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Abstract

In this paper we review, analyse and discuss several boundary integral formula-
tions for a stable solution of exterior boundary value and transmission problems for
the Helmholtz equation. Based on the characterisation of spurious modes, which cor-
respond to eigensolutions of the interior Laplace equation, direct, indirect, combined
and regularised boundary integral equations are considered for the solution of the
exterior Dirichlet boundary value problem. In addition to established approaches,
such as Burton/Miller, Brakhage/Werner, or the CHIEF method, we also include a
discussion of more recent results which can be applied also in the more general case
of Lipschitz domains. For a stable boundary integral formulation for the solution of
transmission problems, we rely on the use of both boundary integral equations of the
direct approach, and on suitable linear combinations. Here we restrict ourselves to
single trace formulations, including the rather standard Steklov–Poincaré operator
formulation. This contribution reviews the mathematical analysis of stable boundary
integral formulations for the solution of Helmholtz boundary value and transmission
problems, and it will provide a foundation for the error and stability analysis of
related Galerkin boundary element methods.

1 Introduction

Boundary integral equation methods and related boundary element methods are well es-
tablished tools for the solution of direct and inverse acoustic and electromagnetic scattering
problems. But there is a variety of several boundary integral formulations around, e.g.,
direct or indirect approaches, and first or second kind Fredholm integral equations, just
to name a few. Moreover, although exterior boundary value problems for the Helmholtz
equation admit, due to the imposed radiation condition, unique solutions, a naive use of
boundary integral equations may result in formulations, which may neither be solvable, or
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the solution may not be unique. These so–called spurious modes are related to eigensolu-
tions of the, in the case of acoustics, interior Laplace equation. Stable boundary integral
formulations, which are robust for all wave numbers, are based on complex linear combina-
tions of the standard boundary integral equations, e.g., the direct approach of Burton and
Miller [5], the indirect formulation of Brakhage and Werner [2], or the combined Helmholtz
integral equation formulation of Schenck [25]. While in most cases the classical analysis,
either in spaces of continuous or Hölder continuous functions, or for square integrable func-
tions, relies on the compactness of certain boundary integral operators, sufficient smooth
surfaces had to be assumed. More recent work, see, e.g. [3, 4, 10, 11], on regularised
combined boundary integral equations also allow the consideration of Lipschitz surfaces.
While the focus of this contribution is on the formulation of boundary integral equations
which are stable for all wave numbers, we do not analyse the behaviour of solutions in the
high–frequency regime, see [6] for the related state of the art. In addition to exterior bound-
ary value problems we also consider the formulation of stable boundary integral equations
for the solution of transmission problems, see, e.g., [14], by appropriate combinations of
boundary integral equations for both the interior and exterior subproblem. The resulting
formulations can be classified into single and multiple trace formulations [7, 23], which
also include the minimal coupling formulation of Mitzner [18]. Probably more common,
and similar to the Laplace case, is the Steklov–Poincaré operator formulation which is
based on the solution of local Dirichlet boundary value problems to enhance the Neumann
transmission condition.

In this paper we aim to present a unified approach to the analysis of boundary integral
equations for the solution of acoustic boundary value and transmission problems. In Sect. 2
we recall the definition and we summarise the mapping properties of all boundary integral
operators under consideration. A particular focus is on the characterisation of the kernels,
and their relations with eigensolutions of the interior Laplace equation. Stable boundary
integral formulations for the solution of the exterior Dirichlet boundary value problem are
considered in Sect. 3. We start with the direct approach, where the standard boundary
integral equations turn out to be solvable for all wave numbers, but the solution may not
be unique. If the eigensolution is known, an appropriate orthogonality condition results in
a stabilised variational formulation. Otherwise one may consider the evaluation of the in-
terior representation formula to describe the unique solution of the exterior problem, what
is known as combined Helmholtz integral equation formulation (CHIEF). Next, complex
linear combinations of both boundary integral equations of the direct approach are con-
sidered, which correspond to the method of Burton and Miller which originally considered
the exterior Neumann boundary value problem. Finally we consider the boundary integral
equation system of the exterior Calderon projector which turns out to be injective in the
unknown Neumann datum. In fact, the symmetric representation of the exterior Steklov–
Poincaré operator is well defined for all wave numbers. In addition to direct formulations
we also discuss the use of indirect methods, and several complex linear combinations such
as the approach of Brakhage and Werner, and regularised boundary integral equations
which are applicable also in the case of Lipschitz surfaces. In Sect. 4 we consider the so-
lution of free–space transmission problems, as a model problem we consider the scattering
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at an interface between two media of different density. It turns out that in total four
boundary integral equations and two transmission conditions can be used to determine the
four unknown Cauchy data of the direct approach. The elimination of the Cauchy data
of the exterior problem results in single trace formulations, while the elimination of the
local Neumann data results in Steklov–Poincaré operator formulations, as known from the
Laplace equation. Finally we discuss certain combined formulations including the minimal
coupling formulation of Mitzner. We do not discuss multiple trace formulations, for this
we refer to [7].

This review may provide a foundation for the error and stability analysis of Galerkin
boundary element methods, and for the construction and analysis of preconditioned it-
erative solution procedures for an efficient solution of boundary value and transmission
problems for the Helmholtz equation with moderate wave numbers. However, almost all
approaches and methodologies as presented here can be carried over to the case of elec-
tromagnetic scattering problems, to the coupling with different physical fields, and for a
stable coupling of finite and boundary element methods.

2 Boundary integral equations

For a bounded Lipschitz domain Ω ⊂ R3 and for a wave number κ ∈ R we consider either
the interior Helmholtz equation

−∆u(x)− κ2u(x) = 0 for x ∈ Ω, (2.1)

or the exterior Helmholtz problem

−∆u(x)− κ2u(x) = 0 for x ∈ Ωc := R
3\Ω, (2.2)

where for the exterior problem we have to include the Sommerfeld radiation condition

lim
r→∞

∫

|x|=r

∣∣∣∣
∂

∂nx
u(x)− iκu(x)

∣∣∣∣
2

dsx = 0, (2.3)

and nx is the exterior normal vector. Recall [8, Remark 3.4] that any solution u of the
Helmholtz equation (2.2) satisfying the radiation condition (2.3) automatically satisfies

u(x) = O
(

1

|x|

)
as |x| → ∞.

In addition we consider boundary or transmission conditions on Γ = ∂Ω.
In the direct approach, any solution of the interior Helmholtz equation (2.1) is given

by the representation formula

u(x) =

∫

Γ

U∗
κ(x, y)

∂

∂ny
u(y)dsy −

∫

Γ

∂

∂ny
U∗
κ(x, y)u(y)dsy for x ∈ Ω, (2.4)
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where the Helmholtz fundamental solution is given by

U∗
κ(x, y) =

1

4π

eiκ|x−y|

|x− y| .

In the representation formula (2.4) we have used the single layer potential

(Ṽκw)(x) =

∫

Γ

U∗
κ(x, y)w(y)dsy for x ∈ R

3\Γ, Ṽκ : H−1/2(Γ) → H1(Ω),

and the double layer potential

(Wκv)(x) =

∫

Γ

∂

∂ny
U∗
κ(x, y)v(y)dsy for x ∈ R

3\Γ, Wκ : H1/2(Γ) → H1(Ω).

By definition, both the single and double layer potentials are solutions of the interior and
exterior Helmholtz equation, i.e. for x ∈ R3\Γ we have

∆(Ṽκw)(x) + κ2(Ṽκw)(x) = 0, ∆(Wκv)(x) + κ2(Wκv)(x) = 0.

For the interior and exterior Dirichlet traces of the single layer potential Ṽκw we find

γint
0 (Ṽκw)(x) = γext

0 (Ṽκw)(x) =

∫

Γ

U∗
κ(x, y)w(y)dsy =: (Vκw)(x) for x ∈ Γ,

where Vκ := γ0Ṽκ : H−1/2(Γ) → H1/2(Γ) is the single layer boundary integral operator.

For the interior and exterior Neumann traces of the single layer potential Ṽκw we obtain,
in the sense of H−1/2(Γ), i.e. for all v ∈ H1/2(Γ),

〈γint
1 Ṽκw, v〉Γ = 〈1

2
w +K ′

κw, v〉Γ, 〈γext
1 Ṽκw, v〉Γ = 〈−1

2
w +K ′

κw, v〉Γ. (2.5)

Here, K ′
κ : H−1/2(Γ) → H−1/2(Γ) is the adjoint double layer boundary integral operator

(K ′
κw)(x) =

∫

Γ

∂

∂nx
U∗
κ(x, y)w(y)dsy for x ∈ Γ.

In particular, from (2.5) we conclude the jump relation of the normal derivative of the

single layer potential Ṽκw, i.e.

[γ1Ṽκw]|Γ := γext
1 Ṽκw − γint

1 Ṽκw = −w in H−1/2(Γ).

For the interior and exterior Dirichlet traces of the double layer potential Wκv we find for
almost all x ∈ Γ

γint
0 (Wκv)(x) = −1

2
v(x) + (Kκv)(x), γext

0 (Wκv)(x) =
1

2
v(x) + (Kκv)(x), (2.6)
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where Kκ : H1/2(Γ) → H1/2(Γ) is the double layer boundary integral operator

(Kκv)(x) =

∫

Γ

∂

∂ny

U∗
κ(x, y)v(y)dsy for x ∈ Γ.

From (2.6) we now conclude the jump relation of the double layer potential Wκv, i.e.

[γ0Wκv]|Γ := γext
0 (Wκv)(x)− γint

0 (Wκv)(x) = v(x) for x ∈ Γ.

Finally, the interior and exterior Neumann traces of the double layer potential Wκv define
the hypersingular boundary integral operator Dκ : H1/2(Γ) → H−1/2(Γ),

(Dκv)(x) = − ∂

∂nx

∫

Γ

∂

∂ny
U∗
κ(x, y)v(y)dsy for x ∈ Γ.

By using integration by parts we obtain a representation of the hypersingular boundary
integral operator Dκ which involves tangential rather than normal derivatives [16, 18], i.e.
for x ∈ Γ we have

(Dκv)(x)=−
∫

Γ

[(
nx ×∇xU

∗
κ(x, y)

)
·
(
ny ×∇v(y)

)
+ κ2(nx · ny)U

∗
κ(x, y)v(y)

]
dsy. (2.7)

Note that ny×∇v(y), y ∈ Γ, describes the surface curl of a function given on the boundary.
By considering the weak form of the relation (2.7), and using once again integration by
parts, the bilinear form of the hypersingular boundary integral operator Dκ can be written
as [19]

〈Dκu, v〉Γ =
1

4π

∫

Γ

∫

Γ

eiκ|x−y|

|x− y|
(
ny ×∇u(y)

)
·
(
nx ×∇v(x)

)
dsydsx

−κ2

4π

∫

Γ

∫

Γ

eiκ|x−y|

|x− y|u(y)v(x) (ny · nx) dsydsx.

