S., Maischak, M., Stephan, E. P., Finite Element/Boundary
Element Coupling for Two-Body Elastoplastic Contact Problems with Friction.
In: Analysis and Simulation of Contact Problems, P. Wriggers and U. Nacken-
horst (eds.), Lecture Notes in Applied and Computational Mechanics, Vol. 27,
2006, pp. 171-178.

1Acknowledgements: The support of the Austrian Science Fund (FWF), Project number: M950, Lise Meitner
Program is gratefully acknowledged.
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Boundary Element Methods for the Helmholtz Equation

S. Engleder, O. Steinbach

TU Graz

Although the exterior boundary value problems for the Helmholtz equation with eit-
her Dirichlet or Neumann boundary conditions are unique solvable, related boun-
dary integral equations may not be solvable, or the solutions are not unique. In
particular, the boundary integral operators are not injective when the wave number
k2 is an eigenvalue of the interior Dirichlet or Neumann eigenvalue problem, respec-
tively. Considering linear combinations of different boundary integral formulations
this results in combined boundary integral equations, which are unique solvable
for all wave numbers. The most known formulations are those of Brakhage–Werner
and Burton–Miller. However, since the combined boundary integral equation in-
volves boundary integral operators of both first and second kind, the analytical
framework offers different settings. The classical combined boundary integral equa-
tions are considered in L2(Γ), where the uniqueness results are based on G̊ardings
inequality and Fredholm’s alternative. To ensure the compactness of certain boun-
dary integral operators, sufficient smoothness of the surface Γ is required. Recently,
different regularized formulations are discussed, which ensure the unique solvability
even for Lipschitz surfaces Γ.
Here we will describe modified regularized boundary integral formulations for the
Helmholtz equation with either Dirichlet or Neumann boundary conditions. We ana-
lyse the associated boundary element approximation and give numerical examples
to illustrate the theoretical results. Moreover we discuss different choices for precon-
ditioners for linear systems, resulting from different boundary integral formulations.
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Advances in Nonlocal Electrostatics

C. Fasel1, S. Rjasanow1, O. Steinbach2

1Universität des Saarlandes, 2TU Graz

Proteins are responsible for nearly all chemical reactions in the human body. They
can also be important weapons to fight diseases. To find a fitting reactant to an
ailment hundredthousands of possible partners are tested in laboratory.
The number of tests could be significantly reduced, if it was possible to calculate the
electric field of the virus and all possible reactants efficiently, thus they cannot react
if their fields don’t fit. The environment where they come together is structured like
water. To describe the electrostatic field of a molecule in water, we have to deal
with nonlocal electrostatics because of the hydrogenbond network and this is – in
contrast to local electrostatics – very tricky, since the relation between electric field
and displacement field is much more complicated than in the local case. The genuine
formulation (see for instance [1]) involves one differential equation for the potential
inside the molecule and one integro-differential equation on the outside.
We will present an equivalent system of four partial differential equations in each
domain. For the spherical symmetric special case of an ion with charge located at
the origin, an analytical solution will be given. The problem is an interface problem.
The structure of the surface of an biomolecule and its size seem to exclude numeri-
cal calculations using finite element methods and therefor we want to use boundary
element methods. So we also present a fundamental solution for the operators in-
volved in the PDE-formulation, show their ellipticity and give a boundary integral
formulation of the problem. The creation of the single and double layer potential
for the operator on the unbounded exterior domain will be discussed.

References

1. A. A. Kornyshev, A. I. Rubinshtein, M. A. Vorotyntsev: Model nonlocal elec-
trostatics, J. Phys. C.: Solid State Phys., Vol. 11, pp. 3307–3331, (1978).

