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A new class of discontinuous Petrov–Galerkin (DPG) Finite Element
(FE) methods with applications to impossible problems

L. Demkowicz

Institute for Computational Engineering and Sciences (ICES)
University of Texas at Austin

The hp-adaptive finite elements combine elements of varying size h and polynomi-
al order p to deliver approximation properties superior to any other discretization
methods. The best approximation error converges exponentially fast to zero as a
function of number of degrees-of-freedom. The hp methods are thus a natural can-
didate for singularly perturbed problems experiencing internal or boundary layers
like in compressible gas dynamics.
This is the good news. The bad news is that only a small number of variational
formulations is stable for hp-discretizations. By the hp-stability we mean a situation
where the discretization error can be bounded by the best approximation error times
a constant that is independent of both h and p and, ideally, is of order one. To this
class belong classical elliptic problems (linear and non-linear), and a large class of
wave propagation problems whose discretization is based on hp spaces reproducing
the classical exact grad-curl-div sequence. Examples include acoustics, Maxwell,
elastodynamics, poroelasticity and various coupled and multiphysics problems.
We will present a new paradigm for constructing discretization schemes for virtual-
ly arbitrary systems of linear PDE’s that remain stable for arbitrary hp meshes,
extending thus dramatically the applicability of hp approximations. We will use
convection dominated diffusion as a model problem to present the method and
then review a number of applications for which we have collected some numerical
experience including:

• 1D Burgers and compressible Navier-Stokes equations (shocks)

• Timoshenko beam and axisymmetric shells (locking, boundary layers)

• 2D linear elasticity

• 1D and 2D wave propagation (polution error control)

The presented methodology incorporates the following features:
The problem of interest is formulated as a system of first order PDE’s in the dis-
tributional (weak) form, i.e. all derivatives are moved to test functions. We use the
DG setting, i.e. the integration by parts is done over individual elements.
As a consequence, the unknowns include not only field variables within elements but
also fluxes on interelement boundaries. We do not use the concept of a numerical
flux but, instead, treat the fluxes as independent, additional unknowns.
For each trial function corresponding to either field or flux variable, we determine
a corresponding optimal test function by solving an auxiliary local problem on one
element. The use of optimal test functions guarantees attaining the supremum in
the famous inf-sup condition from Babuska-Brezzi theory.
The local problems for determining optimal test functions are solved approximately
with an enhanced approximation (a locally enriched mesh).
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By selecting right norms for test functions, we can obtain amazing stability proper-
ties uniform not only with respect to discretization parameters but also with respect
to the perturbation parameter (diffusion constant, Reynolds number, beam or shell
thickness, wave number) In other words, the resulting discretization is “robust.”
For a detailed presentation on the subject, see [1-7].
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Adjoint based sampling methods for electromagnetic scattering

H. Egger1, M. Hanke2, C. Schneider2, J. Schöberl3, S. Zaglmayr4

1Karl–Franzens Universität Graz
2Johannes Gutenberg Universität Mainz, 3TU Wien, 4TU Graz

In this talk, we discuss the efficient solution of inverse electromagnetic scattering
problems by sampling methods. Such methods have been justified theoretically also
for a variety of similar inverse problems, e.g., for electric impedance or diffuse optical
tomography.
The sampling method under investigation is based on a factorization of the elec-
tromagnetic Calderon operator, which allows to conclude that a point in the com-
putational domain is inside the scatterer, whenever the trace of a certain Green’s
function is in the range of the measurement operator. For general geometries or
background media, such a Green’s function is however usually not available.
We will present an equivalent way to compute the numerical range criterion, which
avoids the use of the Green’s function. Our approach is based on the solution of
certain adjoint problems: all information about the background, the geometry and
the measurement setup is encoded in a limited number of adjoint fields – one for
each detector in the measurement setup. This allows the evaluation of the integrals
required in the factorization method simultaneously for all test points z in the
domain.
The solution of the adjoint problems can be done in a calibration step, and after this
calibration, the sampling method can be realized very fast, i.e., in parts of seconds,
even for three dimensional problems.
The viability of the approach is illustrated with numerical examples.
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Boundary element methods for the Eddy Current Problem