From the representation formula (2.4) to describe solutions of the interior Helmholtz equa-
tion (2.1) we find, by considering the interior Dirichlet and Neumann traces of the single
and double layer potentials, the system of boundary integral equations

(
u

t

)
=

(
1
2
I −Kκ Vκ

Dκ
1
2
I +K ′

κ

)(
u

t

)
=: C

(
u

t

)
on Γ. (2.8)

Note that we have used t(x) := ∂
∂nx

u(x), x ∈ Γ. From the projection property C = C2 of
the interior Calderon operator C as defined in (2.8) we find, as in the case of the Laplace
equation [26], the well known relations [5]

KκVκ = VκK
′
κ, VκDκ =

1

4
I −K2

κ. (2.9)
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The mapping properties of all boundary integral operators as introduced above are well
established, see, e.g., [8, 9, 13, 17, 20, 24, 26]. In particular, the single layer boundary
integral operator Vκ : H−1/2(Γ) → H1/2(Γ) is coercive satisfying

〈(Vκ + CV )w,w〉Γ = 〈V w,w〉Γ ≥ cV1 ‖w‖2H−1/2(Γ) for all w ∈ H−1/2(Γ) (2.10)

where CV := V − Vκ : H−1/2(Γ) → H1/2(Γ) is compact, and V = V0 is the Laplace single
layer boundary integral operator which is H−1/2(Γ)–elliptic. Moreover, for t, τ ∈ H−1/2(Γ)
we obtain

〈Vκt, τ〉Γ =

∫

Γ

(Vκt)(x)τ(x) dsx =
1

4π

∫

Γ

∫

Γ

eiκ|x−y|

|x− y|t(y)dsy τ(x) dsx

=
1

4π

∫

Γ

t(y)

∫

Γ

e−iκ|x−y|

|x− y| τ(y)dsx dsy =

∫

Γ

t(y)(V−κτ)(y) dsy = 〈t, V−κτ〉Γ.

Finally, for κ ∈ R we find that, see, e.g., [10, Lemma 3.1],

ℑ(〈Vκτ, τ〉Γ) ≥ 0 for all τ ∈ H−1/2(Γ).

Analoguesly, the hypersingular boundary integral operator Dκ : H1/2(Γ) → H−1/2(Γ) is
coercive satisfying

〈(Dκ + CD)v, v〉Γ = 〈D̃v, v〉Γ ≥ cD1 ‖v‖2H1/2(Γ) for all v ∈ H1/2(Γ)

where CD := D̃ − Dκ : H1/2(Γ) → H−1/2(Γ) is compact, and D̃ is the stabilised Laplace
hypersingular boundary integral operator defined as [21]

〈D̃u, v〉Γ := 〈D0u, v〉Γ + 〈u, V −11〉Γ〈v, V −11〉Γ for u, v ∈ H1/2(Γ). (2.11)

Moreover, 1
2
I −Kκ : H1/2(Γ) → H1/2(Γ) is coercive satisfying

〈[(1
2
I −Kκ) + CK ]v, v〉V −1 = 〈(1

2
I −K)v, v〉V−1 ≥ (1− cK) ‖v‖2V−1 (2.12)

for all v ∈ H1/2(Γ) where CK := Kκ − K : H1/2(Γ) → H1/2(Γ) is compact and K = K0

is the Laplace double layer boundary integral operator. Note that in (2.12) we have used
the contraction property of the Laplace double layer boundary integral operator 1

2
I +K :

H1/2(Γ) → H1/2(Γ), see [28],

‖(1
2
I +K)v‖V −1 ≤ cK ‖v‖V −1 for all v ∈ H1/2(Γ), cK < 1.

In a similar way we conclude that 1
2
I −K ′

κ : H−1/2(Γ) → H−1/2(Γ) is coercive, i.e.

〈[(1
2
I −K ′

κ) + CK ′]τ, τ〉V = 〈(1
2
I −K ′)τ, τ〉V ≥ (1− cK) ‖τ‖2V (2.13)
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for all τ ∈ H−1/2(Γ) where CK ′ := K ′
κ −K ′ : H−1/2(Γ) → H−1/2(Γ) is compact. Moreover,

as for the single layer boundary integral operator Vκ we conclude

〈Kκv, τ〉 = 〈v,K ′
−κτ〉Γ for all v ∈ H1/2(Γ), τ ∈ H−1/2(Γ).

Since all boundary integral operators are coercive, we can apply Fredholm’s alternative
to investigate the unique solvability of boundary integral equations which are related to
certain transmission and boundary value problems for the Helmholtz equation. It remains
to consider the injectivity of the involved boundary integral operators. This is related to
interior eigenvalue problems of the Laplace operator.

The next two results are direct consequences of the boundary integral equations (2.8)
which hold for any solution of the interior Helmholtz equation.

Proposition 2.1 Let (λ, uλ) ∈ R ×H1(Ω), λ > 0, be a solution of the interior Dirichlet
eigenvalue problem

−∆uλ(x) = λuλ(x) for x ∈ Ω, uλ(x) = 0 for x ∈ Γ. (2.14)

For κ := ±
√
λ ∈ R and tλ := nx · ∇uλ ∈ H−1/2(Γ) we then conclude for x ∈ Γ

(Vκtλ)(x) = 0, (
1

2
I −K ′

κ)tλ(x) = 0. (2.15)

In particular, the single layer boundary integral operator Vκ and the adjoint double layer
boundary integral operator 1

2
I −K ′

κ are not injective if κ2 corresponds to an eigenvalue λ

of the interior Dirichlet eigenvalue problem (2.14).

Proposition 2.2 Let (µ, uµ) ∈ R×H1(Ω), µ ≥ 0, be a solution of the interior Neumann
eigenvalue problem

−∆uµ(x) = µuµ(x) for x ∈ Ω, tµ(x) :=
∂

∂nx
uµ(x) = 0 for x ∈ Γ. (2.16)

For κ := ±√
µ ∈ R we then conclude for x ∈ Γ

(
1

2
I +Kκ)uµ(x) = 0, (Dκuµ)(x) = 0. (2.17)

Hence, the hypersingular boundary integral operator Dκ and the double layer boundary
integral operator 1

2
I + Kκ are not injective if κ2 corresponds to an eigenvalue µ of the

interior Neumann eigenvalue problem (2.16).
To characterise the null spaces of all boundary integral operators as discussed above

we need to analyse the equivalence of the boundary integral operator eigenvalue problems
(2.15) and (2.17) with the eigenvalue problems (2.14) and (2.16). This has to be done in
several steps, first we consider the single layer boundary integral operator Vκ.
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Proposition 2.3 Let (κ, t) ∈ R×H−1/2(Γ) be an eigensolution of the single layer boundary
integral operator eigenvalue problem Vκt = 0. Then,

λ := κ2, uλ(x) :=

∫

Γ

U∗
κ(x, y)t(y)dsy for x ∈ Ω

defines an eigensolution of the interior Dirichlet eigenvalue problem (2.14).

Proof. Since uλ is defined as a single layer potential, by definition, uλ is a solution of the
interior Helmholtz equation, i.e.

−∆uλ(x)− κ2uλ(x) = 0 for x ∈ Ω.

Moreover,

uλ(x) =

∫

Γ

U∗
κ(x, y)t(y)dsy = (Vκt)(x) = 0 for x ∈ Γ.

Hence, uλ is a solution of the interior Dirichlet eigenvalue problem (2.14).

Remark 2.1 In addition to real eigenvalues κ ∈ R there also exist complex solutions κ ∈ C

of the single layer boundary integral operator eigenvalue problem Vκt = 0 which correspond
to the scattering poles, and where the associated single layer potential is zero inside Ω. For
an approximate solution of the single layer boundary integral operator eigenvalue problem
Vκt = 0 by using boundary element methods, see, e.g., [27, 32].

Corollary 2.4 Since any eigensolution (κ, t) ∈ R×H−1/2(Γ) of the single layer boundary
integral operator eigenvalue problem Vκt = 0 induces an eigensolution (λ, uλ) ∈ R×H1(Ω)
of the interior Dirichlet eigenvalue problem (2.14), Proposition 2.1 implies (1

2
I−K ′

κ)t = 0.

A similar result as given in Proposition 2.3 for the single layer boundary integral operator
Vκ also holds for the hypersingular boundary integral operator Dκ.

Proposition 2.5 Let (κ, u) ∈ R×H1/2(Γ) be an eigensolution of the hypersingular bound-
ary integral operator eigenvalue problem Dκu = 0. Then,

µ := κ2, uµ(x) := −
∫

Γ

∂

∂ny
U∗
κ(x, y)u(y)dsy for x ∈ Ω

defines an eigensolution of the interior Neumann eigenvalue problem (2.16). Moreover, we
also have (1

2
I +Kκ)u = 0.

More involved is the consideration of the adjoint double layer boundary integral operator
eigenvalue problem (1

2
I −K ′

κ)t = 0.
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Lemma 2.6 Let (κ, t) ∈ R×H−1/2(Γ) be an eigensolution of the adjoint boundary integral
operator eigenvalue problem (1

2
I −K ′

κ)t = 0. Then,

λ := κ2, uλ(x) :=

∫

Γ

U∗
κ(x, y)t(y)dsy for x ∈ Ω

defines an eigensolution of the interior Dirichlet eigenvalue problem (2.14), and we also
have Vκt = 0.

Proof. By definition, uλ is a solution of the interior Helmholtz equation. For the Dirichlet
trace of uλ we obtain

uλ(x) = (Vκt)(x) for x ∈ Γ,

and therefore, by using (2.9),

(
1

2
I −Kκ)uλ(x) = (

1

2
I −Kκ)(Vκt)(x) = Vκ(

1

2
I −K ′

κ)t(x) = 0 for x ∈ Γ

follows. On the other hand, by considering the Neumann trace of uλ we obtain

∂

∂nx

uλ(x) = (
1

2
I +K ′

κ)t(x) = t(x)− (
1

2
I −K ′

κ)t(x) = t(x) for x ∈ Γ,

and by using the second boundary integral equation of (2.8)

(Dκuλ)(x) = (
1

2
I −K ′

κ)t(x) = 0 for x ∈ Γ

follows. Since uλ implies a solution of the Neumann eigenvalue problem (2.16), see Propo-
sition 2.5, we further conclude, by using Proposition 2.2, that

(
1

2
I +Kκ)uλ(x) = 0 for x ∈ Γ,

and therefore
uλ(x) = (Vκt)(x) = 0 for x ∈ Γ

follows.