2. A. Hildebrandt, H.–P. Lenhof, R. Blossey, S. Rjasanow, O. Kohlbacher: Elec-
trostatic potentials of proteins in water: A structured continuum approach.
Bioinformatics 23(2): 99–103, (2007).
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A High Performance Parallel Linear Algebra Toolbox:
Building Blocks for General Parallel Solvers

G. Haase, M. Liebmann

Karl–Franzens Universität Graz

The Parallel Toolbox, a high performance parallel linear algebra toolbox written
in C++is introduced. The toolbox provides building blocks for the construction
of advanced parallel solvers for multilevel and domain decomposition aproaches. A
parallel algebraic multigrid solver is used as a testbed for problems in fluid mecha-
nics and biomedical engineering. The toolbox automatically generates the necessa-
ry parallel communication for unstructured distributed meshes. The communication
complexity is handled by the toolbox with only a few simple user accessible routines.
Benchmarks on high performance computing clusters are presented to validate the
viability of the approach.
The potential of using the toolbox for FEM/BEM–couplings will be discussed as
well as new processor developments which have to be taken into account for the
algorithm development.

References

[1] G. Plank, M. Liebmann, R. Weber dos Santos, E.J. Vigmond, G. Haase, Alge-

braic Multigrid Preconditioner for the Cardiac Bidomain Model, IEEE Tran-
sactions on Biomedical Engineering, Vol. 54, No. 4, (2007).

[2] G. Haase, M. Kuhn, S. Reitzinger, Parallel Algebraic Multigrid Methods on

Distributed Memory Computers, SIAM J. Sci. Comput., Vol. 24, No. 2, pp.
410-427, (2002).

[3] C. Douglas, G. Haase, U. LangerA Tutorial on Elliptic PDE Solvers and Their

Parallelization, SIAM , (2003).

[4] Parallel Toolbox Website: http://paralleltoolbox.sourceforge.net/
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A Spectral Boundary Integral Equation Method for Optical Response
of Plasmon Resonant Nanoparticles with Non–Smooth Boundaries

L. Illyashenko–Raguin

ETH Zürich

In recent years metallic nanoparticles have attracted much theoretical and expe-
rimental attention due to their ability to exhibit a large scattering cross–section
(SCS) and high near–field amplitude when a surface plasmon resonance (SPR) is
excited. Such nanoparticles find variety of applications in today’s industrial engi-
neering research. They play a major role in surface–enhanced Raman spectroscopy
and may act as localized light sources for scanning near–field optical microscopy and
nanolithography [1]. Another interesting application is based on the energy transfer
between evanescently coupled SPR particles [2].
It is still requested to enhance the design and optimization of the devices based
on SPR applications. Since such resonances are found to exist for silver or gold
particles and in the neighborhood of their geometrical singularities the dramatic
field enhancement was observed [1], fast and accurate determination of the local
fields and SCS for nanoparticles with complex dielectric permittivities and non–
smooth boundaries remains a theoretical challenge. Therefore the goal of this work
is to develop an efficient numerical calculation scheme for analyzing the optical
response of a single SPR particle and their clusters.
The mathematical formulation of such problems results in the direct electroma-
gnetic scattering and transmission problem for Helmholtz equation. The Boundary
Integral Equation (BIE) methods are well suited for their treatment [3] due to im-
plicitly fulflled Sommerfeld radiation condition. Using classical approach based on
layer–potential technique we obtain indirect BIE formulation. We use a kind of
Spectral–Galerkin method with trigonometric polynomial approximants (spectral
harmonics of the unit circle) combined with the singularity subtraction technique,
which has been shown to converge exponentially when the boundary of the scatterer
is sufficiently smooth [4]. Galerkin’s method is further discretized, where a reduction
of the complexity of the computational scheme is achieved by using the Fast Fourier
Transform (FFT). Mapping and patching permits us to overcome the shape limita-
tions of the classical spectral methods and to extend the applicability to arbitrary
complicate geometry. The novel idea is the global parameterization of polygonal
boundaries in terms of fast convergent Fourier series which arises from the use of
confomal mapping technique providing excellent accuracy, reduced complexity and
fast convergence of numerical algorithm is whole.
The performance of the proposed method is demonstrated by calculation of the
near– and far–field characteristics including corresponding error anaylsis for several
single and coupled SPR particles with various shapes and sizes.