S. Engleder, O. Steinbach

TU Graz

Magnetic Induction Tomography is a contactless imaging modality, which aims to
obtain the conductivity distribution of the human body. The method is based on
exciting the body by magnetic induction using an array of transmitting coils to
induce eddy currents. A change of the conductivity distribution in the body results
in a perturbed magnetic field, which can be measured as a voltage change in the
receiving coils. Based on these measurements, the conductivity distribution can be
reconstructed by solving an inverse problem.
The forward problem of Magnetic Induction Tomography can be modeled as an
eddy current transmission problem in R

3. By using boundary integral equations we
can reduce this transmission problem to a problem on the surface of the conducting
object.
In this talk we present a boundary element formulation for this eddy current problem
and investigate its properties. Furthermore the use of suitable preconditioners and
fast boundary element methods will be discussed.
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Discrete electromagnetism using higher order shape functions

M. Fleck

Universität des Saarlandes, Saarbrücken

The basic principle of discrete electromagnetism (DEM) is to discretise the operators
occuring in the differential form representation of a given PDE. The appearance of
the discretised operators depends on the underlying shape functions. While the
lowest order version using Whitney elements is well known for its simple structure,
a naturalëxtension to higher polynomial degrees has yet to be found. We analyse the
discrete electromagnetism using a hierarchical set of higher order shape functions.
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A space–time view on low–frequency electrodynamics

S. Kurz, S. Suuriniemi

Tampere University of Technology

In many engineering applications, electromagnetic wave propagation can be ne-
glected. In this case, the full set of Maxwell’s equations can be approximated by
the well-known magnetoquasistatic (MQS, eddy current) or the electroquasistatic
(EQS) model, and we talk about low-frequency electrodynamics. These models are
known to be Galilean invariant. If it comes to modelling and simulation of problems
involving moving and/or deforming bodies it is important to clearly separate those
parts of the theory that are due to a particular choice of the observer from the core
of the phenomenon that should be expressed in an observer-independent way. To
this end, we give a mathematical model for Galilean space-time, whose key featu-
res are affine manifold, absolute time and horizontal Euclidean metric. We show
how to formulate MQS and EQS in this space-time model in four dimensions. The
usual three plus one-dimensional formulations of MQS and EQS are conceived by
an observer-induced decomposition. A change of observer is related to a Galilean
transformation of the observed fields. Finally, it is shown that for MQS and EQS the
Galilean invariance can be extended from inertial to rigid observers. This justifies
the usual analysis of rotating electrical machines from the rotor’s point of view.

7



A DG finite element method for parabolic equations

M. Neumüller, O. Steinbach

TU Graz

The time dependent heat equation will be considered as a model problem. This
equation will be discretized in the space time cylinder by using a Discontinuous
Galerkin approach. In particular for spatial domains Ω ⊂ R

3 we therefore have to
decompose the space time cylinder in R

4. For this, a method of decomposing a four
dimensional object into pentatopes will be presented. Numerical examples will be
given, which show the expected rate of convergence.
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Weighted Poincaré inequalities
and applications in domain decomposition

C. Pechstein1, R. Scheichl2

1Johannes Kepler University Linz, 2University of Bath

Robust solvers for problems with high-contrast coefficients are currently an import-
ant and active area of research. In this talk we present weighted Poincaré inequalities
of the form

inf
c∈R

∫
Ω

α(x) |u(x) − c|2 dx ≤ CP diam(Ω)2

∫
Ω

α(x) |∇u(x)|2 dx

for functions u in H1(Ω) or a in suitable discrete subspace. For a certain class of
piecewise constant and positive weight functions α(x), we can get the constant CP

independent of the values of α, i. e. of high contrast in α.
As a simple example consider the case where α takes two different values on two
connected subregions Ω(k) of Ω. For this situation we can even give estimates on
how CP depends on the subregions Ω(k). Generalizations to the multi-subregion case
are also possible.
Finally, we give some applications in domain decomposition methods, in particular
for FETI type methods. With our inequalities we can show condition number esti-
mates that are robust for certain high contrast coefficients, including cases where
the subdomain partitioning does not resolve coefficient jumps.
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Research Challenges for Commercial Electromagnetic Simulation Tools

M. Wabro

CST, Darmstadt

At CST AG we develop tools for the simulation of various types of electromagnetic
problems. The methodical origin of our products was the finite integration technique
(FIT), which aims primarily at high frequency time domain applications. But in
recent years we have also put much research and development effort in solving other
problem classes (low frequency, electromagnetic compatibility, circuits,...) with a
wide range of numerical methods (FEM, BEM, MOR,...).
After a brief introduction to the company we will present main fields of applications
and disretization/solution techniques and talk about ongoing research and open
problems.
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hp BEM for Electromagnetic Scattering

L. Weggler

Universität des Saarlandes, Saarbrücken

The mathematical problem we are going to look at is as follows

1

k
∇×∇× u − ku = 0 in Ω+ ,

γ+
D
u = m on Γ ,

|∇ × u(x) ×
x

|x|
− iku(x)| = o(

1

|x|2
), |x| → ∞ .