By using Proposition 2.1, Corollary 2.4, and Lemma 2.6, we finally conclude

kerVκ = ker(
1

2
I −K ′

κ) (2.18)

=

{
∂

∂n
uλ ∈ H−1/2(Γ) : −∆uλ = κ2uλ inΩ, uλ = 0 onΓ

}
.

A similar result as given for the adjoint double layer integral operator 1
2
I −K ′

κ in Lemma
2.6 also holds for the double layer boundary integral operator 1

2
I +Kκ.
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Lemma 2.7 Let (κ, u) ∈ R × H1/2(Γ) be an eigensolution of the double layer boundary
integral operator eigenvalue problem (1

2
I +Kκ)u = 0. Then,

µ := κ2, uµ(x) := −
∫

Γ

∂

∂ny
U∗
κ(x, y)u(y)dsy for x ∈ Ω

defines an eigensolution of the interior Neumann eigenvalue problem (2.16), and we have
Dκu = 0. Moreover,

kerDκ = ker(
1

2
I +Kκ) =

{
uµ|Γ ∈ H1/2(Γ) : −∆uµ = κ2uµ in Ω,

∂

∂n
uµ = 0 on Γ

}
.

From Propositions 2.1 and 2.2 we conclude that the solution of the interior Helmholtz
equation (2.1) with either Dirichlet or Neumann boundary conditions is not unique when
κ2 corresponds to either a Dirichlet or a Neumann eigenvalue, respectively. Note that
in these cases one has to assume certain solvability conditions to ensure existence of a
solution. But when considering the interior Helmholtz equation (2.1) with a Robin type
boundary condition this admits a unique solution for all wave numbers.

Theorem 2.8 Let Ω ⊂ R3 be a bounded Lipschitz domain, and let κ ∈ R. Let f ∈ H̃−1(Ω)
and g ∈ H−1/2(Γ) be given. Then there exists a unique solution of the interior Robin
boundary value problem, η ∈ R, η 6= 0,

−∆u(x)− κ2u(x) = f(x) for x ∈ Ω,
∂

∂nx
u(x)− iηu(x) = g(x) for x ∈ Γ. (2.19)

Proof. The variational formulation of the Robin boundary value problem (2.19) is to
find u ∈ H1(Ω) such that

∫

Ω

∇u(x) · ∇v(x)dx− κ2

∫

Ω

u(x)v(x)dx− iη

∫

Γ

u(x)v(x)dsx

=

∫

Ω

f(x)v(x)dx+

∫

Γ

g(x)v(x)dsx

is satisfied for all v ∈ H1(Ω). Since the bilinear form

a(u, v) :=

∫

Ω

∇u(x) · ∇v(x)dx− κ2

∫

Ω

u(x)v(x)dx− iη

∫

Γ

u(x)v(x)dsx

is bounded for all u, v ∈ H1(Ω), and since it satisfies a G̊arding inequality, i.e.

ℜ(a(v, v)) =

∫

Ω

|∇v(x)|2dx+

∫

Ω

|v(x)|2dx− (1 + κ2)

∫

Ω

|v(x)|2dx

= ‖v‖2H1(Ω) − c(v, v) for all v ∈ H1(Ω)

with a compact bilinear form c(·, ·), it remains to prove injectivity.
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Let w ∈ H1(Ω) be a solution of the homogeneous Robin boundary value problem

−∆w(x)− κ2w(x) = 0 for x ∈ Ω,
∂

∂nx
w(x)− iηw(x) = 0 for x ∈ Γ.

Then we have
∫

Ω

∇w(x) · ∇v(x)dx− κ2

∫

Ω

w(x)v(x)dx− iη

∫

Γ

w(x)v(x)dsx = 0

for all v ∈ H1(Ω). In particular for v = w this gives
∫

Ω

|∇w(x)|2dx− κ2

∫

Ω

|w(x)|2dx− iη

∫

Γ

|w(x)|2dsx = 0,

and by considering the imaginary part
∫

Γ

|w(x)|2dsx = 0

follows due to κ ∈ R. Hence we conclude w = 0 and ∂
∂n
w = 0 on Γ and therefore w = 0 in

Ω follows when considering the representation formula (2.4).

Remark 2.2 The unique solvability of the interior Robin boundary value problem (2.19)
and the proof as presented are the essential tools to ensure unique solvability of combined
boundary integral equations as to be discussed in the subsequent sections. Obviously, the
proof of Theorem 2.8 remains true when considering complex wave numbers κ ∈ C when as-
suming η > 0 for Re(κ) · ℑ(κ) > 0 and η < 0 for
ℜ(κ) · ℑ(κ) < 0. Moreover, we may replace the Robin boundary condition in (2.19) by
the regularised boundary condition

∂

∂nx
u(x)− iη(Bu)(x) = g(x) for x ∈ Γ

where B : H1/2(Γ) → H−1/2(Γ) is some self–adjoint and H1/2(Γ)–elliptic operator such
that

〈Bw,w〉Γ > 0 for all w ∈ H1/2(Γ).

As for the interior Helmholtz equation (2.1) we can describe the solution of the exterior
Helmholtz problem (2.2), and satisfying the radiation condition (2.3), by the representation
formula

u(x) = −
∫

Γ

U∗
κ(x, y)t(y)dsy +

∫

Γ

∂

∂ny

U∗
κ(x, y)u(y)dsy for x ∈ Ωc. (2.20)

By considering the exterior Dirichlet and Neumann traces of the representation formula
(2.20) we obtain the related system of boundary integral equations

(
u

t

)
=

(
1
2
I +Kκ −Vκ

−Dκ
1
2
I −K ′

κ

)(
u

t

)
. (2.21)
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In addition, by applying Green’s formula with respect to the interior domain Ω, this gives

−
∫

Γ

U∗
κ(x, y)t(y)dsy +

∫

Γ

∂

∂ny
U∗
κ(x, y)u(y)dsy = 0 for x ∈ Ω (2.22)

for the solution of the exterior Helmholtz equation.
Recall that the exterior Helmholtz problem (2.2) with either Dirichlet or Neumann

boundary conditions admits in all cases, due to the Sommerfeld radiation condition (2.3),
a unique solution.

3 Exterior Dirichlet boundary value problem

As a model problem we consider the exterior Dirichlet boundary value problem

−∆u(x)− κ2u(x) = 0 for x ∈ Ωc, u(x) = g(x) for x ∈ Γ, (3.1)

and satisfying the Sommerfeld radiation condition (2.3).
In what follows we will review and discuss different direct and indirect formulations of

boundary integral equations to describe solutions of the exterior Dirichlet boundary value
problem (3.1).

Note that the exterior Dirichlet boundary value problem (3.1) serves as a model prob-
lem, all further considerations can be done analoguesly when considering either an exterior
Neumann or Robin boundary value problem.

3.1 Direct boundary integral equations

In the direct approach, the solution of the exterior Dirichlet boundary value problem (3.1)
is given by the representation formula (2.20), i.e.

u(x) = −
∫

Γ

U∗
κ(x, y)t(y)dsy +

∫

Γ

∂

∂ny
U∗
κ(x, y)g(y)dsy for x ∈ Ωc.

Hence it remains to find the yet unknown Neumann datum t ∈ H−1/2(Γ) as the solution
of one of the boundary integral equations as given in (2.21). In fact, we can use either the
first kind boundary integral equation

(Vκt)(x) = (−1

2
I +Kκ)g(x) for x ∈ Γ, (3.2)

or the second kind boundary integral equation

(
1

2
I +K ′

κ)t(x) = −(Dκg)(x) for x ∈ Γ. (3.3)

To investigate the unique solvability of the boundary integral equation (3.2) we first com-
bine the results on coercivity and injectivity of the single layer boundary integral operator
Vκ.

12



Corollary 3.1 The single layer boundary integral operator Vκ : H−1/2(Γ) → H1/2(Γ) is
coercive and satisfies the G̊arding inequality (2.10). Moreover, if κ2 does not coincide with
an eigenvalue λ of the interior Dirichlet eigenvalue problem (2.14), then Vκ is also injective,
and the boundary integral equation (3.2) admits, for any g ∈ H1/2(Γ), a unique solution
t ∈ H−1/2(Γ) satisfying the variational problem

〈Vκt, τ〉Γ = 〈(−1

2
I +Kκ)g, τ〉Γ for all τ ∈ H−1/2(Γ).

Although the single layer boundary integral operator Vκ is not injective when λ = κ2 is
an eigenvalue of the interior Dirichlet eigenvalue problem (2.14), the boundary integral
equation (3.2) of the direct approach is solvable. By the closed range theorem we have
ImVκ = (ker V−κ)

0 where the polar space is given as

(ker V−κ)
0 :=

{
v ∈ H1/2(Γ) : 〈v, tλ〉Γ = 0 for all tλ ∈ ker V−κ

}
.

By using ker Vκ = ker (1
2
I −K ′

κ) for all κ ∈ R, see (2.18), we obtain for the right hand side
of the boundary integral equation (3.2)

〈(−1

2
I +Kκ)g, tλ〉Γ = −〈g, (1

2
I −K ′

−κ)tλ〉Γ = 0,

and therefore (−1
2
I +Kκ)g ∈ ImVκ follows. In particular, the boundary integral equation

(3.2) of the direct approach is solvable, but the solution is not unique. Hence one needs to
introduce some suitable constraint for scaling.

A natural choice for doing so would be to require

t ∈ H
−1/2
λ (Γ) :=

{
w ∈ H−1/2(Γ) : 〈V w, tλ〉Γ = 0

}
,

i.e. to select a solution which is orthogonal to the eigensolution tλ, where the orthogonality
in H−1/2(Γ) is realized by using an inner product which is induced by the Laplace single
layer boundary integral operator V . Then we can consider an extended variational problem
to find t ∈ H−1/2(Γ) such that

〈Vκt, τ〉Γ + 〈V t, tλ〉Γ〈V τ, tλ〉Γ = 〈(−1

2
I +Kκ)g, τ〉Γ (3.4)

is satisfied for all τ ∈ H−1/2(Γ). Since the bilinear form of the extended variational problem
(3.4) is coercive and injective, unique solvability follows.