References

1. J. P. Kottmann, O. J. F. Martin, D. R. Smith, S. Schultz: Non–regularly shaped plasmon resonant
nanoparticle as localized light source for near–field microscopy. J. Microsc. 202 (2001) 60–65.

2. L. Rogobete, F. Kaminski, M. Agio, V. Sandoghdar: Design of plasmonic nanoantennae for enhancing
spontaneous emissions. Opt. Lett. 32 (2007) 1623–1625.

3. S. Sauter, C. Schwab: Randelementmethoden. BG Teubner, Stuttgart, 2004.

4. K. E. Atkinson: The numerical solution of integral equations of the second kind. Cambridge Uni-
versity Press, 1997.
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Boundary Element Methods in Time Domain by
Using a Symmetric Galerkin Method

L. Kielhorn, M. Schanz

TU Graz

The Symmetric Galerkin Boundary Element Method (SGBEM) is well established
for the treatment of elliptic partial differential equations. In the present work, this
method is extended to the hyperbolic case, especially to the field of 3-d elastody-
namics.
When dealing with time-dependent problems the underlying boundary integral
equations contain convolution integrals with respect to the time variable. These
integrations can be performed in several ways. Here, the Convolution Quadrature
Method (CQM) proposed by Lubich is used. This time stepping procedure’s benefit
is the usage of the Laplace transformed fundamental solution which makes it at-
tractive also for problems where time-domain fundamental solutions might not be
known.
The symmetric Galerkin formulation requires the usage of the second boundary inte-
gral equation involving the hypersingular integral operator. Hence, a regularization
for closed surfaces based on Stokes theorem is given resulting in a representation
suitable for the numerical treatment. Some numerical studies are presented in order
to validate this approach with respect to different spatial and time discretizations.
Unfortunately, one of the biggest advantages of boundary element methods in time
domain, namely the modelling of wave propagation phenomena within semi-infinite
domains, has been lost since the regularization process is based on a closed boundary
surface. Therefore, the talk ends with a short discussion of some recently developed
ideas to overcome this drawback.
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A BEM Model of a tunnel in an orthotropic layered halfspace

W. Kreuzer, W. Waubke

Austrian Academy of Sciences, Acoustics Research Institute, Wien

For the simulation of vibrations in orthotropic and anisotropic layers some work
already has been done (i.e. [1]). Nevertheless the combination with the boundary
element method turns out to be rather challenging because the lack of an usable
analytic form of Green’s function. For our model we use a Fourier based numeric
approximation for the fundamental function (see for example also [2]).
In a first stage deformations and stresses that are caused by a pointload at the origin
are calculated for a layered orthotropic halfspace. All calculations are done in the
Fourier domain with respect to the spatial coordinates x and y. As the loadfunction
we use the δ-functional which will be transformed into a uniform one load in the
Fourier domain.
With the results from the first stage we can construct an approximation for the
Green’s function. The BEM formulation is still in the Fourier domain with respect
to x which enables us to reduce the 3D problem into a series of 2D problems on
the grid of the tunnels cross section, because the boundary integral equation is
decoupled for every wavenumber kx.

References

1. A. H. Nayfeh, The general problem of elastic wave propagation in multilayered
anisotropic media, J. Acoust. Soc. Am. 89(4), 1991, p. 1521–1531.

2. F. M. E. Duddeck, Fourier-BEM: or what to do if no fundamental solution is
available?, Meccanica 36, 2001, p.437–448.
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Robust Maxwell formulations

R. Hiptmair1, F. Krämer2, J. Ostrowski2

1ETH Zürich, 2ABB Schweiz

A novel unified method for the stable numerical solution of the time–harmonic
Maxwell’s equations for any frequency is presented. The method is based on an
extended A–ϕ variational formulation of the full linear Maxwell’s equations. This
formulation avoids stability problems in the stationary limit, where it reduces to
the equations of electrostatics and magnetostatics. Both capacitive and inductive
effects are taken into account in a robust fashion for all frequencies.
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Hybrid tearing and interconnecting methods in unbounded domains2