(1)

Its solution describes the electric field component of an scattered electromagnetic
wave propagating in the unbounded domain Ω+. The existence of a fundamental
solution for the differential operator

1

k
∇×∇×−k , k > 0

yields a representation for u in Ω+. The so-called representation formula describes
the electric field u as an extension of its Dirichlet data γ+

D
u and its Neumann data

γ+
N

u. The Neumann data γ+
N
u, however, is unknown. It is to be found by solving a

boundary integral equation on Γ. The Boundary Element Method is an appropriate
technique to solve this boundary integral equation numerically.
We would like to present numerical results of a Boundary Element implementati-
on using higher order H(divΓ, Γ)-conforming shape function. The code is related
to an automatic hp-adaptive Finite Element implementation solving 2D Maxwell
problems, [1]. Our idea has been to extend this code in order to solve 3D problems
by an hp-Boundary Element Method. The power of this new implementation is
the usage of the H1(Γ)-conforming elements to describe curved surfaces and the
H(divΓ, Γ)-conforming shape functions up to order nine.

References

[1] L. Demkowicz: Computing with hp-adaptive finite elements. Vol. 1, Chapman
& Hall/CRC Applied Mathematics and Nonlinear Science Series, 2007.
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BETI methods for Maxwell equations

O. Steinbach, M. Windisch

TU Graz

In this talk we want to present basic ideas for a Tearing and Interconnecting ap-
proach for electromagnetic scattering, using boundary integral equations on the local
subdomains. The Tearing and Interconnecting approach is normally used for partial
differential equations which lead to elliptic bilinear forms. Nevertheless, C. Farhat
introduced the FETI also for the Helmholtz equation (using FEM instead of BEM
on the local subdomains), now called FETI–H. In [1] we presented a numerical
analysis to use this method with boundary instead of finite elements. In this talk
now we describe ideas, how this approach can be used for the even more complica-
ted electromagnetic scattering problem. Instead of standard transmission boundary
conditions of Dirichlet and Neumann type we may use Robin type interface con-
ditions, which result in a stable formulation which is robust to possible spurious
modes.
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[1] O. Steinbach, M. Windisch: Stable boundary element domain decomposition
methods for the Helmholtz equation. Numer. Math., published online, 2010.
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Sparsity optimization of H(div)-conforming hp finite elements
on simplices

S. Beuchler1, V. Pillwein2, S. Zaglmayr3

1RICAM Linz, 2JKU Linz, 3TU Graz

The main issue of hp-finite element methods are their extremely fast convergence
properties with respect to the number of unknowns. But with increasing the po-
lynomial order the density of element matrices as well as the costs of numerical
integration gets crucial. On tensor-product elements one can easily overcome the-
se difficulties by constructing a product-based finite element basis exploiting the
orthogonality relations of 1d-Legendre-type polynomials. As initially suggested by
Dubiner and Karniadakis-Sherwin using the Duffy transformation and Jacobi-type
polynomials with adapted weights are the remedy for simplicial elements in case of
the scalar function spaces L2(Ω) and H1(Ω).
In this talk we are concerned with the vector-valued function space H(div) which
occurs e.g. in various formulations of fluid mechanics or in mixed formulations of
elasticity. A conforming and stable hp-fe discretization first requires normal conti-
nuity over element interfaces as well as global exactness in the sense of de Rham.
For reasons of stability and parameter-robust preconditioning we rely on a finite ele-
ment basis providing an explicit splitting of the solenoidal and the non-solenoidal
higher-order basis functions. This technique turns out to be a further key tool to
extend the techniques of sparsity optimization to H(div)-conforming hp-FEM. We
discuss the construction principles of the new fe-basis and the analysis of the sparsi-
ty pattern of parameter-dependent div-div problems, for which we also use symbolic
summation packages in 3D. We conclude with numerical experiments.
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