Obviously, the extended variational problem (3.4) is only of practical interest, when
the eigensolution tλ is known, which restricts the applicability of this approach.

Instead one may combine the boundary integral equation (3.2) with the interior repre-
sentation formula (2.22), see [25], i.e. we consider the problem to find t ∈ H−1/2(Γ) such
that

〈Vκt, τ〉Γ = 〈(−1

2
I +Kκ)g, τ〉Γ for all τ ∈ H−1/2(Γ), (3.5)

and ∫

Γ

U∗
κ(x, y)t(y)dsy =

∫

Γ

∂

∂ny
U∗
κ(x, y)g(y)dsy for all x ∈ Ω. (3.6)

13



Lemma 3.2 For all wave numbers κ ∈ R there exists a unique solution t ∈ H−1/2(Γ) of
the boundary integral formulation (3.5) which also satisfies (3.6).

Proof. Since the variational formulation (3.5) admits a unique solution when κ2 is not
an eigenvalue of the interior Dirichlet eigenvalue problem (2.14), it is sufficient to consider
the remaining case only. If λ = κ2 is an eigenvalue of the interior Dirichlet problem (2.14),
the variational problem (3.5) is solvable, but the solution is not unique.

Let ti ∈ H−1/2(Γ), i = 1, 2, denote two solutions of the system (3.5) and (3.6), i.e.

Vκti = (−1

2
I +Kκ)g on Γ,

∫

Γ

U∗
κ(x, y)ti(y)dsy =

∫

Γ

∂

∂ny

U∗
κ(x, y)g(y)dsy in Ω.

For the difference t0 := t1 − t2 we therefore conclude

Vκi
t0 = 0 on Γ,

∫

Γ

U∗
κ(x, y)t0(y)dsy = 0 in Ω.

From the first equation we find t0 = αtλ, α ∈ R, while the second one gives

0 = α

∫

Γ

U∗
κ(x, y)tλ(y)dsy = αuλ(x) for all x ∈ Ω,

and hence, α = 0 follows, i.e. t1 = t2.

The discretisation of the coupled formulation (3.5) and (3.6) by using either a collocation
or Galerkin scheme for (3.5), and choosing a finite set of interior nodes for (3.6), results
in an overdetermined system of linear equations to be solved. This approach is known as
Combined Helmholtz Integral Equation Formulation (CHIEF) [25], see also [1] for a further
discussion.

In any case, the boundary integral equation (3.2) admits a unique solution
t ∈ H−1/2(Γ) when κ2 is not an eigenvalue of the Dirichlet eigenvalue problem (2.14),

or a unique solution t ∈ H
−1/2
λ (Γ) when λ = κ2 is an eigenvalue of the Dirichlet eigenvalue

problem (2.14). In the latter case, the general solution of the boundary integral equation
(3.2) is given by

t = −V −1
κ (

1

2
I −Kκ)g + αtλ, α ∈ R,

where the application of V −1
κ acts between appropriate factor spaces. When using, in ad-

dition, the second boundary integral equation as given by the exterior Calderon projection
(2.21), this gives

t = −Dκg + (
1

2
I −K ′

κ)t

= −Dκg + (
1

2
I −K ′

κ)
[
− V −1

κ (
1

2
I −Kκ)g + αtλ

]

= −
[
Dκ + (

1

2
I −K ′

κ)V
−1
κ (

1

2
I −Kκ)

]
g + α(

1

2
I −K ′

κ)tλ = −Sext

κ g,
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i.e. the symmetric representation of the exterior Steklov–Poincaré operator

Sext

κ := Dκ + (
1

2
I −K ′

κ)V
−1
κ (

1

2
I −Kκ), (3.7)

which is related to the exterior Dirichlet boundary value problem, and which is well defined
for all wave numbers κ ∈ R. Note that the non–symmetric representation

Sext

κ = V −1
κ (

1

2
I −Kκ) (3.8)

is not well defined when λ = κ2 is an eigenvalue of the Dirichlet eigenvalue problem (2.14).
However, superpositions VκS

ext

κ and (1
2
I − K ′

κ)S
ext

κ are well defined for all wave numbers
κ ∈ R also for the non–symmetric representation (3.8).

Instead of the first kind boundary integral equation (3.2) we may also use the second
kind boundary integral equation (3.3) to describe the solution of the exterior Dirichlet
boundary value problem (3.1). To investigate the unique solvability of the boundary in-
tegral equation (3.3) we first recall that the boundary integral operator 1

2
I + K ′

κ is not
injective when 1

2
I + Kκ is not injective, and vice versa. Moreover, it is possible to char-

acterise the null space of 1
2
I + K ′

κ. As a motivation we first recall the situation when
considering the Laplace equation.

Remark 3.1 In the case of the Laplace equation we have (1
2
I + K)u0 = 0 for u0 ≡ 1.

Since the Laplace single layer boundary integral operator V is bijective, this implies

V −1(
1

2
I +K)u0 = (

1

2
I +K ′)V −1u0 = (

1

2
I +K ′)teq = 0,

where teq = V −1u0 is the natural density.

The relation as just described for the Laplace equation can be generalised to the case when
considering the Helmholtz equation.

Lemma 3.3 Let µ = κ2 be an eigenvalue of the Neumann eigenvalue problem (2.16). Any
eigensolution uµ ∈ ker (1

2
I + Kκ) implies an eigensolution tµ ∈ ker (1

2
I + K ′

κ), and vice
versa. In particular, there holds the relation uµ = Vκtµ.

Proof. Let t ∈ ker (1
2
I + K ′

κ), i.e. (1
2
I + K ′

κ)t = 0. Define u = Vκt which turns out
to be non–trivial. Indeed, in the case u ≡ 0, Vκt = 0 implies, by using Corollary 2.4,
(1
2
I − K ′

κ)t = 0, and therefore t ≡ 0 follows. Hence we have that u = Vκt is non–trivial
satisfying, by using (2.9),

(
1

2
I +Kκ)u = (

1

2
I +Kκ)Vκt = Vκ(

1

2
I +K ′

κ)t = 0.

Vice versa, let u ∈ ker (1
2
I + Kκ), i.e. (1

2
I + Kκ)u = 0. It remains to prove that there

exists a t ∈ H−1/2(Γ) satisfying Vκt = u. This is trivial when Vκ is injective. In this case
we further conclude

(
1

2
I +Kκ)u = (

1

2
I +Kκ)Vκt = Vκ(

1

2
I +K ′

κ)t = 0,
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and therefore

(
1

2
I +K ′

κ)t = 0, t = V −1
κ u.

In the case that Vκ is not injective, let tλ ∈ ker Vκ = ker (1
2
I −K ′

−κ). From

〈u, tλ〉Γ = 〈(1
2
I +Kκ)u, tλ〉Γ + 〈u, (1

2
I −K ′

−κ)tλ〉Γ = 0

we conclude, by the closed range theorem, u ∈ Im Vκ. Hence there exists a unique solution
t ∈ H−1/2(Γ) satisfying

Vκt = u, 〈V t, tλ〉Γ = 0 for all tλ ∈ ker Vκ.

Moreover, again by using (2.9), we obtain

0 = (
1

2
I +Kκ)u = (

1

2
I +Kκ)Vκt = Vκ(

1

2
I +K ′

κ)t.

In the case (1
2
I +K ′

κ)t = αtλ ∈ ker Vκ for some α ∈ R we further conclude

t = αtλ + (
1

2
I −K ′

κ)t,

which obviously is satisfied for t = αtλ. The orthogonality

〈V t, tλ〉Γ = α〈V tλ, tλ〉Γ = 0

gives α = 0, and finally we obtain

(
1

2
I +K ′

κ)t = 0.

Now we are in a position to investigate the unique solvability of the second kind boundary
integral equation (3.3). Since the boundary integral operator 1

2
I+K ′

κ may not be injective,
in particular when µ = κ2 is an eigenvalue of the interior Neumann eigenvalue problem
(2.16), we introduce the polar space

(
ker (

1

2
I +K−κ)

)0
:=

{
w ∈ H−1/2(Γ) : 〈w, uµ〉Γ for all uµ ∈ ker (

1

2
I +K−κ)

}
,

and by the closed range theorem we have

Im (
1

2
I +K ′

κ) =
(
ker (

1

2
I +K−κ)

)0
.

Indeed, for uµ ∈ ker (1
2
I +K−κ) = kerD−κ we have

〈Dκg, uµ〉Γ = 〈g,D−κuµ〉Γ = 0,

and therefore, Dκg ∈ Im (1
2
I+K ′

κ). In fact, the boundary integral equation (3.3) is solvable,
but the solution may not be unique. Since 1

2
I +K ′

κ : H−1/2(Γ) → H−1/2(Γ) is coercive and
satisfies a G̊arding inequality similar to (2.13), we can formulate the following result.
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Corollary 3.4 If κ2 does not coincide with an eigenvalue µ of the interior Neumann
eigenvalue problem (2.16), then 1

2
I + K ′

κ is injective, and the boundary integral equation
(3.3) admits, for any g ∈ H1/2(Γ), a unique solution t ∈ H−1/2(Γ). Moreover, if µ = κ2

is an eigenvalue of the interior Neumann eigenvalue problem (2.16), the boundary integral
equation (3.3) is solvable, but the solution is only unique up to eigensolutions tλ ∈ ker(1

2
I+

K ′
κ).

When the solution of the boundary integral equation (3.3) is not unique, we may proceed
as in the previous case of the boundary integral equation (3.2) to introduce an appropriate
scaling condition. In the case that the eigensolutions of the Neumann eigenvalue problem
(2.16) are known, we can define a suitable factor space. In the other case, as in the CHIEF
method, we may use the interior representation formula (2.22) for scaling.

Although both boundary integral equations (3.2) and (3.3) are solvable for all wave
numbers κ ∈ R, the solutions are not unique when κ2 corresponds either to a Dirichlet or
to a Neumann eigenvalue of the interior Laplace equation. Even when the Dirichlet and
Neumann eigenvalues coincide, the underlying eigensolutions of the single layer boundary
integral operator Vκ and of the adjoint double layer boundary integral operator 1

2
I + K ′

κ

are different in general. This motivates to use suitable linear combinations of the boundary
integral equations (3.2) and (3.3) to derive combined boundary integral equations which
admit unique solutions for all wave numbers.