U. Langer, C. Pechstein

Johannes Kepler Universität Linz

Finite element tearing and interconnecting (FETI) and boundary element tearing
and interconnecting (BETI) as well as the closely related dual–primal methods
(FETI–DP and BETI–DP) are robust domain decomposition solvers for partial
differential equations. These methods have proved to be parallely scalable and the
condition number of of the corresponding preconditioned system is rigorously boun-
ded by C(1 + log(H/h))2 where the constant C is independent of the subdomain
diameter H , the mesh size h, and the coefficient if it is piecewise constant on the
subdomains.
In this talk, we analyze BETI and BETI–DP methods for two– and three–dimen-
sional potential equations where one of the subdomains is unbounded, i.e. one of the
sub–problems is an exterior problem with a radiation condition. Under appropriate
assumptions the condition number can be bounded by C(1 + log(HF /h))2 where
HF denotes the maximal diameter of the interfaces between adjacent subdomains.
In certain situations C can be shown to be robust with respect to the (typically
large) diameter of the boundary of the unbounded domain. We sketch the idea of
the proof and give some numerical results.

References

1. C. Farhat, F. X. Roux: A method of finite element tearing and interconnecting
and its parallel solution algorithm. Int. J. Numer. Methods Engrg. 32 (1991)
1205–1227.

2. A. Klawonn, O. Widlund, M. Dryja: Dual–primal FETI methods for three–
dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer.
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3. U. Langer, O. Steinbach: Boundary element tearing and interconnecting me-
thods. Computing 71 (2003) 205–228.

4. U. Langer, C. Pechstein: Coupled finite and boundary element tearing and
interconnecting solvers for nonlinear potential problems. ZAMM 86 (2006) 915–
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5. A. Toselli, O. B. Widlund: Domain Decomposition – Algorithms and Theory.
vol. 32 of Springer Series in Computational Mathematics, Springer, Berlin,
Heidelberg, 2005.

2This work was supported by the Austrian Science Foundation (FWF) under grant SFB F013.
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Energy norm based a posteriori error estimation for BEM

C. Erath1, S. Ferraz–Leite2, S. Funken1, D. Praetorius2

1Universität Ulm, 2TU Wien

The h–h/2–strategy is one very basic and well-known technique for the a posteriori
error estimation for Galerkin discretizations of energy minimization problems. Let
φ denote the exact solution. One then considers

ηH := ‖φh/2 − φh‖

to estimate the error ‖φ − φh‖, where φh is a Galerkin solution with respect to
a mesh Th and φh/2 is a Galerkin solution for a mesh Th/2 obtained by a uniform
refinement of Th. We stress that ηH is always efficient – even with known efficiency
constant Ceff = 1, i.e.

ηH ≤ ‖φ − φh‖.

Reliability of ηH follows immediately from the saturation assumption

‖φ − φh/2‖ ≤ q ‖φ − φh‖

with some uniform constant q ∈ (0, 1). Under this assumption, there holds

ηH ≤ ‖φ − φh‖ ≤
1√

1 − q2
ηH .

However, for boundary element methods, the energy norm ‖·‖ is non-local and thus
the error estimator ηH does not provide information for a local mesh-refinement.

Recent localization techniques from [1] for H̃−α-norms and [3] for H̃α-norms allow
to replace the energy norm in this case by h-weighted L2-norms resp. H1-norms,
where h denotes the local mesh-size. In particular, this very basic error estimation
strategy is also applicable to steer an h-adaptive mesh-refinement. For instance, for
Symm’s integral equation, the L2-norm based estimator

µH := ‖h1/2(φh/2 − φh)‖L2(Γ)

is equivalent to ηH . We thus may use µH to steer the mesh and ηH to estimate the
error.
Recently [2], we observed that ηH is equivalent to the averaging error estimator from
[1] as well as to the two-level error estimator from [5]. In particular, this generalizes
the proof of [5] from the case of uniform mesh-refinement to adaptively generated
meshes. Numerical examples for Symm’s integral equation conclude the talk.
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FE/BE coupling for time–dependent interface problems
in electromagnetics