Following the approach of Burton and Miller [5] in the case of an exterior Neumann
boundary value problem, in the case of the exterior Dirichlet boundary value problem (3.1)
a complex linear combination of the boundary integral equations (3.2) and (3.3) results in
the combined boundary integral equation, η ∈ R, η 6= 0,

(1
2
I +K ′

κ + iηVκ

)
t(x) =

(
−Dκ + iη(−1

2
I +Kκ)

)
g(x) for x ∈ Γ. (3.9)

Lemma 3.5 The boundary integral operator 1
2
I + K ′

κ + iηVκ : H−1/2(Γ) → H−1/2(Γ),
η ∈ R, η 6= 0, is bounded, coercive and injective. Hence, for any g ∈ H1/2(Γ), there exists
a unique solution t ∈ H−1/2(Γ) of the boundary integral equation (3.9).

Proof. The boundedness of 1
2
I + K ′

κ + iηVκ : H−1/2(Γ) → H−1/2(Γ) follows from
1
2
I + Kκ : H−1/2(Γ) → H−1/2(Γ) and Vκ : H−1/2(Γ) → H1/2(Γ) ⊂ H−1/2(Γ). Since

K ′
κ −K ′ + iηVκ : H−1/2(Γ) → H−1/2(Γ) is compact, G̊ardings inequality follows.
To prove injectivity, let w ∈ H−1/2(Γ) be a solution of the homogeneous equation

(1
2
I +K ′

κ + iηVκ

)
w(x) = 0 for x ∈ Γ.

Define

u(x) =

∫

Γ

U∗
κ(x, y)w(y)dsy for x ∈ Ω,

which is a solution of the interior Helmholtz equation. Moreover,

∂

∂nx
u(x) + iηu(x) = (

1

2
I +K ′

κ)w(x) + iη(Vκw)(x) = 0 for x ∈ Γ.
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In particular we conclude that u is a solution of the homogeneous interior Robin boundary
value problem

∆u(x) + κ2u(x) = 0 for x ∈ Ω,
∂

∂nx

u(x) + iηu(x) = 0 for x ∈ Γ.

By using Theorem 2.8 we conclude u ≡ 0 in Ω. Then,

(Vκw)(x) = 0, (
1

2
I +K ′

κ)w(x) = 0 for x ∈ Γ.

Since w is an eigensolution of the single layer boundary integral operator Vκ, we conclude,
by using Corollary 2.4,

(
1

2
I −K ′

κ)w(x) = 0 for x ∈ Γ,

and therefore w ≡ 0 follows.

Remark 3.2 Instead of the exterior Dirichlet boundary value problem (3.1), Burton and
Miller [5] have considered the exterior Neumann boundary value problem

∆u(x) + κ2u(x) = 0 for x ∈ Ωc,
∂

∂nx
u(x) = 0 for x ∈ Γ

and the radiation condition (2.3), where the total field u = ui + us is decomposed into a
given incoming field ui, and an unknown scattered field us. The total field satisfies the
modified representation formula for x ∈ Ωc

u(x) = ui(x) +

∫

Γ

{
u(y)

∂

∂ny
U∗
κ(x, y)− U∗

κ(x, y)
∂

∂ny
u(y)

}
dsy. (3.10)

From (3.10) one may conclude either the second kind boundary integral equation

(
1

2
I −Kκ)u(x) = ui(x) for x ∈ Γ, (3.11)

or the hypersingular boundary integral equation

(Dκu)(x) =
∂

∂nx

ui(x)dsx for x ∈ Γ (3.12)

which are not uniquely solvable when κ2 corresponds either to a Dirichlet eigenvalue λ or
to a Neumann eigenvalue µ, respectively. Hence, Burton and Miller proposed to consider a
complex linear combination of the boundary integral equations (3.11) and (3.12), for α ∈ C

with ℑ(α) 6= 0,

(
1

2
I −Kκ + αDκ

)
u(x) = ui(x) + α

∂

∂nx

ui(x) for x ∈ Γ. (3.13)
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While in [5] Burton and Miller discussed the uniqueness of the solution of the combined
boundary integral equation (3.13) only, they did not comment on an appropriate functional
analytic setting. In the case of a smooth surface, T.–C. Lin [15] gives a rigorous proof on
the existence and uniqueness of the solution of (3.13) in Hölder spaces.

Although the alternative representation (2.7) of the hypersingular integral operator Dκ

was already given in [5], this was not used for discretisation. Instead, using (2.9), a
regularised version of (3.13) was derived, i.e.

V

(
1

2
I −Kκ + α[Dκ −D]

)
u+ α

(
1

4
I −K2

)
u = V

(
ui + α

∂

∂nx

ui

)
.

Instead of a complex linear combination of the boundary integral equations (3.2) and (3.3)
we may also consider a system of both equations to derive a stable boundary integral
formulation of the exterior Dirichlet boundary value problem (3.1). The boundary integral
equations of the exterior Calderon projection (2.21) can be written as

u = (
1

2
I +Kκ)u− Vκt = g, Dκu+ (

1

2
I +K ′

κ)t = 0.

Hence we need to find (u, t) ∈ H1/2(Γ)×H−1/2(Γ) such that
(

Dκ
1
2
I +K ′

κ

−(1
2
I +Kκ) Vκ

)(
u

t

)
=

(
0
−g

)
. (3.14)

Note that our main interest is in the determination of the unknown Neumann datum t,
while u = g is given by the Dirichlet boundary condition.

Lemma 3.6 The boundary integral operator as considered in (3.14) is injective in t. In
particular, the homogeneous system

Vκt− (
1

2
I +Kκ)u = 0, Dκu+ (

1

2
I +K ′

κ)t = 0

implies t = 0 for all wave numbers κ.

Proof. Let (u, t) ∈ H1/2(Γ)×H−1/2(Γ) be a solution of the homogeneous system

Vκt− (
1

2
I +Kκ)u = 0, Dκu+ (

1

2
I +K ′

κ)t = 0.

When applying the hypersingular boundary integral operator Dκ to the weakly singular
boundary integral equation, and using (2.9), this gives

0 = DκVκt−Dκ(
1

2
I +Kκ)u

= (
1

2
I +K ′

κ)(
1

2
I −K ′

κ)t− (
1

2
I +K ′

κ)Dκu

= (
1

2
I +K ′

κ)(
1

2
I −K ′

κ)t+ (
1

2
I +K ′

κ)(
1

2
I +K ′

κ)t = (
1

2
I +K ′

κ)t,
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and therefore,

(
1

2
I +K ′

κ)t = 0, Dκu = 0.

In the same way, when applying the single layer boundary integral operator Vκ to the
hypersingular boundary integral operator, we have

0 = VκDκu+ Vκ(
1

2
I +K ′

κ)t

= (
1

2
I +Kκ)(

1

2
I −Kκ)u+ (

1

2
I +Kκ)Vκt

= (
1

2
I +Kκ)(

1

2
I −Kκ)u+ (

1

2
I +Kκ)(

1

2
I +Kκ)u = (

1

2
I +Kκ)u,

and therefore,

(
1

2
I +Kκ)u = 0, Vκt = 0.

The latter also implies

(
1

2
I −K ′

κ)t = 0,

and therefore, t = 0 follows.

Note that Lemma 3.6 allows no statement concerning u. In particular, the remaining
equations

Dκu = 0, (
1

2
I +Kκ)u = 0

are both satisfied when µ = κ2 is a Neumann eigenvalue.
Indeed, the first boundary integral equation in (3.14) is always solvable. When κ2 is

not a Neumann eigenvalue, the hypersingular boundary integral operator Dκ is bijective
and we obtain

u = −D−1
κ (

1

2
I +K ′

κ)t.

If µ = κ2 is a Neumann eigenvalue, the general solution is given by

u = −D−1
κ (

1

2
I +K ′

κ)t+ αuµ,

where the application of D−1
κ has to be considered between appropriate factor spaces, see

also the related discussion for the definition (3.8) of the exterior Steklov–Poincaré operator.
However, in both cases we conclude the Schur complement system

Tκt :=
[
Vκ + (

1

2
I +Kκ)D

−1
κ (

1

2
I +K ′

κ)
]
t = −g, (3.15)

where Tκ : H−1/2(Γ) → H1/2(Γ) is also coercive, and bijective.
To avoid the use of the inverse hypersingular boundary integral operator Dκ between

appropriate factor spaces, in particular when µ = κ2 is an eigenvalue of the interior Neu-
mann eigenvalue problem (2.16), we can modify the system (3.14) as follows. Since u = g
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is given due to the Dirichlet boundary condition, instead of (3.14) we now consider the
modified system, η ∈ R,

(
Dκ + iηD̃ 1

2
I +K ′

κ

−(1
2
I +Kκ) Vκ

)(
u

t

)
=

(
iηD̃g

−g

)
(3.16)

where D̃ is the stabilised Laplace hypersingular boundary integral operator as given in
(2.11). It turns out that Dκ+ iηD̃ : H1/2(Γ) → H−1/2(Γ) is invertible for all wave numbers
κ ∈ R, and hence, instead of (3.15) we may consider the modified Schur complement system

[
Vκ + (

1

2
I +Kκ)(Dκ + iηD̃)−1(

1

2
I +K ′

κ)
]
t (3.17)

= iη(
1

2
I +Kκ)(Dκ + iηD̃)−1D̃g − g.

Although both Schur complement systems (3.15) and (3.17) are unique solvable, the mod-
ified version allows a direct application of standard arguments to derive a stability and
error analysis of related boundary element methods.

3.2 Indirect boundary integral equations

Instead of the representation formula (2.20) of the direct approach one may also consider
an indirect approach to use single and double layer potentials to describe solutions of
the exterior Helmholtz equation (2.2), and satisfying the radiation condition (2.3). In
particular, one may use either the single layer potential ansatz

u(x) =

∫

Γ

U∗
κ(x, y)w(y)dsy for x ∈ Ωc

or the double layer layer potential ansatz

u(x) =

∫

Γ

∂

∂ny
U∗
κ(x, y)v(y)dsy for x ∈ Ωc.

By considering the Dirichlet boundary condition u = g on Γ we conclude the boundary
integral equations to find w ∈ H−1/2(Γ) such that

(Vκw)(x) = g(x) for x ∈ Γ, (3.18)

or to find v ∈ H1/2(Γ) such that

(
1

2
I +Kκ)v(x) = g(x) for x ∈ Γ. (3.19)

Although the boundary integral equation (3.18) of the indirect approach is similar to
the boundary integral equation (3.2) of the direct approach, statements on existence and
uniqueness of solutions are rather different, in particular when λ = κ2 corresponds to
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an eigenvalue of the interior Dirichlet eigenvalue problem (2.14). In this case, Vκ is not
injective, and g 6∈ ImVκ in general, i.e. the boundary integral equation (3.18) is not solvable
in this case. In all other cases, Vκ is injective, and therefore (3.18) admits a unique solution
w ∈ H−1/2(Γ).

Analoguesly, the boundary integral equation (3.19) is in general not solvable when
µ = κ2 corresponds to an eigenvalue of the Neumann eigenvalue problem (2.16), and hence
the boundary integral operator 1

2
I +Kκ is not injective. In all other cases, the boundary

integral operator 1
2
I + Kκ is injective, and since it is also coercive, there exists a unique

solution v ∈ H1/2(Γ) of the boundary integral equation (3.19).
To obtain formulations of boundary integral equations which are uniquely solvable for

all wave numbers one may consider complex linear combinations of the boundary integral
equations (3.18) and (3.19).

As in [2], see also [22], we may consider a complex linear combination of the indirect
single and double layer potentials to describe a solution of the exterior Helmholtz equation
as

u(x) =

∫

Γ

ν(y)
( ∂

∂ny
− iη

)
U∗
κ(x, y)dsy for x ∈ Ωc, (3.20)

and from the Dirichlet boundary condition u = g on Γ we conclude the boundary integral
equation (1

2
I +Kκ − iηVκ

)
ν(x) = g(x) for x ∈ Γ (3.21)

to be solved.

Lemma 3.7 The boundary integral operator 1
2
I + Kκ − iηVκ : H1/2(Γ) → H1/2(Γ) is

bounded, coercive and injective. Hence, for any g ∈ H1/2(Γ), there exists a unique solution
ν ∈ H1/2(Γ) of the boundary integral equation (3.21).

Proof. From 1
2
I +Kκ : H1/2(Γ) → H1/2(Γ), Vκ : H1/2(Γ) ⊂ H−1/2(Γ) → H1/2(Γ) we first

conclude boundedness and coercivity.
To prove injectivity, let ν ∈ H1/2(Γ) be a solution of the homogeneous boundary integral

equation (1
2
I +Kκ − iηVκ

)
ν(x) = 0 for x ∈ Γ,

and we define

u(x) =

∫

Γ

∂

∂ny
U∗
κ(x, y)ν(y)dsy − iη

∫

Γ

U∗
κ(x, y)ν(y)dsy for x ∈ R

3\Γ.

By construction, u is a solution of the exterior Dirichlet boundary value problem

−∆u(x)− κ2u(x) = 0 for x ∈ Ωc, u(x) = 0 for x ∈ Γ.

Since u satisfies the Sommerfeld radiation condition (2.3), u ≡ 0 in Ωc follows. On the
other hand, u is also a solution of the interior Helmholtz equation

−∆u(x)− κ2u(x) = 0 for x ∈ Ω.
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For the interior Dirichlet trace of u we further obtain

u(x) = (−1

2
I +Kκ)ν(x)− iη(Vκν)(x) = −ν(x) for x ∈ Γ,

while for the interior Neumann trace of u we conclude

∂

∂nx

u(x) = −iην(x) for x ∈ Γ.

Note that we have used the relations of all boundary integral operators involved, and u ≡ 0
in Ωc. Hence we have

∂

∂nx
u(x) = iηu(x) for x ∈ Γ.

Hence, u is a solution of the homogeneous interior Robin boundary value problem

−∆u(x)− κ2u(x) = 0 for x ∈ Ω,
∂

∂nx
u(x)− iηu(x) = 0 for x ∈ Γ.

By using Theorem 2.8, u ≡ 0 in Ω follows, and by the jump relation of the double layer
potential we finally conclude

ν(x) = u|Ωc(x)− u|(Ω)(x) = 0 for x ∈ Γ.

Remark 3.3 In [2], the authors consider the case of a twice differentiable smooth surface
Γ, and the space of continuous functions, i.e. ν ∈ C(Γ). In this setting, the operator
Kκ − iηVκ : C(Γ) → C(Γ) is compact, and unique solvability of the boundary integral
equation (3.21) is a consequence of Fredholm’s alternative. Instead, we may also consider
the boundary integral equation (3.21) in L2(Γ), but we still need to assume a smooth surface
to ensure compactness of Kκ − iηVκ : L2(Γ) → L2(Γ).

Instead of the indirect ansatz (3.20) we may also consider the alternative ansatz

u(x) =

∫

Γ

ν(y)

(
iη

∂

∂ny
+ 1

)
U∗
κ(x, y)dsy for x ∈ Ωc,

which results in the boundary integral equation

(
Vκ + iη(

1

2
I +Kκ)

)
ν(x) = g(x) for x ∈ Γ. (3.22)

Obviously, unique solvability of the boundary integral equation (3.22) follows as for (3.21).
In particular, the equivalence with the boundary integral equation (3.21) ensures unique
solvability in H1/2(Γ).
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When we consider second kind boundary integral equations in the natural Sobolev
spaces, i.e. in H±1/2(Γ), we can ensure unique solvability even in case of a general Lips-
chitz boundary. These results are based on ellipticity estimates of the Laplace double layer
boundary integral operator 1

2
I − K in H1/2(Γ), see [28]. Since a variational formulation

in H±1/2(Γ) is in general not applicable for a stable and efficient discretisation scheme,
alternative formulations are of interest. In most cases we may consider second kind bound-
ary integral equations in L2(Γ), but in this case we need to assume smooth boundaries to
ensure compactness of the Laplace double layer boundary integral operator. When consid-
ering, e.g. the boundary integral equation (3.21) in L2(Γ), we observe a mismatch in the
mapping properties of the single layer boundary integral operator Vκ, and the double layer
boundary integral operator 1

2
I + Kκ. This motivates to introduce regularised combined

boundary integral equations.

3.3 Regularised combined boundary integral equations

Instead of the combined boundary integral equations (3.21) and (3.22) we now consider
regularised boundary integral equations to find either w ∈ H−1/2(Γ) such that

[
(
1

2
I +Kκ)B − iηVκ

]
w(x) = g(x) for x ∈ Γ, (3.23)

or to find v ∈ H1/2(Γ) such that

[
(
1

2
I +Kκ)− iηVκB

−1
]
v(x) = g(x) for x ∈ Γ.

In both cases, B : H1/2(Γ) → H−1/2(Γ) is a suitable given operator. Instead of (3.23) we
may also consider the equivalent formulation to find w ∈ H−1/2(Γ) such that

[
Vκ + iη(

1

2
I +Kκ)B

]
w(x) = g(x) for x ∈ Γ.

In particular, for the Laplace–Beltrami operator B := V 2 : H−1(Γ) → H1(Γ) we can use
the compact imbedding H1(Γ) →֒ H1/2(Γ) to prove unique solvability of the regularised

boundary integral equation (3.23), see [4, 8]. Another choice is, see [10, 11], B := D̃−1(1
2
I+

K ′
−κ), or, as in (3.17), B = 1

iη
(Dκ + iηD̃)−1(1

2
I +K ′

κ).

4 Transmission problems

As a model problem we consider the scattering at an interface between two media of
different density [14, 18],

∆ui(x) + κ2
iui(x) = 0 for x ∈ Ω, ∆ue(x) + κ2

eue(x) = 0 for x ∈ Ωc, (4.1)
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where the exterior field ue also satisfies the Sommerfeld radiation condition (2.3). In
addition we consider the inhomogeneous transmission conditions for x ∈ Γ = ∂Ω,

̺iui(x)− ̺eue(x) = f(x), ti(x)− te(x) :=
∂

∂ni
ui(x)−

∂

∂ni
ue(x) = g(x), (4.2)

where the discontinuity in the normal velocity g and in the pressure discontinuity f repre-
sent the effect of boundary layer sources. Unique solvability of the transmission problem
(4.1), (4.2) and (2.3) is based on the following result.

Theorem 4.1 [14, Theorem 3.1] Assume κi, κe, ̺i, ̺e ∈ C, 0 ≤ argκi, argκe < π, and

̺ :=
̺i

̺e

κ2
i

κ2
e

∈ R,

where ̺ ≥ 0 (< 0) if ℜ(κi),ℜ(κe) ≥ 0 (< 0). Then the only solution of the homogeneous
transmission problem is the trivial solution.

In what follows we discuss equivalent reformulations of the transmission boundary value
problem (4.1), (4.2), and (2.3) by means of boundary integral equations, in particular for
wave numbers κi, κe ∈ R.

Related to the interior Helmholtz equation in (4.1) we obtain the boundary integral
equations

(Vκi
ti)(x)− (

1

2
I +Kκi

)ui(x) = 0 for x ∈ Γ (4.3)

and

(Dκi
ui)(x)− (

1

2
I −K ′

κi
)ti(x) = 0 for x ∈ Γ, (4.4)

while for the exterior Helmholtz problem in (4.1) we conclude the boundary integral equa-
tions

(Vκete)(x)− (−1

2
I +Kκe)ue(x) = 0 for x ∈ Γ (4.5)

and

(Dκeue)(x) + (
1

2
I +K ′

κe
)te(x) = 0 for x ∈ Γ. (4.6)

Together with the transmission conditions (4.2) we therefore have six equations to find the
four unknowns (ui, ti; ue, te). Recall that the boundary integral equations (4.3) and (4.4)
as well as (4.5) and (4.6) are not independent of each other. In what follows we may use
different combinations of the above boundary integral equations to describe the unique
solution of the transmission problem (4.1), (4.2), and (2.3).
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4.1 Steklov–Poincaré operator equations

As in the case of the Laplace equation we may use boundary integral operators to define
Steklov–Poincaré operators which realize the Dirichlet to Neumann maps for both the
interior and exterior boundary value problems. But special care is required when the
local wave numbers, κi and κe, coincide with eigenvalues of either the interior Dirichlet
or Neumann eigenvalue problems (2.14) and (2.16), respectively. Since the transmission
problem (4.1) and (4.2) admits, by Theorem 4.1, a unique solution, we aim to derive an
equivalent boundary integral equation formulation which is stable for all wave numbers.