R. Prato, E. P. Stephan

Leibniz Universität Hannover

We present an h-version of the FE/BE coupling method to solve the eddy current
problem for time dependent Maxwell’s equations. For the time discretization we use
the discontinuous Galerkin method with piecewise linear test and trial functions; for
the space discretization we take H(curl, Ω) -conforming vector-valued polynomials
to approximate the electric field in the conductor Ω and surface curls of continuous
piecewise polynomials on the boundary Γ of Ω to approximate the twisted tangen-
tial trace of the magnetic field on Γ. Singular, double singular and hypersingular
boundary integral operators appearing in the variational formulation. Finally we
present both a priori and a posteriori estimates.
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Numerical Experiments for 3D Eddy–Current Simulations

Z. Andjelic, D. Pusch

ABB Schweiz, Corporate Research

In many industrial applications the appearing physical phenomenon of eddy currents
is playing an important role which has to be considered. They are responsible for
inducing force on device units as well as for thermal heat production in the device
material.
Starting with the H–ϕ formulation for modeling eddy currents in 3D we end up
with essentially four equations in the space of complex numbers. In order to solve
these boundary integral equations we are applying boundary element discretization
methods like the collocation or Galerkin method.
An efficient solving procedure is obtained by implementing common compression
techniques for dense boundary element matrices. Depending on the underlying elec-
tromagnetic model, we are using either the multipole method or the adaptive cross
approximation, both of them have advantages in certain cases.
Finally, we are going to show some numerical experiments for various combinations
of integration and acceleration techniques.
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Issues on fracture mechanics and boundary integral equations

A. Salvadori

Universita di Brescia

The present note deals with recent issues on fracture mechanics and boundary inte-
gral equations. It aims at addressing the following topics: i. criteria and algorithms of
quasi-static crack propagation in brittle and quasi brittle solids: theoretical aspects,
formulation via boundary integral equations, implementation strategies; ii. SIFs and
T stresses approximation via the boundary element method; iii. potential advanta-
ges in the use of iterative solvers.
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Coupled FE/BE formulations for the acoustic–structure interaction

O. Steinbach

TU Graz

The coupling of finite and boundary element methods is well suited to handle diffe-
rent physical models and phenomena, in particular when including exterior boun-
dary value problems. Here we will focus on a time–harmonic acoustic–structure
interaction where the acoustic field is modeled by using boundary integral equati-
ons. We discuss different boundary integral formulations which will be stable for all
wave numbers, and we will describe different discretization strategies.
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Efficient Calculation of non–linear problems using the Boundary
Element Method

K. Thöni, G. Beer

TU Graz

The Boundary Element Method (BEM) is a useful tool for solving infinite and
semi–finite numerical problems. By using this method, only the boundary of the
problem has to be discretized. Thus, the dimension of the problem is reduced by
one. regarding mesh generation, dimension of the system of equations, data storage,
and post–processing, this is considered a significant advantage.
When dealing with non–linear problems, not only boundary integrals but also do-
main integrals arise. In the standard 2d or 3d approach, a mesh of area or volume
cells is used respectively for the evaluation of the domain integrals (see e.g. [1,2,4]).
The drawback of the cell method is that the main advantage of the BEM is lost
because cells have to be generated by the user, either in the whole domain or in
parts of the domain that are expected to behave non–linearly. Moreover, the eva-
luation of the internal results and the integration over the cells are rather time
consuming. However, the size of the system of equations does not depend on the
domain discretization, which means that no additional degrees of freedom will be
introduced using internal cells. In addition, internal cells can be generated automa-
tically [3] and the effort in discretization of internal cells can be optimized. It will
be shown that non–conforming hybrid cell meshes can be used to reduce computa-
tional time. However, the idea is to generate such meshes automatically by using
adaptive strategies based on an error estimator. Furthermore, a new engineering
approach to computing internal stresses on cells very efficiently will be presented.
Some preliminary results will be shown and be up for discussion.
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Fast Evaluation of Newton Potentials in BEM