From the boundary integral equations (4.3) and (4.4) we find the characterisation

ti(x) = (Dκi
ui)(x) + (

1

2
I +K ′

κi
)ti(x), (Vκi

ti)(x) = (
1

2
I +Kκi

)ui(x),

while from (4.5) and (4.6) we obtain

te(x) = −
[
Dκe + (

1

2
I −K ′

κe
)V −1

κe
(
1

2
I −Kκe)

]
ue(x) = −(Sext

κe
ue)(x),

where Sext

κe
is the Steklov–Poincaré operator (3.7) of the exterior Dirichlet boundary value

problem, and which is well defined for all wave numbers κe ∈ R.
From the Neumann transmission condition in (4.2) we therefore conclude

g(x) = ti(x)− te(x)

= (Dκi
ui)(x) + (

1

2
I +K ′

κi
)ti(x) + (Sext

κe
ue)(x),

where, in addition, ti is a solution of the local boundary integral equation

(Vκi
ti)(x) = (

1

2
I +Kκi

)ui(x).

When inserting the Dirichlet transmission condition, i.e.

ue(x) =
1

̺e

[
̺iui(x)− f(x)

]
for x ∈ Γ,

we end up with the following system of boundary integral equations
(

Vκi
−(1

2
I +Kκi

)
1
2
I +K ′

κi
Dκi

+ ̺i
̺e
Sext

κe

)(
ti
ui

)
=

(
0

g + 1
̺e
Sext

κe
f

)
. (4.7)

Lemma 4.2 Let the assumptions of Theorem 4.1 to be satisfied. Then the system (4.7) is
injective.

Proof. Let (ti, ui) ∈ H−1/2(Γ) × H1/2(Γ) be a solution of the homogeneous system of
boundary integral equations, i.e.

(
Vκi

−(1
2
I +Kκi

)
1
2
I +K ′

κi
Dκi

+ ̺i
̺e
Sext

κe

)(
ti
ui

)
=

(
0
0

)
.
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We then define

Ui(x) =

∫

Γ

U∗
κi
(x, y)ti(y)dsy −

∫

Γ

∂

∂ny

U∗
κi
(x, y)ui(y)dsy for x ∈ Ω,

which is a solution of the interior Helmholtz equation

−∆Ui(x)− κ2
iUi(x) = 0 for x ∈ Ω,

and with the Cauchy data

Ui(x) = (Vκi
ti)(x) + (

1

2
I −Kκi

)ui(x) = ui(x),

∂

∂ni
Ui(x) = (

1

2
I +K ′

κi
)ti(x) + (Dκi

ui)(x).

Since the Steklov–Poincaré operator Sext

κe
of the exterior Dirichlet boundary value problem

is well defined when using the symmetric representation (3.7), we introduce te := − ̺i
̺e
Sext

κe
ui

and we define

Ue(x) = −
∫

Γ

U∗
κe
(x, y)te(y)dsy +

̺i

̺e

∫

Γ

∂

∂ni

U∗
κe
(x, y)ui(y)dsy for x ∈ Ωc,

which is a solution of the exterior Helmholtz equation

−∆Ue(x)− κ2
eUe(x) = 0 for x ∈ Ωc,

and with the Cauchy data

Ue(x) = −Vκete(x) +
̺i

̺e
(
1

2
I +Kκe)ui(x)

=
̺i

̺e

[
VκeS

ext

κe
+ (

1

2
I +Kκe)

]
ui(x) =

̺i

̺e
ui(x),

∂

∂ni
Ue(x) = (

1

2
I −K ′

κe
)te(x)−

̺i

̺e
(Dκeui)(x)

= −̺i

̺e

[
(
1

2
I −K ′

κe
)Sext

κe
+Dκe

]
ui(x) = −̺i

̺e
(Sext

κe
ui)(x).

Note that in the above computations we can use the non–symmetric representation (3.8)
of the exterior Steklov–Poincaré operator Sext

κe
, since in both cases the boundary integral

operators Vκe and (1
2
I −K ′

κe
) eliminate possible eigenfunctions in the case when λ = κ2

e is
an eigenvalue of the interior Dirichlet eigenvalue problem (2.14).

Hence we conclude that (Ui, Ue) is a solution of the transmission problem

−∆Ui − κ2
iUi = 0 in Ω, −∆Ue − κ2

eUe = 0 in Ωc
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with the transmission conditions

̺iUi = ̺eUe,
∂

∂ni

Ui =
∂

∂ni

Ue on Γ.

Since Ue also satisfies the radiation condition (2.3), we can apply Theorem 4.1 to conclude
Ui ≡ 0 in Ω and Ue ≡ 0 in Ωc. From this,

Vκi
ti + (

1

2
I −Kκi

)ui = 0, (
1

2
I +K ′

κi
)ti +Dκi

ui = 0

follows. Together with the first equation of the homogeneous system this results in ui = 0,
and therefore

Vκi
ti = 0, (

1

2
I +K ′

κi
)ti = 0

follows. Since the first relation implies

(
1

2
I −K ′

κi
)ti = 0,

also ti = 0 follows.

Now we are in a position to state the unique solvability of the system (4.7) of boundary
integral equations.

Theorem 4.3 Let the assumptions of Theorem 4.1 to be satisfied. Then there exists a
unique solution (ti, ui) ∈ H−1/2(Γ)×H1/2(Γ) of the system (4.7).

Proof. The system (4.7) of boundary integral equations induces an operator

Aκ :=

(
Vκi

−(1
2
I +Kκi

)
1
2
I +K ′

κi
Dκi

+ ̺i
̺e
Sext

κe

)

=

(
V −(1

2
I +K)

1
2
I +K ′ D̃ + ̺i

̺e
Sext

)
+

(
Vκi

− V −(Kκi
−K)

K ′
κi
−K ′ Dκi

− D̃ + ̺i
̺e
(Sext

κe
− Sext)

)

= A+ (Aκ −A),

where V : H−1/2(Γ) → H1/2(Γ) is the Laplace single layer boundary integral operator,
K : H1/2(Γ) → H1/2(Γ) is the Laplace double layer boundary integral operator, and

K ′ : H−1/2(Γ) → H−1/2(Γ) its adjoint, and D̃ : H1/2(Γ) → H−1/2(Γ) is the stabilised
Laplace hypersingular boundary integral operator. Moreover, Sext is the related Steklov–
Poincaré operator of the exterior Dirichlet boundary value problem of the Laplacian. The
boundary integral operator A : H−1/2(Γ)×H1/2(Γ) → H1/2(Γ)×H−1/2(Γ) is elliptic, while
the operator Aκ−A is compact. In fact, the boundary integral operator Aκ is coercive, and
due to Lemma 4.2, injective. Hence we conclude unique solvability of (4.7) by Fredholm’s
alternative.
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If the wave number κi is not related to an eigenvalue of the interior Dirichlet eigenvalue
problem (2.14), then the single layer boundary integral operator Vκi

is invertible, and we
can determine

ti = V −1
κi

(
1

2
I +Kκi

)ui ∈ H−1/2(Γ).

Hence we conclude the Schur complement boundary integral equation
[
S int

κi
+

̺i

̺e
Sext

κe

]
ui(x) = g(x) +

1

̺e
(Sext

κe
f)(x) for x ∈ Γ

with the Steklov–Poincaré operator of the interior Dirichlet problem

S int

κi
:= Dκi

+ (
1

2
I +K ′

κi
)V −1

κi
(
1

2
I +Kκi

).

Although the exterior Steklov–Poincaré operator Sext

κe
is well defined for all wave numbers

κe ∈ R, alternatively, we may proceed as in (3.16) to end up with a modified system of
boundary integral equations. For this, we first rewrite (4.7) as




Vκi
−(1

2
I +Kκi

)
̺eVκe −̺i(

1
2
I −Kκe)

1
2
I +K ′

κi
Dκi

+ ̺i
̺e
Dκe






ti
te
ui


 =




0
−(1

2
I −Kκe)f

g


 .

Moreover, due to the Neumann transmission condition ti− te = g we may add the equality

−iη̺eV ti + iη̺eV te = −iη̺eV g, η ∈ R,

to the second equation, to obtain the modified system




Vκi

−(1
2
I +Kκi

)
−iη̺eV ̺e(Vκe + iηV ) −̺i(

1
2
I −Kκe)

1
2
I +K ′

κi
Dκi

+ ̺i
̺e
Dκe








ti
te
ui





=




0

−(1
2
I −Kκe)f − iη̺eV g

g



 .

The operator Vκ+iηV is invertible for all wave numbers, without any additional restriction.
Hence we can eliminate te, and we can proceed as before to establish unique solvability of
the resulting boundary integral equation system.

4.2 Combined boundary integral equations

The boundary integral equation system (4.7) was based on the use of both the interior
and exterior Calderon projections (2.8) and (2.21), and on the elimination of the exterior
Cauchy data te and ue. Hence, (4.7) can be seen as a single trace formulation. Although the
system (4.7) is equivalent to the original transmission problem (4.1) and (4.2), and stable
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for all wave numbers κi and κe, one may ask for alternative formulations, in particular
from a numerical point of view.

By using parameters αi, αe ∈ C we can write the general linear combination of the
boundary integral equations (4.3) and (4.5) as

αi

[
Vκi

ti − (
1

2
I +Kκi

)ui

]
+ αe

[
Vκete − (−1

2
I +Kκe)ue

]
= 0 on Γ,

while by using parameters βi, βe ∈ C we obtain from (4.4) and (4.6)

βi

[
Dκi

ui − (
1

2
I −K ′

κi
)ti

]
+ βe

[
Dκeue − (−1

2
I −K ′

κe
)te

]
= 0 on Γ.

By using the transmission conditions (4.2) we may insert

ue(x) =
̺i

̺e
ui(x)−

1

̺e
f(x), te(x) = ti(x)− g(x) for x ∈ Γ

to obtain the coupled system, in the most general case,

[
αiVκi

+ αeVκe

]
ti +

1

2

(
αe

̺i

̺e
− αi

)
ui −

[
αiKκi

+ αe
̺i

̺e
Kκe

]
ui

= αe

[
Vκeg +

1

̺e
(
1

2
I −Kκe)f

]

and
[
βiDκi

+ βe
̺i

̺e
Dκe

]
ui +

1

2

(
βe − βi

)
ti +

[
βiK

′
κi
+ βeK

′
κe

]
ti

= βe

[
(
1

2
I +K ′

κe
)g +

1

̺e
Dκef

]
.