G. Of, O. Steinbach, P. Urthaler

TU Graz

This talk is concerned with the evaluation of Newton potentials in the case of the
Poisson equation and the system of linear elastostatics. First, a direct evaluation of
the Newton potentials is considered. This can be accelerated by the Fast Multipole
Method. Alternatively, the Newton potential N1f can be computed indirect by
solving a boundary integral equation if N0f is known. The efficiency of direct and
indirect computation is compared in numerical examples.
If the volume function satisfies a certain partial differential equation, applying inte-
gration by parts may reduce the Newton potentials to surface integrals only. Thus
a meshing of the volume is not needed for the simulation at all. Such an approach
is applied to electromechanical coupling.
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Introduction to Enriched Boundary Elements for Fracture Mechanics

J. O. Watson

University of New South Wales, Sydney

Cracks may be modelled in two and three dimensions by coincident isoparametric
boundary elements on each face. The primary objective of analysis is the computa-
tion of stress intensity factors, from which it is possible to predict whether a crack
is stable or will propagate. Stress intensity factors are generally computed from
crack opening displacements or the Rice J–integral. It is usually necessary to refine
the mesh towards the crack root, and for quadratic elements the midside nodes of
elements adjoining the root are shifted to allow the singular component of displace-
ment to be modelled more accurately by the shape functions. There are, however,
uncertainties in choice of contour for the J–integral and interpretation of crack ope-
ning displacements, and midside node shifting impairs the ability to model other
components of the displacement field.
In an alternative approach, the isoparametric shape functions are supplemented by
singular functions which exhibit the same singularities as terms of the Williams
eigenfunction expansion. In the three–dimensional implementation outlined in this
presentation, all three modes are taken into account for the first three eigenvalues of
that expansion. There is no needfor local mesh refinement, and stress intensity fac-
tors (including T–stresses) are computed simulataneously with nodal displacements
and so the uncertainties referred to above are eliminated. Notch singularities can
also be modelled, with the dominant eigenvalues only in each mode taken into ac-
count. Results are compared with published data, and possible future developments
are discussed.
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Stable Boundary Element Methods for Electrogmagnetic Scattering 3

O. Steinbach, M. Windisch

TU Graz

For exterior electromagnetic scattering problems, the boundary integral equation
method is a suitable choice for a numerical approach, because only the boundary
has to be discretised, and the Silver-Müller radiation condition is incorporated. Ho-
wever, the unique solvability of the original problem can get lost in particular when
eigenfrequencies of the scattering body appear. A first approach to overcome this
problem is to use the approach of Brakhage and Werner, who introduced a combi-
ned field integral equation for the acoustic scattering problem. But this approach
is considered usually in L2(Γ), where uniqueness results are based on Gardings ine-
quality and Fredholm’s alternative. However, the compactness of certain boundary
integral operators is needed, i.e. the boundary must be assumed to be sufficiently
smooth. That’s why modified boundary integral equations were introduced which
are formulated in the energy function spaces to ensure unique solvability also for
Lipschitz polyeders. In this talk a modified boundary integral equation will be pre-
sented that in comparison to already existing approaches neither uses a compact
operator in the formulation nor uses the Hodge decomposition, further on first steps
of developing some numerical estimates are discussed. Finally a numerical example
is presented.

3This work is supported by the Austrian Science Fund (FWF) under grant P19255
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High–order finite element methods for computational electromagnetics

J. Schöberl1, S. Zaglmayr2

1RWTH Aachen, 2Johannes Kepler Universität Linz

A key tool in the design of numerical methods for Maxwell’s equations and their
numerical analysis is the de Rham Complex, which relates function spaces and their
natural differential operators, and reads in 3D:

R
id
−→ H1(Ω)

∇
−→ H(curl, Ω)

curl
−→ H(Div, Ω)

div
−→ L2(Ω)

0
−→ {0}.