For the particular choice

αi = 1, αe =
̺e

̺i
, βi = 1, βe = 1

we then conclude the system of boundary integral equations

[
Vκi

+
̺e

̺i
Vκe

]
ti −

[
Kκi

+Kκe

]
ui =

̺e

̺i
Vκeg +

1

̺i
(
1

2
I −Kκe)f, (4.8)

[
K ′

κi
+K ′

κe

]
ti +

[
Dκi

+
̺i

̺e
Dκe

]
ui = (

1

2
I +K ′

κe
)g +

1

̺e
Dκef. (4.9)

Note that the system of the boundary integral equations (4.8) and (4.9) is known as single
trace formulation, see, e.g., [12, 23]. Since the underlying bilinear form can be shown to be
coercive in H−1/2(Γ)×H1/2(Γ), see, e.g., the proof of Theorem 4.3, it remains to establish
injectivity.
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Lemma 4.4 The boundary integral operator
(

Vκi
+ ̺e

̺i
Vκe −Kκi

−Kκe

K ′
κi
+K ′

κe
Dκi

+ ̺i
̺e
Dκe

)
: H−1/2(Γ)×H1/2(Γ) → H1/2(Γ) → H−1/2(Γ)

is injective.

Proof. Let (ti, ui) ∈ H−1/2(Γ)×H1/2(Γ) be a solution of the homogeneous system
(

Vκi
+ ̺e

̺i
Vκe −Kκi

−Kκe

K ′
κi
+K ′

κe
Dκi

+ ̺i
̺e
Dκe

)(
ti
ui

)
=

(
0
0

)
.

We then define

Ui(x) =

∫

Γ

U∗
κi
(x, y)ti(y)dsy −

∫

Γ

∂

∂ny

U∗
κi
(x, y)ui(y)dsy for x ∈ Ω

and

Ue(x) = −
∫

Γ

U∗
κe
(x, y)ti(y)dsy +

̺i

̺e

∫

Γ

∂

∂ny

U∗
κe
(x, y)ui(y)dsy for x ∈ Ωc,

which are solutions of the interior and exterior Helmholtz equation, respectively. For the
Cauchy data we obtain for x ∈ Γ

Ui(x) = (Vκi
ti)(x) + (

1

2
I −Kκi

)ui(x),

∂

∂ni

Ui(x) = (
1

2
I +K ′

κi
)ti(x) + (Dκi

ui)(x)

and

Ue(x) = −(Vκeti)(x) +
̺i

̺e
(
1

2
I +Kκe)ui(x),

∂

∂ni
Ue(x) = (

1

2
I −K ′

κe
)ti(x)−

̺i

̺e
(Dκeui)(x).

Hence we conclude

Ui −
̺e

̺i
Ue = Vκi

ti + (
1

2
I −Kκi

)ui −
̺e

̺i

[
−Vκeti +

̺i

̺e
(
1

2
I +Kκe)ui

]

=
[
Vκi

+
̺e

̺i
Vκe

]
ti −

[
Kκi

+Kκe

]
ui = 0

and

∂

∂ni
Ui −

∂

∂ni
Ue = (

1

2
I +K ′

κi
)ti +Dκi

ui −
[
(
1

2
I −K ′

κe
)ti −

̺i

̺e
Dκeui

]

=
[
K ′

κi
+K ′

κe

]
ti +

[
Dκi

+
̺i

̺e
Dκe

]
ui = 0,
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i.e., (Ui, Ue) is a solution of the homogeneous transmission problem

−∆Ui − κ2
iUi = 0 in Ω, −∆Ue − κ2

eUe = 0 in Ωc

with the transmission conditions

̺iUi = ̺eUe,
∂

∂ni

Ui =
∂

∂ni

Ue on Γ.

Since Ue also satisfies the radiation condition (2.3), we can apply Theorem 4.1 to conclude
Ui ≡ 0 in Ω and Ue ≡ 0 in Ωc. From this,

Vκi
ti + (

1

2
I −Kκi

)ui = 0, (
1

2
I +K ′

κi
)ti +Dκi

ui = 0 on Γ (4.10)

follows. Next we define

Ũe(x) = −
∫

Γ

U∗
κi
(x, y)ti(y)dsy +

∫

Γ

∂

∂ny
U∗
κi
(x, y)ui(y)dsy for x ∈ Ωc

which is a solution of the exterior Helmholtz equation

−∆Ũe(x)− κ2
i Ũe(x) = 0 for x ∈ Ωc,

and with the Cauchy data for x ∈ Γ, by using (4.10),

Ũe(x) = −(Vκi
ti)(x) + (

1

2
I +Kκi

)ui(x) = ui(x),

∂

∂ni
Ũe(x) = (

1

2
I −K ′

κi
)ti(x)− (Dκi

ui)(x) = ti(x).

Hence, Green’s formula for the exterior Helmholtz equation reads
∫

Ωc

|∇Ũe(x)|2dx− κ2
i

∫

Ωc

|Ũe(x)|2dx = −
∫

Γ

ti(x)ui(x)dsx,

From the radiation condition (2.3) we conclude

0 = lim
r→∞

∫

|x|=r

∣∣∣∣
∂

∂nx

Ũe(x)− iκiŨe(x)

∣∣∣∣
2

dsx

= lim
r→∞

{∫

|x|=r

∣∣∣∣
∂

∂nx

Ũe(x)

∣∣∣∣
2

dsx + κ2
i

∫

|x|=r

∣∣∣Ũe(x)
∣∣∣
2

dsx

−2κi ℑ
(∫

|x|=r

∂

∂nx

Ũe(x)Ũe(x)dsx

)}
,

and using Green’s formula for the bounded exterior domain Ωc ∩ Br we further obtain

ℑ
(∫

Γ

ti(x)ui(x)dsx

)
= ℑ

(∫

|x|=r

∂

∂nx
Ũe(x)Ũe(x)dsx

)
= 0.
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Hence we have

lim
r→∞

∫

|x|=r

|Ũe(x)|2dsx = 0,

and by the Rellich lemma, e.g., [8, Lemma 3.11], Ũe ≡ 0 in Ωc follows. From this we further

conclude ui = γext

0 Ũe = 0, and therefore, by using (4.10),

Vκi
ti = 0, (

1

2
I +K ′

κi
)ti = 0.

Since the first relation implies (1
2
I −K ′

κi
)ti = 0, also ti = 0 follows.

Recall that coercivity and injectivity of the boundary integral operator system as considered
in Lemma 4.4 ensures unique solvability of the boundary integral equation system (4.8)
and (4.9), in particular we find (ti, ui) ∈ H−1/2(Γ)×H1/2(Γ) as the unique solution of the
variational problem

〈(Vκi
+

̺e

̺i
Vκe)ti, τ〉Γ − 〈(Kκi

+Kκe)ui, τ〉Γ = 〈̺e
̺i
Vκeg +

1

̺i
(
1

2
I −Kκe)f, τ〉Γ

〈(K ′
κi
+K ′

κe
)ti, v〉Γ + 〈(Dκi

+
̺i

̺e
Dκe)ui, v〉Γ = 〈(1

2
I +K ′

κe
)g +

1

̺e
Dκef, v〉Γ

for all (τ, v) ∈ H−1/2(Γ) × H1/2(Γ). In fact, (4.8) and (4.9) are considered as boundary
integral equations of the first kind.

Alternatively, one may consider the formulation of second kind boundary integral equa-
tions, where the single layer boundary integral operators Vκi

and Vκe as well as the hyper-
singular boundary integral operators Dκi

and Dκe appear in the coupling terms. For the
particular choice

αe = 1, αi = −1, βi = −1, βe =
̺e

̺i
we conclude the system of boundary integral equations

[
Vκe − Vκi

]
ti +

1

2

(
̺i

̺e
+ 1

)
ui −

[
̺i

̺e
Kκe −Kκi

]
ui (4.11)

=
1

̺e
(−1

2
I +Kκe)f − Vκeg,

[Dκe −Dκi
]ui +

1

2

(̺e
̺i

+ 1
)
ti +

[
̺e

̺i
K ′

κe
−K ′

κi

]
ti (4.12)

=
̺e

̺i

[
(−1

2
I −K ′

κe
)g − 1

̺e
Dκef

]
.

A closer look on the difference Vκe − Vκi
of the single layer boundary integral operators

indicates a reduced order of the singularity involved, i.e.

(Vκeti)(x)− (Vκi
ti)(x) =

1

4π

∫

Γ

eiκe|x−y| − eiκi|x−y|

|x− y| ti(y)dsy

=
i

2π

∫

Γ

ei
κe+κi

2
|x−y| sin κe−κi

2
|x− y|

|x− y| ti(y)dsy.
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Since also the difference Dκe − Dκi
has a reduced order in its singularity, the system of

boundary integral equations (4.11) and (4.12) is known as minimal coupling formulation,
see [18], i.e., the minimal coupling formulation involves lower–order singularities in the
kernels of the coupling terms than does any other formulation generated from the combined
boundary integral equations.

5 Conclusions

In this work, several boundary integral formulations for the solution of the exterior Dirich-
let boundary value problem, and for transmission problems of the Helmholtz equation with
piecewise constant wave numbers were presented. Although the focus of this contribution
was on the existence and uniqueness of solutions, and the equivalence with the solution of
the underlying boundary value and transmission problems, almost all formulations allow
for the use of standard arguments, see, e.g. [24, 26], within a stability and error analysis
of related Galerkin boundary element methods. Note that it is almost impossible to com-
pare and to rate different boundary integral formulations and different boundary element
implementations. The method of choice always depends on several aspects, e.g. the ap-
plication in mind, the mathematical foundation, the required accuracy, the availability of
fast and accurate boundary element implementations including parallel and preconditioned
iterative solution strategies, the use of a posteriori error estimators and adaptivity, just to
name a few. Although there are already some numerical studies around for a comparison of
different boundary element approaches, in particular when considering exterior boundary
value problems, it seems that more work is required to state a fair comparison of different
boundary integral formulations and related boundary element implementations.

The focus of future work will be in the numerical analysis of stable, robust, and efficient
boundary element domain decomposition methods for the solution of transmission prob-
lems, including multiple trace formulations [7] and tearing and interconnecting methods
[30, 31]. In addition to local and global preconditioning strategies, which are required to
be robust with respect to local wave numbers, the handling of adaptive and non–matching
discretisations becomes more challenging. The latter also includes the coupling with con-
forming and non–standard finite element methods, including mixed finite elements, discon-
tinuous Galerkin, and Mortar finite elements.

While the current considerations of this contribution were restricted to the case of acous-
tic scattering problems, almost all approaches and methodologies as presented here can be
carried over to the case of electromagnetic scattering problems, see, e.g. the discussion in
[7], in [29, 33], and the references given therein.
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