The sequence is exact: the range of an operator in the sequence coincides with the
kernel of the next operator. Especially, the kernel of the curl-operator is stated by
the gradient fields of H1.
The de Rham Complex perfectly fits to electromagnetics: in a variational setting
H1(Ω) is the natural function space for the electrostatic potential, the magnetic
and the electric fields lie in H(curl, Ω) and their fluxes belong to H(div, Ω). For a
proper conforming finite element method, the discrete spaces have to form an exact
sequence as well.
The innovation of the presented work is to introduce high-order H(curl)-conforming
basis functions, where we respect the de Rham Complex already in their constructi-
on process. Namely, we explicitely use gradients of the corresponding H1-conforming
basis functions in the FE-basis. This yields an explicite seperation of the set of basis
functions into lowest-order Nedelec functions, higher-order gradients and irrotatio-
nal fields.
In the second part of the talk, we will focus on two practical advantages: The con-
struction of efficient preconditioners for the curl-curl problem and special gauging
strategies for magnetostatics and non-conducting domains in eddy current problems.
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mila.raguin@sam.math.ethz.ch

16. Dipl.–Ing. Lars Kielhorn
Institut für Baumechanik, TU Graz,
Technikerstrasse 4, A 8010 Graz
l.kielhorn@tugraz.at

17. Dr. Wolfgang Kreuzer
Austrian Academy of Sciences, Acoustics Research Institute,
Wohllebengasse 12-14, A 1040 Wien
kreiza@kfs.oeaw.ac.at

18. Prof. Dr.–Ing. Stefan Kurz
ETAS GmbH, Marketing and Application Fields, Global Operations,
Borsigstrasse 14, D 70469 Stuttgart
stefan.kurz@etas.de

19. Prof. Dr. Ulrich Langer
Institut für Numerische Mathematik, Johannes Kepler Universität Linz,
Altenberger Strasse 69, A 4040 Linz
ulanger@numa.uni-linz.ac.at

20. Dipl.–Ing. Matthias Messner
Institut für Baumechanik, TU Graz,
Technikerstrasse 4, A 8010 Graz
m.messner@tugraz.at

33



21. Dr. Günther Of
Institut für Numerische Mathematik, TU Graz,
Steyrergasse 30, A 8010 Graz
of@tugraz.at

22. Dr. Jörg Ostrowski
ABB Switzerland Ltd., Corporate Research, CH 5405 Baden–Dättwil
joerg.ostrowski@ch.abb.com

23. Dipl.–Ing. Clemens Pechstein
Institut für Numerische Mathematik, Johannes Kepler Universität Linz,
Altenberger Strasse 69, A 4040 Linz
clemens.pechstein@numa.uni-linz.ac.at

24. Andre Pereira, M.Sc.
Institut für Baustatik, TU Graz,
Lessingstrasse 25, A 8010 Graz
andre.pereira@tugraz.at

25. Plinio Prazeres, M.Sc.
Institut für Baustatik, TU Graz,
Lessingstrasse 25, A 8010 Graz

26. Prof. Dr. Dirk Praetorius
Institut für Analysis und Wissenschaftliches Rechnen, TU Wien,
Wiedner Hauptstrasse 8–10, A 1040 Wien
dirk.praetorius@tuwien.ac.at

27. Ricardo Prato, M.Sc.
Institut für Angewandte Mathematik, Leibniz Universität Hannover,
Welfengarten 1, D 30167 Hannover
prato@ifam.uni-hannover.de

28. Dipl.–Ing. David Pusch
ABB Switzerland Ltd., Corporate Research, CH 5405 Baden–Dättwil
david.pusch@ch.abb.com

29. Dr. Oliver Rain
Robert Bosch GmbH, Corporate Sector Research and Advance Engineering,
Postfach 106050, D 70049 Stuttgart
oliver.rain@de.bosch.com

30. Dr. Stefan Reitzinger
CST Computer Simulation Technology,
Bad Nauheimer Str. 19, D 64289 Darmstadt
stefan.reitzinger@cst.com

34



31. Dipl.–Ing. Thomas Rüberg
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